共查询到20条相似文献,搜索用时 15 毫秒
1.
D. V. Ramana J. Pavan Kumar Asha Chelani R. K. Chadha M. Shekar R. N. Singh 《Natural Hazards》2015,77(1):109-116
Koyna–Warna region in western India is known to be the largest case of the reservoir-triggered seismicity in the world with M6.3 earthquake in 1967. This region continues to be seismically active even after 45 years with occurrences of earthquakes up to M5.0. The porous crustal rocks of Koyna–Warna region respond to changes in the prevailing stress/strain regime. This crustal section is highly fractured and is being fed by rivers and reservoirs. It is also subjected to fluctuating plate boundary forces and significant gravity-induced stresses due to crustal inhomogeneities. These changes induce variations in the water level in bore wells before, during and after an earthquake, and their study can help in understanding the earthquake genesis in the region. The ongoing seismicity thus requires understanding of coupled hydrological and tectonic processes in the region. Water table fluctuations are a reflection of the ongoing hydro-tectonics of the region. The fractal dimension of water levels in the bore wells of the region can be used as measure of the nonlinear characteristics of porous rock, revealing the underlying complexity. In this paper, we present values of correlation dimensions of the water level data in the bore wells using the nonlinear time series methodology. The spatiotemporal changes in the fractal dimensions have also been determined. The results show that hydro-seismically the region behaves as a low-dimensional nonlinear dynamical system. 相似文献
2.
The Alaknanda and Bhagirathi rivers flow through the Higher and Lesser Himalayas and confluence at Devprayag, which represents the origin of the Ganga (or Ganges) river. In the present study, a vast number of temporal and spatial samples of the river waters were collected and analyzed for major cations and anions. In addition, more recent and time series water flow data have been obtained and based on these inputs, a more refined dissolved flux rates have been estimated. The Alaknanda and Bhagirathi rivers show significant variations in chemical compositions during different seasons. Carbonate rock weathering is responsible for more than 70% of the chemical compositions in the river waters. The chemical weathering rates show seasonal variations and are much higher during non-monsoon season. The dissolved flux of Alaknanda river is much higher (1.80 × 106 tons yr?1) as compared to the Bhagirathi river (0.34 × 106 tons yr?1). The chemical weathering rates in the basin vary between 85 and 155 tons km?2 yr?1, which is significantly higher compared to the global average of ~24 tons km?2 yr?1. 相似文献
3.
Subansiri?CRanganadi Doab (confluence country), located in Lakhimpur district, Assam, is one of the worst flood-affected areas in Brahmaputra valley. The Doab is well populated, and land around these rivers is extensively used for cultivation. As means of flood protection, embankments were constructed in the 1950s along the banks of both the rivers. On the other hand, these rivers are dynamic in terms of banklines and other forms of channel changes. Progressive migration of bankline, due to erosion, results in loss of cultivable land. Moreover, it causes breaches in the embankments increasing the severity of flood in the Doab. This paper attempts to study the changes in the banklines of two major rivers in the floodplains of the Subansiri?CRanganadi Doab during 1997?C2009 in the context of the riverine hazards it brings to the floodplain dwellers. The shift of the banklines in Subansiri?CRanganadi Doab, downstream of North Lakhimpur, has been estimated using IRS LISS imageries of 1997 and 2009 in GIS environment. The river Subansiri during the study period has migrated westward and has widened substantially resulting in erosion of an area of ~19.137?km2. For Ranganadi, the total area that has been eroded due to channel changes is ~0.897?km2. The channel changes are mainly due to concave bank erosion associated with high stages of flow. Channel widening in Subansiri and Ranganadi in the study area during the decades of 1990s and 2000 has led to frequent breaches in the embankments. Lateral erosion and inundation due to embankment failure are the most dominant facets of riverine hazards in the study area as these lead to loss of livelihood. Therefore, it is necessary to incorporate geomorphic changes in formulating flood management programmes. 相似文献
4.
This paper introduces a new statistical method that we recommend should become standard procedure to quantify the goodness-of-fit of calibration and validation for land-use change models. We present a multiple-resolution Relative Operating Characteristic (ROC) that measures the goodness-of-fit between a reference map, which is considered reality, and a simulated map, which is a model’s output. This proposed ROC is based on: (1) multiple-resolutions, (2) soft classification, (3) sampling without replacement, and 4) explicit separation of factors of quantity versus location of land-use change. We illustrate the method with a case study in India’s Western Ghats, a biodiversity hotspot, where we have maps of cumulative forest disturbance for 1920 and 1990. We use a predictive modeling approach similar to GEOMOD in which we calibrate the model with the map of 1920, then predict the map of 1990, at which point we subject the model to validation. We show that the fit of calibration tends to be much larger than the fit of validation. Thus if a modeler assess a model by goodness-of-fit of calibration only, then the modeler will likely be over confident in the model’s predictive ability. 相似文献
5.
The sources and historical deposition of 16 polycyclic aromatic hydrocarbons (PAHs) were investigated in dated sediment cores from the Pichavaram mangrove–estuarine complex. The ΣPAH flux in mangrove and estuarine sediments was 0.064 ± 0.031 μg/cm2/yr and 0.043 ± 0.020 μg/cm2/yr, respectively. The PAH flux in sediments increased up-core, coinciding with rapid urbanization since the 1970s. The flux showed a decrease in recent years (since 1990), coinciding with less riverine discharge, and perhaps more effective implementation of environmental regulations. The sediments were dominated by low molecular weight PAHs, suggesting anthropogenic input. Ratios of specific PAH isomer pairs suggested a greater input of petrogenic vs. pyrogenic derived PAHs. Notably, the deposition of high molecular weight PAHs increase in mangrove surface sediments was due to lignite and firewood combustion. Because of their overall low concentration in sediments it is unlikely these PAHs pose an immediate ecological hazard. 相似文献
6.
《Chemie der Erde / Geochemistry》2016,76(1):117-131
Elemental and organic geochemical studies have been carried out on the Gondwana sediments, collected from the outcrops of Permian and Jurassic–Cretaceous rocks in the Krishna–Godavari basin on the eastern coast of India, to understand their paleo and depositional environment and its implications for hydrocarbon generation in the basin. Amongst the studied formations, the Raghavapuram, Gollapalli and Tirupati form a dominant Cretaceous Petroleum System in the west of the basin. Raghavapuram shales and its stratigraphic equivalents are the source rock and Gollapalli and Tirupati sandstones form the reservoirs, along with basaltic Razole formation as the caprock. Major element systematics and X-ray diffraction study of the sandstones indicate them to be variably enriched with SiO2 relative to Al2O3 and CaO, which is associated, inherently with the deposition and diagenesis of the Gondwana sediments. Post-Archean Average Shale normalized rare earth elements in shales show enrichment in most of the samples due to the increasing clay mineral and organic matter assemblage. A negative europium and cerium anomaly is exhibited by the REE's in majority of rocks. Composed primarily of quartz grains and silica cement, the Gollapalli and Tirupati sandstones have characteristics of high quality reservoirs. The shales show a significant increase in the concentration of redox sensitive trace elements, Ni, V, Cr, Ba and Zn. The total organic carbon content of the shales ranges between 0.1 and 0.5 wt%. Programmed pyrolysis of selected samples show the Tmax values to range between 352–497 °C and that of hydrogen index to be between 57–460 mgHC/gTOC. The organic matter is characterized by, mainly, gas prone Type III kerogen. The n-alkane composition is dominated by n-C11–C18 and acyclic isoprenoid, phytane. The aromatic fraction shows the presence of naphthalene, anthracene, phenanthrene, chrysene and their derivatives, resulting largely from the diagenetic alteration of precursor terpenoids. The organic geochemical proxies indicate the input of organic matter from near-shore terrestrial sources and its deposition in strongly reducing, low oxygen conditions. The organic matter richness and maturity derived from a favorable depositional setting has its bearing upon the Gondwana sediments globally, and also provides promising exploration opportunities, particularly in the Raghavapuram sequence of the KG basin. 相似文献
7.
8.
9.
《Geoforum》2016
Cattle-raising, especially for dairy, has expanded in the Ecuadorian Andes since the late 1990s as smallholding farmers have shifted their livelihood activities away from crop-based agriculture due to changes in climate, market conditions, and rural out-migration. Non-migrants constructing cattle-based livelihoods are turning to cattle as the basis for “viable” livelihoods in order to remain in depopulating rural parishes. Non-migrant farmers express ideals such as autonomy and tranquility as reasons for their attachment to rural places. In turn, their livelihood activities remake these places materially. Drawing on Tim Ingold’s conceptualization of taskscape and landscape, I argue that cattle-based livelihoods create a taskscape prone to human–wildlife conflict. Since 2009, residents have reported dozens of Andean bear attacks on cattle. Cattle are vulnerable capital assets. They represent both an investment with daily and weekly dividends over many years, in the form of milk, and a long-term form of wealth storage. The turn to cattle-based livelihoods in this region has thus heightened human–bear conflict. The phenomenon of the human–bear conflict is therefore a product of shifting livelihoods and accompanying changes in the taskscape. This analysis demonstrates the importance of listening to narratives of place attachment and accounting for the cultural logics of livelihood choices when considering interventions to address human–wildlife conflict. 相似文献
10.
11.
12.
13.
S. M. Gandhi 《Journal of the Geological Society of India》2014,84(3):253-266
India has a rich and impressive heritage in the production and use of base and precious metals. The presence of extensive ancient mine workings and debris, enormous heaps of slags and retorts, ruins of temples and townships of the major mining centres of modern India, bear mute testimony to the art of exploitative and extractive processes in vogue in the early period. The Aravalli range, trending NE-SW, in northwest India, hosts about 80% of the known base metal deposits and 95% of the zinc-lead resources of India. The ancient workings extend to considerable depths, the deepest being at 250 m below surface, which is perhaps the greatest ever achieved by miners in the ancient world. Radiocarbon dating of the materials /artifacts recovered, indicated that many of the mines in Aravalli belt were worked as far back as 400 BC and certainly flourished in the medieval period. The exploitative and quite sophisticated extraction processes of base metals and silver, practiced by the ancients in various areas of this belt are described. Detailed literary evidences of finding different ores, exploitative and extraction techniques practiced by the ancients fromVedic to post-Vedic Sanskrit texts and the archaeo-metallurgical evidences are described. The investigations showed that there are no analogies in the world for smelting processes in general and zinc, in particular, practiced by the ancient metal workers, in this part of the world. 相似文献
14.
《International Geology Review》2012,54(5):456-472
Marine carbonate rocks of the Delhi Supergroup of northwestern India show little deviation in whole‐rock δ 13Ccarb and δ 18Ocarb values, which generally are around 0 and –10‰ respectively. These narrow ranges and almost constant δ 13Ccarb values persist despite close sampling through long sections. The data suggest that the global rate of organic carbon burial was probably constant during deposition of the Delhi Supergroup. The nearly invariant C isotopic profile of the Delhi Supergroup is similar to C isotopic profiles of Mesoproterozoic carbonates older than 1.3 Ga, as reported from different parts of world. Carbonate units on the western margin of the Delhi Supergroup however, have on average moderately positive δ 13C values (from 2 to +4.96‰). These high δ 13C carbonates may represent the Mesoproterozoic–Neoproterozoic transition (from ~1.25 to ~0.85 Ga), a period characterized by high positive δ 13C values globally. 相似文献
15.
《Journal of Asian Earth Sciences》2001,19(1-2):1-15
An association of westerly verging asymmetric folds, easterly dipping cleavages and contractional faults control the pattern and intensity of structures at different scales in the southern Nallamalai fold–fault belt, Cuddapah district of Andhra Pradesh, Southern India. Variation in structural geometry is manifested across the section by the occurrence of relatively low amplitude folds, sometimes only a monocline and by the near absence of contractional faults in the WSW, but tight to isoclinal folds with frequent fold–fault interactions through the central areas towards ENE.The relationships of structural elements in terms of orientation, style, sense of movement and general vergence indicate their development under a progressive contractional deformation. The structures are interpreted to result from a combination of bulk inhomogeneous shortening across the belt and a top-to-west, variable simple shear. Localized developments of crenulation cleavage, rotation of cleavage in the shorter limbs of some mesoscale asymmetric folds and general variation of structural elements in morphology and associations across the belt, indicate partitioning of deformation and a varying degree of non-coaxiality in discrete domains of the bulk deformation. 相似文献
16.
Located adjacent to the Banded Gneissic Complex, Rampura–Agucha is the only sulfide ore deposit discovered to date within
the Precambrian basement gneisses of Rajasthan. The massive Zn–(Pb) sulfide orebody occurs within graphite–biotite–sillimanite
schist along with garnet–biotite–sillimanite gneiss, calc–silicate gneisses, amphibolites, and garnet-bearing leucosomes.
Plagioclase–hornblende thermometry in amphibolites yielded a peak metamorphic temperature of 720–780°C, whereas temperatures
obtained from Fe–Mg exchange between garnet and biotite (580–610°C) in the pelites correspond to postpeak resetting. Thermodynamic
considerations of pertinent silicate equilibria, coupled with sphalerite geobarometry, furnished part of a clockwise P–T–t path with peak P–T of ∼6.2 kbar and 780°C, attained during granulite grade metamorphism of the major Zn-rich stratiform sedimentary exhalative
deposits orebody and its host rocks. Arsenopyrite composition in the metamorphosed ore yielded a temperature [and log f(S
2)] range of 352°C (−8.2) to 490°C (−4.64), thus indicating its retrograde nature. Contrary to earlier research on the retrogressed
nature of graphite, Raman spectroscopic studies on graphite in the metamorphosed ore reveal variable degree of preservation
of prograde graphite crystals (490 ± 43°C with a maximum at 593°C). The main orebody is mineralogically simple (sphalerite,
pyrite, pyrrhotite, arsenopyrite, galena), deformed and metamorphosed while the Pb–Ag-rich sulfosalt-bearing veins and pods
that are irregularly distributed within the hanging wall calc–silicate gneisses show no evidence of deformation and metamorphism.
The sulfosalt minerals identified include freibergite, boulangerite, pyrargyrite, stephanite, diaphorite, Mn–jamesonite, Cu-free
meneghinite, and semseyite; the last three are reported from Agucha for the first time. Stability relations of Cu-free meneghinite
and semseyite in the Pb–Ag-rich ores constrain temperatures at >550°C and <300°C, respectively. Features such as (1) low galena–sphalerite
interfacial angles, (2) presence of multiphase sulfide–sulfosalt inclusions, (3) microcracks filled with galena (±pyrargyrite)
without any hydrothermal alteration, and (4) high contents of Zn, Ag (and Sb) in galena, indicate partial melting in the PbS–Fe0.96S–ZnS–(1% Ag2S ± CuFeS2) system, which was critical for metamorphic remobilization of the Rampura–Agucha deposit. 相似文献
17.
Achyuta Ayan Misra Gourab Bhattacharya Soumyajit Mukherjee Narayan Bose 《International Journal of Earth Sciences》2014,103(6):1645-1680
This is the first detailed report and analyses of deformation from the W part of the Deccan large igneous province (DLIP), Maharashtra, India. This deformation, related to the India–Seychelles rifting during Late Cretaceous–Early Paleocene, was studied, and the paleostress tensors were deduced. Near N–S trending shear zones, lineaments, and faults were already reported without significant detail. An E–W extension was envisaged by the previous workers to explain the India–Seychelles rift at ~64 Ma. The direction of extension, however, does not match with their N–S brittle shear zones and also those faults (sub-vertical, ~NE–SW/~NW–SE, and few ~N–S) we report and emphasize in this work. Slickenside-bearing fault planes, brittle shear zones, and extension fractures in meso-scale enabled us to estimate the paleostress tensors (directions and relative magnitudes). The field study was complemented by remote sensing lineament analyses to map dykes and shear zones. Dykes emplaced along pre-existing ~N–S to ~NE–SW/~NW–SE shears/fractures. This information was used to derive regional paleostress trends. A ~NW–SE/NE–SW minimum compressive stress in the oldest Kalsubai Subgroup and a ~N–S direction for the younger Lonavala, Wai, and Salsette Subgroups were deciphered. Thus, a ~NW/NE to ~N–S extension is put forward that refutes the popular view of E–W India–Seychelles extension. Paleostress analyses indicate that this is an oblique rifted margin. Field criteria suggest only ~NE–SW and ~NW–SE, with some ~N–S strike-slip faults/brittle shear zones. We refer this deformation zone as the "Western Deccan Strike-slip Zone" (WDSZ). The observed deformation was matched with offshore tectonics deciphered mainly from faults interpreted on seismic profiles and from magnetic seafloor spreading anomalies. These geophysical findings too indicate oblique rifting in this part of the W Indian passive margin. We argue that the Seychelles microcontinent separated from India only after much of the DLIP erupted. Further studies of magma-rich passive margins with respect to timing and architecture of deformation and emplacement of volcanics are required. 相似文献
18.
The Maevatanana greenstone belt in north-central Madagascar contains widespread exposures of tonalite-trondhjemite-granodiorite(TTG) gneisses,and is important for its concentrations of various metal deposits(e.g.,chromium,nickle,iron,gold).In this paper we report on the petrography,and major and trace element compositions of the TTG gneisses within the Berere Complex of the Maevatanana area,as well as LA-ICP-MS U-Pb ages and Lu-Hf isotopic compositions of zircons from the gneisses.The gneisses consist mainly of granitoid gneiss and biotite(±hornblende) plagiogneiss,and analysis of thin sections provides evidence of crushing,recrystallization,and metasomatism related to dynamic metamorphism.Samples have large variations in their major and trace element contents,with SiO_2 = 55.87-68.06 wt%,Al_2O_3 = 13.9-17.8 wt%,and Na_2O/K_2O =0.97-2.13.Geochemically,the granitoid gneisses and biotite plagiogneisses fall on a low-Al trondhjemite to granodiorite trend,while the biotite-hornblende plagiogneisses represent a high-Al tonalite TTG assemblage.Zircon U-Pb dating shows that the Berere Complex TTG gneisses formed at2.5-2.4 Ga.Most ε_(Hf(t)) values of zircons from the biotite(± hornblende) plagiogneisses are positive,while most ε_(Hf(t)) values from the granitoid gneisses are negative,suggesting a degree of crustal contamination.Two-stage Hf model ages suggest that the age of the protolith of the TTG gneisses was ca.3.4-2.6 Ga,representing a period of paleocontinent formation in the Mesoarchean.Geothermometries indicate the temperature of metamorphism of the TTG gneisses was 522-612℃.Based on these data,the protolith of the TTG gneisses is inferred to have formed during the development of a Mesoarchean paleocontinent that is now widely exposed as a TTG gneiss belt(mostly lower amphibolite facies) in the Maevatanana area,and which records a geological evolution related to the subduction of an ancient oceanic crust and the collision of microcontinents during the formation of the Rodinia supercontinent.The lithological similarity of Precambrian basement,the close ages of metamorphism within greenstone belts and the comparable distribution of metamorphic grade all show a pronounced Precambrian geology similarity between Madagascar and India,which can provide significative clues in understanding the possible Precambrian Supercontinent tectonics,and also important constraints on the correlation of the two continental fragments. 相似文献
19.
Priyanka Chatterjee Shuvabrata De Marinah Ranaivoson Rajat Mazumder Makoto Arima 《地学前缘(英文版)》2013,4(3):277-287
The Palaeoproterozoic–Mesoproterozoic transition (~1600 Ma) is a significant event in the Earth history as a global thermal perturbation affected the pre-1600 Ma landmasses. Like other cratonic blocks of the world, lithospheric thinning, sedimentation, magmatism, metamorphism and crustal melting/anatexis are associated with this significant geological event in the Singhbhum cratonic province of India. This paper is a review of sedimentological, magmatic and tectono-thermal events in the Singhbhum craton at ~1600 Ma. The Palaeo-Mesoproterozoic sedimentation and volcanism in the Singhbhum craton took place in a terrestrial intracontinental rift setting. The available geochronological data are indicative of late Palaeoproterozoic to Neoproterozoic tectono-thermal events in the Chhotanagpur Granite Gneissic Complex (CGGC), an east–west trending arcuate belt of granite gneisses, migmatites and metasedimentary rocks. A detailed multidisciplinary geo-scientific investigation of the Dalma volcanic belt and the area to its north (Chandil Formation) and further north in CGGC will enable us to constrain the extant surface processes and crust-mantle interactions, the collision events between the North and South Indian cratonic blocks, and the position of India in the Columbia supercontinent. 相似文献
20.
The ~200-km-long intensely deformed Singhbhum Shear Zone (SSZ) in eastern India hosts India’s largest U and Cu deposits and related Fe mineralization. The SSZ separates an Archaean cratonic nucleus to the south from a Mesoproterozoic fold belt in the North and has a complex geologic history that obscures the origin of the contained iron-oxide-rich mineral deposits. This study investigates aspects of the history of mineralization in the SSZ by utilizing new petrographic and electron microprobe observations of pyrite textures and zoning in the Turamdih U–Cu(–Fe) deposit. Mineralization at Turamdih is hosted in intensively deformed quartz–chlorite schist. Sulfides and oxides include, in inferred order of development: (a) magmatic Fe(–Ti–Cr) oxide and Fe–Cu(–Ni) sulfide minerals inferred to be magmatic (?) in origin; followed by (b) uranium, Fe-oxide, and Fe–Cu(–Co) sulfide minerals that predate most or all ductile deformation, and are inferred to be of hydrothermal origin; and (c) Fe–Cu sulfides that were generated during and postdating ductile deformation. These features are associated with the formation of three compositionally and texturally distinct pyrites. Pyrite (type-A), typically in globular–semiglobular composite inclusions of pyrite plus chalcopyrite in magnetite, is characterized by very high Ni content (up to 30,700 ppm) and low Co to Ni ratios (0.01–0.61). The textural and compositional characteristics of associated chalcopyrite and rare pyrrhotite suggest that this pyrite could be linked to the magmatic event via selective replacement of magmatic pyrrhotite. Alternatively, this pyrite and associated sulfide inclusions might be cogenetic with hydrothermal Fe-oxide. Type-B pyrite that forms elongate grains and irregular relics and cores of pyrite with high Co contents (up to 23,630 ppm) and high Co to Ni ratios (7.2–140.9) are interpreted to be related to hydrothermal mineralization predating ductile deformation. A third generation of pyrite (type C) with low Co, low Ni, and moderate Co to Ni ratios (0.19–13.93) formed during and postdating the ductile deformation stage overgrowing, replacing, and surrounding type-B pyrite. The textural evolution of pyrite parallels the tectonometamorphic evolution of the shear zone demonstrating grain elongation during progressive ductile deformation and prograde metamorphism, annealing at the peak metamorphic condition, porphyroblastic growth at the retrograde path and cataclasis following porphyroblastic growth. Compositional characteristics of hydrothermal pyrite and available geological information suggest that the U–Cu(–Fe) deposit at Turamdih might be a variant of the Fe oxide (–Cu–U–rare earth elements) family of deposits. 相似文献