首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A conceptual model of anisotropic and dynamic permeability is developed from hydrogeologic and hydromechanical characterization of a foliated, complexly fractured, crystalline rock aquifer at Gates Pond, Berlin, Massachusetts. Methods of investigation include aquifer‐pumping tests, long‐term hydrologic monitoring, fracture characterization, downhole heat‐pulse flow meter measurements, in situ extensometer testing, and earth tide analysis. A static conceptual model is developed from observations of depth‐dependent and anisotropic permeability that effectively compartmentalizes the aquifer as a function of foliation intensity. Superimposed on the static model is dynamic permeability as a function of hydraulic head in which transient bulk aquifer transmissivity is proportional to changes in hydraulic head due to hydromechanical coupling. The dynamic permeability concept is built on observations that fracture aperture changes as a function of hydraulic head, as measured during in situ extensometer testing of individual fractures, and observed changes in bulk aquifer transmissivity as determined from earth tides during seasonal changes in hydraulic head, with higher transmissivity during periods of high hydraulic head, and lower transmissivity during periods of relatively lower hydraulic head. A final conceptual model is presented that captures both the static and dynamic properties of the aquifer. The workflow presented here demonstrates development of a conceptual framework for building numerical models of complexly fractured, foliated, crystalline rock aquifers that includes both a static model to describe the spatial distribution of permeability as a function of fracture type and foliation intensity and a dynamic model that describes how hydromechanical coupling impacts permeability magnitude as a function of hydraulic head fluctuation. This model captures important geologic controls on permeability magnitude, anisotropy, and transience and therefor offers potentially more reliable history matching and forecasts of different water management strategies, such as resource evaluation, well placement, permeability prediction, and evaluating remediation strategies.  相似文献   

2.
研究注水诱发地震的特征、发生机理和最大可能震级等对开展诱发地震的预防、危险性评价、减灾策略制定等方面的工作具有重要意义。文章系统地梳理了国内外关于注水诱发地震研究的主要认识和分歧。结果表明:(1)诱发地震的最大可能震级由断层大小和应力状态等地质条件决定,受注水压力和累积注水量等参数的影响;(2)识别诱发地震的可靠方法取决于地震和注水之间的时空相关性,统计模型的参数以及断层活化分析等一系列证据链条;(3)当断层与流体储层之间存在水力连接时,孔隙压力扰动是诱发地震的主要发生机制,反之岩石基质体积变形引起的孔隙弹性应力变化主导了诱发地震的过程。此外,注水诱发的稳定滑动传播到断层的孕震部分、流体的化学作用和小地震级联触发效应也可能在注水诱发地震中发挥重要的作用。研究结果将为注水诱发地震机理研究和减轻破坏性诱发地震灾害提供一定的科学参考。  相似文献   

3.
Petrographic image analysis (PIA) and X-ray computerized tomography (CT) provide local determinations of porosity in sandstone. We have investigated small faults called deformation bands in porous sandstones using these techniques. Because the petrophysical properties of the fault rock vary at a small scale (mm scale), the ability of PIA and CT to determine porosity in small volumes of rock and to map porosity distribution in two and three dimensions is crucial. This information is used to recognize the processes involved in fault development and the different kinds of microstructures associated with dilatancy and compaction. The petrophysical study of fault rock in sandstone permits one to make predictions of the hydraulic properties of a fault and thereby evaluate the sealing or fluid transmitting characteristics of faulted reservoirs and aquifers. The results of this study indicate that faulting in sandstone alters the original porosity and permeability of the host rock: the porosity is reduced by an order of magnitude and the permeability is reduced by one to more than seven orders of magnitude for faults associated with compaction.  相似文献   

4.
Evidence of fluid interaction with normal faults comes from their varied role as flow barriers or conduits in hydrocarbon basins and as hosting structures for hydrothermal mineralisation, and from fault-rock assemblages in exhumed footwalls of steep active normal faults and metamorphic core complexes. These last suggest involvement of predominantly aqueous fluids over a broad depth range, with implications for fault shear resistance and the mechanics of normal fault reactivation. A general downwards progression in fault rock assemblages (high-level breccia-gouge (often clay-rich) → cataclasites → phyllonites → mylonite → mylonitic gneiss with the onset of greenschist phyllonites occurring near the base of the seismogenic crust) is inferred for normal fault zones developed in quartzo-feldspathic continental crust. Fluid inclusion studies in hydrothermal veining from some footwall assemblages suggest a transition from hydrostatic to suprahydrostatic fluid pressures over the depth range 3–5 km, with some evidence for near-lithostatic to hydrostatic pressure cycling towards the base of the seismogenic zone in the phyllonitic assemblages. Development of fault-fracture meshes through mixed-mode brittle failure in rock-masses with strong competence layering is promoted by low effective stress in the absence of thoroughgoing cohesionless faults that are favourably oriented for reactivation. Meshes may develop around normal faults in the near-surface under hydrostatic fluid pressures to depths determined by rock tensile strength, and at greater depths in overpressured portions of normal fault zones and at stress heterogeneities, especially dilational jogs. Overpressures localised within developing normal fault zones also determine the extent to which they may reutilise existing discontinuities (for example, low-angle thrust faults). Brittle failure mode plots demonstrate that reactivation of existing low-angle faults under vertical σ1 trajectories is only likely if fluid overpressures are localised within the fault zone and the surrounding rock retains significant tensile strength. Migrating pore fluids interact both statically and dynamically with normal faults. Static effects include consideration of the relative permeability of the faults with respect to the country rock, and juxtaposition effects which determine whether a fault is transmissive to flow or acts as an impermeable barrier. Strong directional permeability is expected in the subhorizontal σ2 direction parallel to intersections between minor faults, extension fractures, and stylolites. Three dynamic mechanisms tied to the seismic stress cycle may contribute to fluid redistribution: (i) cycling of mean stress coupled to shear stress, sometimes leading to postfailure expulsion of fluid from vertical fractures; (ii) suction pump action at dilational fault jogs; and, (iii) fault-valve action when a normal fault transects a seal capping either uniformly overpressured crust or overpressures localised to the immediate vicinity of the fault zone at depth. The combination of σ2 directional permeability with fluid redistribution from mean stress cycling may lead to hydraulic communication along strike, contributing to the protracted earthquake sequences that characterise normal fault systems.  相似文献   

5.
A simple cyclic process is proposed to explain why major strike-slip fault zones, including the San Andreas, are weak. Field and laboratory studies suggest that the fluid within fault zones is often mostly sealed from that in the surrounding country rock. Ductile creep driven by the difference between fluid pressure and lithostatic pressure within a fault zone leads to compaction that increases fluid pressure. The increased fluid pressure allows frictional failure in earthquakes at shear tractions far below those required when fluid pressure is hydrostatic. The frictional slip associated with earthquakes creates porosity in the fault zone. The cycle adjusts so that no net porosity is created (if the fault zone remains constant width). The fluid pressure within the fault zone reaches long-term dynamic equilibrium with the (hydrostatic) pressure in the country rock. One-dimensional models of this process lead to repeatable and predictable earthquake cycles. However, even modest complexity, such as two parallel fault splays with different pressure histories, will lead to complicated earthquake cycles. Two-dimensional calculations allowed computation of stress and fluid pressure as a function of depth but had complicated behavior with the unacceptable feature that numerical nodes failed one at a time rather than in large earthquakes. A possible way to remove this unphysical feature from the models would be to include a failure law in which the coefficient of friction increases at first with frictional slip, stabilizing the fault, and then decreases with further slip, destabilizing it.  相似文献   

6.
Fracturing and hydrothermal alteration in normal fault zones   总被引:9,自引:0,他引:9  
Large normal fault zones are characterized by intense fracturing and hydrothermal alteration. Displacement is localized in a slip zone of cataclasite, breccia and phyllonite surrounding corrugated and striated fault surfaces. Slip zone rock grades into fractured, but less comminuted and hydrothermally altered rock in the transition zone, which in turn grades abruptly into the wall rock. Fracturing and fluid flow is episodic, because permeability generated during earthquakes is destroyed by hydrothermal processes during the time between earthquakes.Fracture networks are described by a fracture fabric tensor (F). The permeability tensor (k) is used to estimate fluid transport properties if the trace of F is sufficiently large. Variations in elastic moduli and seismic velocities between fault zone and wall rock are estimated as a function of fracture density (). Fracturing decreases elastic moduli in the transition zone by 50–100% relative to the country rock, and similar or even greater changes presumably occur in the slip zone.P-andS-wave velocity decrease, andV p /V s increases in the fault zone relative to the wall rock. Fracture permeability is highly variable, ranging between 10–13 m2 and 10–19 m2 at depths near 10 km. Changes in permeability arise from variations in effective stress and fracture sealing and healing.Hydrothermal alteration of quartzo-feldspathic rock atT>300°C creates mica, chlorite, epidote and alters the quartz content. Alteration changes elastic moduli, but the changes are much less than those caused by fracturing.P-andS-wave velocities also decrease in the hydrothermally altered fault rock relative to the country rock, and there is a slight decrease inV p /V s , which partially offsets the increase inV p /V s caused by fracturing.Fracturing and hydrothermal alteration affect fault mechanics. Low modulus rock surrounding fault surfaces increases the probability of exceeding the critical slip distance required for the onset of unstable slip during rupture initiation. Boundaries between low modulus fault rock and higher modulus wall rock also act as rupture guides and enhance rupture acceleration to dynamic velocity. Hydrothermal alteration at temperatures in excess of 300°C weakens the deeper parts of the fault zone by producingphyllitic mineral assemblages. Sealing of fracture in time periods between large earthquakes generates pods of abnormally pressured fluid which may play a fundamental role in the initiation of large earthquakes.  相似文献   

7.
The Lisse effect revisited   总被引:5,自引:0,他引:5  
Weeks EP 《Ground water》2002,40(6):652-656
The Lisse effect is a rarely noted phenomenon occurring when infiltration caused by intense rain seals the surface soil layer to airflow, trapping air in the unsaturated zone. Compression of air by the advancing front results in a pressure increase that produces a water-level rise in an observation well screened below the water table that is several times as large as the distance penetrated by the wetting front. The effect is triggered by intense rains and results in a very rapid water-level rise, followed by a recession lasting a few days. The Lisse effect was first noted and explained by Thal Larsen in 1932 from water-level observations obtained in a shallow well in the village of Lisse, Holland. The original explanation does not account for the increased air pressure pushing up on the bottom of the wetting front. Analysis of the effect of this upward pressure indicates that a negative pressure head at the base of the wetting front, psi(f), analogous to that postulated by Green and Ampt (1911) to explain initially rapid infiltration rates into unsaturated soils, is involved in producing the Lisse effect. Analysis of recorded observations of the Lisse effect by Larsen and others indicates that the water-level rise, which typically ranges from 0.10 to 0.55 m, should be only slightly larger than psi(f) and that the depth of penetration of the wetting front is no more than several millimeters.  相似文献   

8.
Songyuan is the most earthquake prone area in northeast China.Since 2006,earthquakes have occurred in the area in the form of swarms,with a maximum magnitude of M_L5.8.There is much controversy about the cause of the Songyuan earthquakes.We attempted to determine the cause using a three-dimensional electrical conductivity structure inverted from a regional network of magnetotelluric data in the Songyuan area.The L-BFGS inversion method was applied,with a fullimpedance tensor data set used as the inversion input.Combined with an evaluation of the earthquake locations,the resistivity model revealed a northeast-oriented hidden fault running through the Songyuan earthquake area(SEA),which was speculated to be the preexisting Fuyu-Zhaodong Fault(FZF).Our resistivity model also found an apparent lithospheric low-resistivity anomaly beneath the earthquake area,which breached the high-resistivity lithospheric mantle and stalled at the base of the crust.A petrophysical analysis showed that this lower crustal low-resistivity anomaly was most likely attributed to hydrated partial melting,which could release water into the lower crust during later magma emplacements.While weakening the strength of the FZF,these ascending fluids also increased the pore pressure in the fault,further reducing the shear strength of the fault.Shear stress action(a fault strike component of the east-west regional compress),together with possible near-surface disturbances,may drive the fault to slip and trigger the earthquakes in Songyuan.It is possible that the continuous replenishment of fluids from the deeper mantle forces the Songyuan earthquakes into the form of swarms.We infer that the Songyuan earthquakes could be attributed to a combination of preexisting faults,regional stress,and deep fluids associated with plate subduction,and near surface disturbances might induce the earthquakes in advance.The Songyuan earthquakes are inherently induced earthquakes,fed by deep fluids.  相似文献   

9.
汶川余震震源机制变化的原因   总被引:1,自引:0,他引:1  
2008年5月12日,汶川M8.0主震是一个主压应力轴NW-SE的逆倾滑型的地震,而之后的余震震源机制解有的与主震震源机制解一致,有的发生了明显变化,由南至北逐步变成走滑型地震.主震和同主震震源机制解一致的部分余震,在构造应力场直接作用下,龙门山推复体向四川地块逆冲,致使在逆断层的上下盘之间的断层面上产生粘滑而发生逆倾...  相似文献   

10.
This paper describes the impacts of the M5.8(5.1) Gyeongju earthquakes on groundwater levels using data obtained from a unique coastal monitoring well. The monitoring strategy integrates conventional water level monitoring with periodic, continuous measurements of temperature and electrical conductivity (EC) within the water column of the well. Another important component of the monitoring system is a new instrument, the InterfacEGG, which is capable of dynamically tracking the freshwater-saltwater interface. Although the system was set up to monitor seawater intrusion related to over-pumping, as well as rainfall and tidal effects, it recorded impacts associated with a large earthquake and aftershocks approximately 241 km away. Seismic energies associated with the M5.8(5.1) Gyeongju earthquakes induced groundwater flows to the monitoring well through fractures and joints in the crystalline basement rocks. Temperature and EC logging data showed that the EC vertical profile declined from an average of approximately 5300 to 4800 μS/cm following the earthquakes. The temperature profile showed a trend toward lower temperatures as the depth increased, a feature not commonly observed in previous studies. Data from the InterfacEGG suggested that the rise in EC was not due to the saltwater intrusion, but from the tendency for brackish water entering the borehole to induce convective mixing at deeper depths as the seismic waves travel through the well-aquifer system. The increase in groundwater levels was caused by pulse of colder, less brackish water flowing into the well because of the earthquake. This behavior reflects an enhancement in rock permeability by removing precipitates and colloidal particles from clogged fractures, which improve the hydraulic connection with a nearby unit with a higher hydraulic head. This study suggests there is value added with a more aggressive monitoring strategy.  相似文献   

11.
Short-term changes in the hydraulic head of surface water bodies are known to influence the shallow response of hydraulically connected groundwaters. Associated with these fluctuations is the physical increase in stream water creating a mechanical load on the ground surface. This load is supported by the geologic materials (sediment or rock) and the pore fluid contained within the pores. Changes in this surface load have a direct effect on the total stress of the aquifer causing either a change in effective stress or fluid pressure. This response, predicted by the framework of linear poroelasticity, is a well-understood phenomenon in geologic materials. Currently, field measurements of the hydraulic response (i.e., fluid pressure) of aquifer materials are undergoing poroelastic loading due to dam releases in the Deerfield River Watershed in Massachusetts. An increase in stream stage from upstream dam releases causes an instantaneous pore fluid pressure increase at multiple depths and locations in the aquifer. This increase lasts anywhere from 15 to 40 minutes depending on the magnitude of the rise in the stream stage. Pore-pressure changes are well correlated to stream stage fluctuations for all of the recorded events. Poroelastic models created using basin stratigraphy and hydraulic properties of the aquifer response match the field observations well. Model results suggest that the overall stratigraphy is important in controlling the magnitude and duration of the poroelastic response. An improved understanding of responses such as these can be used to constrain uncertainties in model calibration and simulations of the contaminant migration in low permeability fine-grained (compressive) materials.  相似文献   

12.
Reservoir-induced seismicity in Karun III dam (Southwestern Iran)   总被引:1,自引:1,他引:0  
Statistical analyses of the Karun III reservoir seismicity reveal a remarkable correlation between seismicity rate and water-level harmonic changes. It seems that seismicity in this dam depends on rapid water-level changes. The three biggest earthquakes of Karun III, measuring 4, 4.1, and 4.3 on the Richter scale (ML), occurred after two stages of rapid filling of the dam on March 22, 2005 and May 12, 2006. These earthquakes happened when the water reached the maximum operational level. Since the beginning of filling the reservoir on November 8, 2004 until March, 2006, most reservoir-induced seismicity has been localized in three main clusters. The majority of the earthquakes occurred in the frontal anticline of Keyf Malek; the second and third clusters happened near Karun Blind Fault (KBF) and Mountain Front Fault (MFF), respectively. Filling Karun III reservoir immediately led to an increase in the occurrence of earthquakes. Further, following abrupt water-level changes, a considerable increase in the number of earthquakes is observed. Finally, in terms of seismicity rate, vertical and horizontal migration, magnitude, and distance, the earthquakes of Karun III behave differently.  相似文献   

13.
大地震引起了左家庄和宝坻(相距~50km)两井中截然不同的同震水位响应.我们用水位的气压和潮汐响应来分析解释此现象.结果表明,宝坻井的观测含水层中存在页岩,且此井受裂隙影响很大,储水效应较差.页岩的复杂裂隙或者各向异性可能会导致此井观测含水层处于半封闭状态,从而导致垂直向排水的发生.通过多方计算分析后,我们将这两口井划分为两种模型—1.水平流动模型;2.水平流动+垂直流动的混合流动模型.由于裂隙影响,宝坻井的观测含水层介质与外界的水力沟通性在震前就较强(震前渗透率就比较大),所以宝坻井观测含水层与外界的孔隙压差异较小,导致同震渗透率上升较小甚至没有变化,这些因素是导致该井同震水位变化幅度总是非常微小的原因.  相似文献   

14.
Reverse water‐level fluctuations have been widely observed in aquitards or aquifers separated from a pumped confined aquifer (Noordbergum effect) immediately after the initiation of pumping. This same reverse fluctuation has been observed in a fractured crystalline‐rock aquifer at the Coles Hill uranium site in Virginia in which the reverse water‐level response occurs within a pumped fracture and results from an instantaneous strain response to pumping that precedes the pore‐pressure response in observation wells of sufficient distance from the pumped well. This response is referred to as the Mandel‐Cryer effect. The unique aspect of this water level rise during a controlled 24 h pumping test was that the reverse water levels lasted for approximately 100 min and reached a magnitude of nearly 1 cm prior to a typical drawdown response. The duration and magnitude of the response reflects the poromechanical properties of the fractured host rock and hydraulic properties of the pumped fracture. An axisymmetric flow and deformation model were developed using Biot2 in an effort to simulate the observed water‐level response along an assumed 0.5 to 1.0 cm aperture horizontal fracture 176 m from the pumping well and to identify the importance of the poroelastic effect. Results indicate that traditional aquifer‐testing methods that ignore the poromechanical response are not significantly different than results that include the response. However, the poroelastic effect allows for more accurate and efficient parameter calibration.  相似文献   

15.
郑懿  曹俊兴  何晓燕 《地球物理学报》2018,61(10):4126-4135
天然地震发生后,地震波及区域内的地下岩层渗透率常常会发生显著改变,其变化曲线显示出独有的特征,造成这一现象的机理较为复杂,传统渗流理论尚不能给出合理解释.针对这一问题,从震后渗透率变化规律入手,深入分析了地下岩层裂缝体系对渗透率的影响,给出了裂缝结构参数与渗透率之间的定量关系.结合岩层黏弹特性以及天然地震所产生的地下岩层体应变特征,基于裂缝体系分维度正比于外部应力的实验事实,将黏弹体应力松弛机制引入该体系,对裂缝分形渗透率模型进行了含时推广,建立起震后地下岩层渗透率的时间演化模型,理论预测曲线与实验曲线吻合较好.在此基础上提出‘分形裂缝渗透率松弛效应’这一全新概念.本研究为震控流体运移研究提供了新思路,对于揭示震后断层恢复机制,探讨断层活动与孕震的关联有一定的理论价值和现实意义.  相似文献   

16.
In this paper we present the results of a geostructural study on active faults in central Italy, where seismogenic fault zones occur as part of a Quaternary network dissecting and/or inverting earlier tectonic features of the central Apennines fold and thrust belt. In our work we focus on the possibility of using structurally-oriented quantitative analysis of fault fabrics and fluid inclusion studies for assessing the hydraulic properties and scaling relations of fault zones in order to evaluate the role and effects of the interaction between rock and fluids in the brittle deformation of strained crustal rock volumes. The results of our study show that this approach is appropriate for (i) assessing the structural permeability of faulted and fractured rock volumes, (ii) defining the conduit/barrier behaviour of fault zones to fluid flow, (iii) mapping spatial variations of the fluid pressure across different fault segments, (iv) evaluating the maturity of a structural network and the degree of interaction of linked structural discontinuities, (v) assessing fluid composition and the conditions of deformation by means of microstructural and fluid inclusion data.  相似文献   

17.
It has been reported that there is thermal anomaly within a certain time and space preceding an earthquake, and previous research has indicated potential associations between the thermal anomaly and earthquake faults, but it is still controversial whether physical processes associated with seismic faults can produce observable heat.Based on rock experiments, some scholars believe that the convective and stress-induced heat associated with fault stress changes may be the cause of those anomalies. Then, did the thermal anomaly before the Wenchuan earthquake induced by the fault stress change?It remains to be tested by numerical simulations on the distribution and intensity of thermal anomalies. For example, is the area of thermal anomaly caused by the fault stress changes before the earthquake the same as the observation?Is the intensity the same?To clarify the above questions, a two-dimensional thermo-hydro-mechanical(THM)finite element model was conducted in this study to simulate the spatial and temporal variations of thermal anomalies caused by the underground fluid convection and rock stress change due to the tectonic stress release on fault before earthquake. Results showed that the simulated thermal anomalies could be consistent with the observed in magnitude and spatio-temporal distribution. Before the Wenchuan earthquake, deformation-related thermal anomalies occurred mainly in the fault zone and its adjacent hanging wall, which are usually abnormal temperature rise, and occasionally abnormal cooling, occurring in the fault zone after the peak temperature rise. In the fault zone, the thermal anomaly is usually greater than the order of 1K of the equivalent air temperature and is controlled by the combined effect of fluid convection and stress change. The temperature increases first and then decreases before the earthquake. In the hanging wall, it's weaker than that of the fault zone, mainly depending on the convection of the fluid. The temperature gradually increases before the earthquake and is dramatically affected by the permeability. Usually, only when the permeability is larger than 10-13m2, can the air temperature rise higher than 1K occur. The results of this study support the view that fluid convection and stress change caused by fault slip before the earthquake can produce observable air temperature anomalies.  相似文献   

18.
Reservoir induced earthquakes (RIE) are caused by impoundment of reservoir,with the characteristics of small magnitude and shallow focal depth,but they can also lead to not only economic loss,but also many serious secondary disasters,such as dam destruction,landslide,producing greater damages far more than the damages directly produced by earthquakes.So study on RIE is quite significant in the field of dam construction,thus more attentions should be paid to RIE.There are many factors to induce reservoir earthquakes,such as geological condition,rock mass mechanical index,state of crustal stress,pore pressure distribution,all of which are extremely difficult to measure due to the presence of many randomness;even if applying most advanced methods to measure them,the values fluctuate in great range,without a certain value in time and space.The great variety of these parameters gives rise to troubles to analyze RIE by deterministic approaches.How to handle the randomness of these factors has become vital problem in the field of RIE research.In this study,based on probability theory,and taking the main influence factors as stochastic variables,a new method to analyze probability of RIE was proposed by applying reliability theory.Firstly,the factors inducing reservoir earthquakes were analyzed,of which pore pressure in fault caused by water impounding of reservoir plays a vital role in triggering earthquakes.Then,taking these factors,including attitude,friction coefficient,cohesion of fault plane,stress state of fault plane and pore pressure in fault,as stochastic variables,performance function of triggering earthquakes was established by applying Coulomb stress on the fault plane,and reliability theory was used to analyze probability of earthquake induced by main factors.A special case analysis showed that:(1) The probability of induced earthquakes dramatically increases as pore pressure in fault increases;under the condition of equal pore pressure at triggering earthquakes area,probability of induced earthquakes obviously rises with enlarging of variation of pore pressure;(2) those faults with strike approximately parallel to horizontal maximum principal stress direction or with steep dip angle about more than 60° are prone to inducing earthquake;(3) as horizontal minimum principal stress increases,which has greater effect on induced earthquakes than horizontal maximum principal stress,probability of induced earthquakes becomes lower and fault keeps in more stable condition;(4) probability of induced earthquakes gradually decreases with the increase of friction coefficient and cohesion of fault plane;However,the effect of friction coefficient on induced earthquakes is much greater than the cohesion of fault plane.  相似文献   

19.
通过反演由大量的纵、横波地震数据组成的综合数据集,获得了南北地震带地壳的多参数三维精细结构,探讨和分析了南北地震带的高地震活动性和强震频发的原因.成像结果表明,尽管1976年松潘一平武地震(M7.2)与2008年汶川地震(M8.0)以及2013年芦山地震(M7.0)均发生在高速、低泊松比异常区域,并且在其震源的下方均有一低速、高泊松比异常区域.我们认为,上述三个地震的触发与流体侵入导致的地壳形变之间有密切的联系.1955年炉霍地震(M7.4)和1973年康定地震(M7.1)均发生在鲜水河断裂带上,其震源中心区域表现为低速、高泊松比异常,可以解释为下地壳中的流体沿断层面上涌.在震源区的周边区域兼有高速、高泊松比异常,低速、高泊松比异常以及高速、低泊松比异常,可能分别与含流体的岩石、沿断裂带发育的变质岩以及坚硬的克拉通块体对应.流体的侵入不仅能够改变断层面上的应力情况,还能降低岩石骨架的岩石力学强度,进而触发地震.1970年云南通海大地震(M7.1)发生在哀牢山一红河断裂带附近的曲江断裂上,其震源处于高速度、低泊松比异常与低速度、高泊松比异常之间的边界区域,被认为是流体挤压后的应变能积累,最终导致脆性破裂,以至于发生地震.根据本次研究获得的多参数结构图像,结合前人的研究成果,我们认为南北地震带地壳强烈形变与流体侵入是造成该区域地震活动性较高及强震频发的两个主要因素.  相似文献   

20.
分析了琼海加积井在苏门答腊MS8.7和MS8.5地震时水震波特征及震后出现的水位阶变特征,初步探讨了水位阶变现象的机理。同时还分析了三亚南滨井、文昌潭牛井在苏门答腊MS8.7和MS8.5地震时水震波的高采样率数字化观测资料,结果显示:3口井的水震波优势周期比较一致,同一地震在不同井孔的水震波幅度差别较大,同一井孔不同震级地震的水震波振荡持续时间不同  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号