首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
张永显  马国锐  訾栓紧  门行 《测绘学报》2023,(11):1906-1916
针对多源遥感影像之间非线性辐射和几何畸变的差异严重影响配准质量的问题,本文提出一种具有双向一致性变换适用于多源遥感影像的配准方法。首先,利用微调的ResNet101网络模型提取多源遥感影像学习型特征,在特征匹配阶段,为提高同名特征匹配的可靠性,设计了一种双向一致性特征匹配网络模型;然后,基于小型轻量级网络加权回归变换模型参数,实现多源遥感影像稳健可靠的配准。试验利用Google Earth影像、卫星影像、无人机影像、Google Earth-卫星-无人机混合影像4种不同数据源对本文方法进行测试,并与具有代表性的多种方法进行比较,结果表明本文方法在配准精度、效率、稳健性方面具有优势,基本实现了2像素以内的自动配准精度。  相似文献   

2.
江宝得  黄威  许少芬  巫勇 《测绘学报》2023,(9):1504-1514
遥感影像建筑物准确、高效的自动提取方法有着广泛的用途。针对现有遥感影像建筑物提取方法难以兼顾不同大小的建筑物,导致小尺度建筑物不同程度上漏检及提取的建筑物轮廓边界模糊等问题,本文提出一种融合分散自适应注意力机制的多尺度遥感影像建筑物实例细化提取方法(MBRef-CNN)。首先采用融合分散自适应注意力机制的遥感影像多尺度特征提取网络(SA-FPN)学习多尺度建筑物的特征,然后利用区域候选网络(RPN)预测单个建筑物实例的目标框位置,最后使用边界细化网络(BndRN)迭代获取精确的建筑物掩膜。在WHU aerial imagery dataset数据集上,通过与现有主流方法进行对比试验表明,本文方法的建筑物掩膜提取精确度比其他表现优秀的主流分割算法更高,在多尺度的建筑物提取上表现出良好的综合性能,且在小尺度的建筑物提取上具有明显的精度优势。  相似文献   

3.
林文杰 《测绘学报》2022,51(2):316-316
在更精细的空间尺度下,高分遥感影像呈现更丰富的地物细节信息,信息内容的复杂性、空间性和海量性等特征,给传统遥感影像分割方法带来挑战。针对这些挑战,寻求一种更有效的分割模型和并行化的处理方法是有效提高大尺度高分遥感影像分割精度和处理效率的关键。为此,论文提出基于最小生成树的高分遥感影像层次化分割方法及其并行化重构。前者利用层次化最小生成树模型实现影像复杂场景信息的有效刻画,在此基础上利用区域化模糊聚类模型构建层次化分割模型。后者基于子块切分的并行划分和并行模糊聚类分割方法,实现大尺度高分遥感影像的快速、有效分割。论文的主要工作如下。  相似文献   

4.
近年来,基于深度学习的超分辨率重建技术已经广泛应用于多时相高光谱影像、高分影像超分辨率重建等领域。多角度遥感影像之间具有丰富的互补信息,可用于超分辨率重建。针对高分辨率多角度遥感影像提出了一种基于动态上采样滤波网络的超分辨率重建方法。该方法的网络结构为端到端双路网络,其中一个分支网络通过动态上采样滤波模块来实现分辨率提升,另一个分支网络用来学习影像中的高频信息,将两个分支网络输出的结果相加即可得到最终的超分辨率重建影像。为了验证该方法的有效性,利用WorldView-2美国亚特兰大地区和巴西里约热内卢地区多角度遥感影像数据分别进行了2倍、3倍、4倍超分辨率重建模拟实验和真实实验,并进行了多组对比实验。实验结果表明,所提方法可以在顾及多角度影像角度维信息的同时有效提升目标影像空间分辨率,并且较好地保持了影像的细节信息。  相似文献   

5.
遥感图像目标检测是对目标视觉特征的描述与图像先验知识的表达,解译得到的信息无论在军事领域还是在民用领域都有着广泛的应用。针对复杂场景下遥感图像目标特征提取能力不足,目标尺度差异较大、方向任意且紧密排列,传统目标检测所使用的水平框难以准确定向等问题,提出了一种精细化多尺度特征的遥感图像定向目标检测算法。首先,设计了一种基于空洞卷积的上下文注意力网络,能够利用不同空洞率的卷积核捕获局部和全局语义信息,并利用注意力机制将语义信息整合到原始特征上,提升目标特征提取能力;其次,提出了一个精细化的特征金字塔网络,通过像素混洗的方式减少特征金字塔中的通道信息损失,强化网络对差异性大的多尺度目标特征信息的理解能力;最后,研究利用滑动顶点的方式回归定向的矩形框,更好地表示遥感图像内有向目标的位置。本文以Fast R-CNN OBB为基准,通过在目标检测公开数据集DOTA和HRSC2016上验证了算法的有效性,结果显示本文算法在DOTA数据集上与基准算法比较,平均精度(mAP)提升了22.65%,最终检测精度mAP达到了76.78%。在HRSC2016数据集上,最终检测精度mAP达到了89.95%。此外,本文算法较多种先进算法相比均有具有较好的提升。  相似文献   

6.
由于遥感设备的性能限制,使得采集的遥感影像质量受到影响,低分辨率的遥感影像限制了遥感解译应用的精度。当前针对遥感影像的超分辨率重建研究仍然存在重建后的遥感影像地物全局信息和纹理细节不足的问题。因此,本文提出顾及全局特征和纹理特征的遥感影像超分辨率重建方法,该方法利用生成对抗网络的特征学习能力,并对模型全局和纹理进行增强。一方面,地物全局特征增强部分用于解决当前研究中超分辨率重建模型对低分辨率遥感影像中全局遥感地物信息没有重视和利用的问题。在生成网络中引入自注意力模块,以获取全局地物注意力图的方式将遥感影像中相距较远的地物信息作为重建过程的参考。另一方面,遥感影像纹理增强部分用于解决超分辨率重建模型中超分辨率影像纹理信息不足的问题。本文方法引入纹理损失以优化生成网络参数并增强超分辨率重建后影像中的纹理信息。另外,为避免重建结果中的“伪影”现象,研究采用权值归一化代替批量归一化方法。试验结果表明,本文方法在遥感影像超分辨率重建过程中能增强遥感地物特征,同时可以实现地物的纹理细节精细化恢复,而且超分辨率重建结果的图像质量评价指标SSIM、FSIM和PSNR值分别达到了0.756、0.595和...  相似文献   

7.
针对无人机大视角差影像之间存在仿射变形大、遮挡严重、视角差异显著等问题导致的同名点匹配存在多解和大量误匹配难题,本文提出了一种适用于大视角差影像稳健匹配方法。利用改进的具有双头通信机制的D2-Net卷积神经网络提取倾斜影像的学习型特征,在之后的同名点匹配搜索阶段,为解决唯一匹配点受到较多潜在可行解干扰的问题,设计了一种由粗到精的提纯策略,在稳健匹配同名点对的同时大幅降低匹配开销成本。将HPatches数据集中多组不同场景的影像序列和实地采集的无人机大视角差影像序列作为数据源对提出的方法进行测试,并与具有代表性的基于手工设计的ASIFT方法和基于深度学习的多种方法进行了比较。结果表明,本文方法能够提取稳健的大视角差影像序列仿射不变学习型特征,在正确匹配点数、匹配点正确率、匹配点均方根误差和匹配时间开销方面具有优势。  相似文献   

8.
冰流速是反映在全球气候变化条件下南极冰盖变化及其稳定性最直接和最基本的指标之一,也是精确估算南极冰盖对全球海平面上升贡献的关键数据之一。光学遥感影像因其空间覆盖广、时间和空间分辨率高等优势,是南极冰流速大规模提取的重要数据源。本文首先对现有利用光学遥感影像进行南极冰流速提取的方法进行了综述,介绍了相关的软件和工具。然后,总结了20世纪60年代以来基于光学遥感影像生成的南极冰流速产品,并对南极典型区域的冰流速产品在物质平衡估算、冰架长时序变化监测等方面的应用进行了分析。最后,总结了光学遥感影像用于南极冰流速提取的优势及未来的发展趋势。  相似文献   

9.
为了对单幅低分辨率遥感影像的空间分辨率进行增强,提出了一种基于稀疏表示的超分辨率重建方法。该方法首先采用优化最小化方法学习高-低分辨率联合字典对,通过构造一个参数互相解耦的易于优化的代理函数,替代原来的参数互相耦合难以优化的目标函数,保证每一次迭代求解的值在局部范围内最优。然后,将学习的字典对用以指导其他低分辨率遥感影像的超分辨率重建。实验表明,与传统的插值方法相比,本研究算法在客观的评价指标上具有一定的提高,在主观的视觉效果上也取得一些改善,可为任意区域的单幅低分辨率遥感影像的超分辨率重建提供有用的高频细节信息,具有一定的普适性。  相似文献   

10.
遥感影像目标识别技术已广泛应用于目标动态监测与定位等领域。但影像目标识别的结果缺乏与目标属性信息的链接,导致分析人员只能依据影像特征进行分析,难以进行更复杂的目标数据关联分析与挖掘。针对遥感影像目标识别语义属性信息缺失的问题,本文利用知识图谱相关技术将影像判别的目标信息与知识语义网链接。首先,提出了一种遥感影像目标知识图谱构建框架;其次,针对遥感影像目标不同的数据类型,构建遥感影像目标知识抽取模型,提出了基于相似度目标实体识别和预定义模式的关系抽取方法;然后,基于多特征Logistic模型的影像目标实体链接方法,实现了遥感影像目标实体与百科知识库的知识关联;最后,针对预定试验区域进行试验,验证了本文方法的可行性。  相似文献   

11.
梁哲恒  黎宵  邓鹏  盛森  姜福泉 《测绘学报》2022,51(5):668-676
深度学习技术已经成为遥感影像变化检测研究的主流方法,现有的基于深度学习的变化检测方法主要是获取单一尺度的变化特征,而在现实场景中,变化区域的尺度具有多样性。为此,本文提出了融合多尺度特征注意力的遥感影像变化检测方法,通过关注多尺度融合策略来解决变化检测存在的多尺度问题。首先,利用特征金字塔网络自身的多尺度特性,使网络学习到不同尺度的变化特征,为了提升网络感受野和利用全局特征信息,在特征提取网络末端引入扩张卷积空间金字塔模块;然后,在不同变化特征融合时,使用变化特征融合模块来控制信息传播以减少特征融合时的差异性;最后,使用门控机制,将不同尺度预测的变化特征图进行加权求和,最终产生具有高精度的变化特征图。本文方法不仅能获取多尺度变化特征,还能利用全局信息和精确的空间细节来提升预测特征图的空间精度。对比试验表明,本文方法在变化检测基准数据集CDD和LEVIR-CD上取得了较好的结果,召回率分别提高了6.58%和5.26%。  相似文献   

12.
董志鹏 《测绘学报》2023,(9):1613-1613
高分辨率遥感影像目标检测作为高分对地观测系统中影像信息自动提取及分析理解的重要内容,对高分对地观测系统应用价值的发挥具有重要影响。卷积神经网络作为最热门的深度学习模型,由于其可以根据海量数据和标注自行进行有效图像特征提取和学习,在训练数据充足的情况下,模型具有良好的泛化能力,能够在复杂多变的条件下依然保持良好的稳健性和普适性。因此,基于卷积神经网络的目标检测架构被相继提出,但现有网络架构多是针对自然图像设计的,相对于自然图像,高分辨率遥感影像存在背景更加复杂、目标尺度更小、同类目标尺度变化更大和影像尺寸更大等特点;将这些网络架构直接用于高分辨率遥感影像目标检测会存在网络目标建议框尺度不匹配,待检影像相对于网络输入过大,以及缺乏训练数据等问题。针对上述问题,论文系统性地开展基于卷积神经网络的高分辨遥感影像目标检测方法研究。主要研究内容如下。  相似文献   

13.
融合SAR影像的后向散射信息和光学影像的光谱信息是提高土地覆盖分类精度的重要手段之一,其中多尺度变换是一种有效的融合方法。然而,多尺度变换方法的融合规则通常根据局部特征信息和脉冲耦合神经网络模型进行设计,存在结构信息和细节信息提取能力有限,以及脉冲耦合神经网络参数设置复杂和空间相关性差等问题。为此,本文提出一种结合改进Laplacian能量和参数自适应双通道单位连接脉冲耦合神经网络(ULPCNN)的遥感影像融合方法。该方法混合成分替换方法和多尺度变换方法,首先对多光谱影像进行IHS变换得到亮度分量I,将亮度分量I与SAR影像通过非下采样剪切波变换(NSST)分解得到高低频子带。然后对低频子带采用结合加权局部能量和八邻域修正拉普拉斯加权和的融合规则,同时对高频子带采用参数自适应双通道ULPCNN的融合规则,将高频子带的多尺度形态梯度作为链接强度,并根据OTSU阈值和影像强度来实现其他参数的自适应表示。最后依次进行NSST重建和IHS逆变换得到融合影像,并选择随机森林分类器对融合影像进行土地覆盖分类。试验结果表明,本文方法相较于13种其他方法在11个融合评价指标和土地覆盖分类精度上总体表现最佳,土地覆盖分类的总体精度和Kappa系数在区域1中比原多光谱影像分别提高了8.350%和0.107,在区域2中比原多光谱影像分别提高了6.896%和0.091。  相似文献   

14.
不透水率是衡量城市生态环境状况的一个重要指标。当前全球范围内仅有1 km和30 m分辨率尺度的不透水面专题信息,无法满足城市尺度水文模型建模、海绵城市规划和建设需求。提出了图谱信息融合的不透水面提取模型,实现了基于深度学习的不透水面提取新方法,研制了不透水面遥感全流程提取和监测软件。基于多源高分辨率遥感影像首次完成了中国31个省(直辖市、自治区)的2 m不透水面专题信息提取,形成全国不透水面一张图,为海绵城市和生态城市的建设提供了基础数据支撑和技术监测手段。  相似文献   

15.
深度学习是提取不透水面的一类重要方法,具有精度高,泛化性强等优势。但是模型的训练需要依靠大量的训练样本。尤其是在高分辨率、大尺度不透水面制图时,获取数量足够且高质量的训练样本非常费时费力。因此,本文结合多源遥感影像与开源数据,提出了一种大尺度高分辨率不透水面自动提取方法。该方法首先从众源数据OpenStreetMap中自动获取训练样本,然后用开源的不透水面产品对噪声样本加权,减小标签噪声对模型训练的负面影响;在此基础上,构建了一种三分支的超轻量级CNN模型,融合光学、SAR和地形数据生成10 m不透水面产品。以越南全境为试验区,对本文方法进行了验证。试验结果表明,本文提出的方法分类总体精度和Kappa系数分别为91.01%和0.82,优于目前已发布的不透水面产品。本文研究成果可为澜湄流域等热带亚热带城市可持续发展和生态环境保护提供基础技术和数据支撑。  相似文献   

16.
石茜  杜博  张良培 《测绘学报》2012,41(3):417-420
提出一种基于局部判别正切空间排列(local discriminative tangent space alignment,LDTSA)的高光谱影像降维方法。LDTSA源于局部正切空间排列(LTSA)中的排列机制,在一个局域块内利用线性局部正切平面对类内样本的流形结构建模,同时还考虑到类间判别信息以最大化判别边界。利用多幅高光谱数据进行降维和分类试验。结果表明,LDTSA主要有三个优点:①在小样本问题上性能稳定;②在降维过程中保持类别间的判别信息;③有效挖掘数据集的几何流形结构。  相似文献   

17.
提出了一种基于稀疏表示和纹理分块的单幅遥感影像超分辨率方法,主要利用先验知识及影像自身的纹理信息重构遥感图像。首先,提取用于字典学习的图像块,从高、低分辨率遥感图像块中训练出冗余字典,采用正交匹配追踪方法更新字典,用迭代的方法直到算法收敛;然后,将训练的字典应用于遥感影像超分辨率重构。重构时将图像块分成平滑块和非平滑块两种类型,平滑块采用双三次卷积方法重构,非平滑块采用低分辨率遥感图像块的稀疏表示系数及高分辨率图像块冗余字典重构。实验结果表明,此方法重构速度较快,并在视觉及客观评价指标上有较好的超分辨率效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号