首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present three-dimensional (3D) hydrodynamical simulations of ram pressure stripping of massive disc galaxies in clusters. Studies of galaxies that move face-on have predicted that in such a geometry the galaxy can lose a substantial amount of its interstellar medium. But only a small fraction of galaxies is moving face-on. In this work we focus on a systematic study of the effect of the inclination angle between the direction of motion and the galaxy's rotation axis.
In agreement with some previous works, we find that the inclination angle does not play a major role for the mass loss as long as the galaxy is not moving close to edge-on (inclination angle ≲60°). We explain this behaviour by extending Gunn & Gott's estimate of the stripping radius, which is valid for face-on geometries, to moderate inclinations.
The inclination plays a role as long as the ram pressure is comparable to pressures in the galactic plane, which can span two orders of magnitude. For very strong ram pressures, the disc will be stripped completely, and for very weak ram pressures, mass loss is negligible independent of inclination. We show that in non-edge-on geometries the stripping proceeds remarkably similar. A major difference between different inclinations is the degree of asymmetry introduced in the remaining gas disc.
We demonstrate that the tail of gas stripped from the galaxy does not necessarily point in a direction opposite to the galaxy's direction of motion. Therefore, the observation of a galaxy's gas tail may be misleading about the galaxy's direction of motion.  相似文献   

2.
We present an X-ray study of the galaxy group or poor cluster MKW 4. Working with XMM–Newton data we examine the distribution and properties of the hot gas which makes up the group halo. The inner halo shows some signs of structure, with circular or elliptical beta models providing a poor fit to the surface brightness profile. This may be evidence of large-scale motion in the inner halo, but we do not find evidence of sharp fronts or edges in the emission. The temperature of the halo declines in the core, with deprojected spectral fits showing a central temperature of ∼1.3 keV compared to ∼3 keV at 100 kpc. In the central ∼30 kpc of the group, multitemperature spectral models are required to fit the data, but they indicate a lack of gas at low temperatures. Steady-state cooling flow models provide poor fits to the inner regions of the group and the estimated cooling time of the gas is long except within the central dominant galaxy, NGC 4073. Abundance profiles show a sharp increase in the core of the group, with mean abundance rising by a factor of 2 in the centre of NGC 4073. Fitting individual elements shows the same trend, with high values of Fe, Si and S in the core. We estimate that ∼50 per cent of the Fe in the central 40 kpc was injected by Type Ia supernovae, in agreement with previous ASCA studies. Using our best-fitting surface brightness and temperature models, we calculate the mass, gas fraction, entropy and mass-to-light ratio of the group. At 100 kpc (∼0.1 virial radius) the total mass and gas entropy of the system (  ∼2 × 1013 M  and ∼300 keV cm2) are quite comparable to those of other systems of similar temperature, but the gas fraction is rather low (∼1 per cent). We conclude that MKW 4 is a fairly relaxed group, which has developed a strong central temperature gradient but not a large-scale cooling flow.  相似文献   

3.
We use three-dimensional SPH/ N -body simulations to study ram pressure stripping of gas from spiral galaxies orbiting in clusters. We find that the analytic expectation of Gunn & Gott, relating the gravitational restoring force provided by the disc to the ram pressure force, provides a good approximation to the radius at which gas will be stripped from a galaxy. However, at small radii it is also important to consider the potential provided by the bulge component. A spiral galaxy passing through the core of a rich cluster, such as Coma, will have its gaseous disc truncated to ∼4 kpc, thus losing ∼80 per cent of its diffuse gas mass. The time-scale for this to occur is a fraction of a crossing time ∼107 yr. Galaxies orbiting within poorer clusters, or inclined to the direction of motion through the intracluster medium, will lose significantly less gas. We conclude that ram pressure alone is insufficient to account for the rapid and widespread truncation of star formation observed in cluster galaxies, or the morphological transformation of Sabs to S0s that is necessary to explain the Butcher–Oemler effect.  相似文献   

4.
We report the discovery of highly distorted X-ray emission associated with the nearby cluster Zw 1718.10108, one of the dominant members of which is the powerful radio galaxy 3C353. This cluster has been missed by previous X-ray cluster surveys because of its low Galactic latitude ( b =19.5°), despite its brightness in the hard X-ray band (210 keV flux of 1.21011 erg cm2 s1). Our optical charge-coupled device image of the central part of the cluster reveals many member galaxies which are dimmed substantially by heavy Galactic extinction. We have measured redshifts of three bright galaxies near the X-ray emission peak and they are all found to be around z =0.028. The ASCA gas imaging spectrometer and ROSAT high-resolution imager images show three aligned X-ray clumps embedded in low surface-brightness X-ray emission extended by 30 arcmin. The averaged temperature measured with ASCA is kT =4.3±0.2 keV, which appears to be hot for the bolometric luminosity when compared with the temperatureluminosity correlation of galaxy clusters. The irregular X-ray morphology and evidence for a non-uniform temperature distribution suggest that the system is undergoing a merger of substructures. Since the sizes and luminosities of the individual clumps are consistent with those of galaxy groups, Zw 1718.10108 is interpreted as an on-going merger of galaxy groups in a dark matter halo forming a cluster of galaxies and thus is in a transition phase of cluster formation.  相似文献   

5.
We present a numerical investigation of dead, or relic, radio galaxies and the environmental impact that radio galaxy activity has on the host galaxy or galaxy cluster. We perform axisymmetric hydrodynamical calculations of light, supersonic, back-to-back jets propagating in a β -model galaxy/cluster atmosphere. We then shut down the jet activity and let the resulting structure evolve passively. The dead source undergoes an initial phase of pressure driven expansion until it achieves pressure equilibrium with its surroundings. Thereafter, buoyancy forces drive the evolution and lead to the formation of two oppositely directed plumes that float high into the galaxy/cluster atmosphere. These plumes entrain a significant amount of low entropy material from the galaxy/cluster core and lift it high into the atmosphere. An important result is that a large fraction (at least half) of the energy injected by the jet activity is thermalized in the interstellar medium (ISM)/intracluster medium (ICM) core. The whole ISM/ICM atmosphere inflates in order to regain hydrostatic equilibrium. This inflation is mediated by an approximately spherical disturbance which propagates into the atmosphere at the sound speed. The fact that such a large fraction of the injected energy is thermalized suggests that radio galaxies may have an important role in the overall energy budget of rich ISM/ICM atmospheres. In particular, they may act as a strong and highly time-dependent source of negative feedback for galaxy/cluster cooling flows.  相似文献   

6.
In clusters of galaxies, the reaction of the intracluster medium (ICM) to the motion of the co-existing galaxies in the cluster triggers the formation of unique features, which trace their position and motion. Galactic wakes, for example, are an apparent result of the ICM/galaxy interactions, and they constitute an important tool for deciphering the motion of the cluster galaxies.
In this paper we investigate whether Bondi–Hoyle accretion can create galactic wakes by focusing the ICM behind moving galaxies. The solution of the equations that describe this physical problem provides us with observable quantities along the wake at any time of its lifetime. We also investigate which are the best environmental conditions for the detectability of such structures in the X-ray images of clusters of galaxies.
We find that significant Bondi–Hoyle wakes can only be formed in low-temperature clusters, and that they are more pronounced behind slow-moving, relatively massive galaxies. The scalelength of these elongated structures is not very large: in the most favourable conditions a Bondi–Hoyle wake in a cluster at the redshift of z =0.05 is 12 arcsec long. However, the X-ray emission of the wake is noticeably strong: the X-ray flux can reach ∼30 times the flux of the surrounding medium. Such features will be easily detectable in the X-ray images of nearby, relatively poor clusters of galaxies by the Chandra and XMM-Newton satellites.  相似文献   

7.
Accurate measurements of the mass distribution in galaxy and cluster haloes are essential to test the cold dark matter (CDM) paradigm. The cosmological model predicts a universal shape for the density profile in all haloes, independent of halo mass. Its profile has a 'cuspy' centre, with no evidence for the constant density core. In this paper, we carry out a careful analysis of 12 galaxy clusters, using Chandra data to compute the mass distribution in each system under the assumption of hydrostatic equilibrium. Due to their low concentration, clusters provide ideal objects for studying the central cusps in dark matter haloes. The majority of the systems are consistent with the CDM model, but four objects exhibit flat inner density profiles. We suggest that the flat inner profile found for these clusters is due to an underestimation of the mass in the cluster centre (rather than any problem with the CDM model), since these objects also have a centrally peaked gas mass fraction. We discuss possible causes for erroneously low-mass measurements in the cores of some systems.  相似文献   

8.
The dynamical signatures of the interaction between galaxies in clusters and the intracluster medium (ICM) can potentially yield significant information about the structure and dynamical history of clusters. To develop our understanding of this phenomenon we present results from numerical modelling of the galaxy–ICM interaction, as the galaxy moves through the cluster. The simulations have been performed for a broad range of ICM temperatures ( kT cl=1, 4 and 8 keV), representative of poor clusters or groups through to rich clusters.
There are several dynamical features that can be identified in these simulations. For supersonic galaxy motion, a leading bow shock is present, and also a weak gravitationally focused wake or tail behind the galaxy (analogous to Bondi–Hoyle accretion). For galaxies with higher mass replenishment rates and a denser interstellar medium (ISM), the dominant feature is a dense ram-pressure stripped tail. In line with other simulations, we find that the ICM/galaxy–ISM interaction can result in complex time-dependent dynamics, with ram-pressure stripping occurring in an episodic manner.
In order to facilitate this comparison between the observational consequences of dynamical studies and X-ray observations we have calculated synthetic X-ray flux and hardness maps from these simulations. These calculations predict that the ram-pressure stripped tail will usually be the most visible feature, though in nearby galaxies the bow shock preceding the galaxy should also be apparent in deeper X-ray observations. We briefly discuss these results and compare them with X-ray observations of galaxies where there is evidence of such interactions.  相似文献   

9.
We present an analysis of the X-ray point source populations in 182 Chandra images of galaxy clusters at   z > 0.1  with exposure time >10 ks, as well as 44 non-cluster fields. The analysis of the number and flux of these sources, using a detailed pipeline to predict the distribution of non-cluster sources in each field, reveals an excess of X-ray point sources associated with the galaxy clusters. A sample of 148 galaxy clusters at  0.1 < z < 0.9  , with no other nearby clusters, shows an excess of 230 cluster sources in total, an average of ∼1.5 sources per cluster. The lack of optical data for these clusters limits the physical interpretation of this result, as we cannot calculate the fraction of cluster galaxies hosting X-ray sources. However, the fluxes of the excess sources indicate that over half of them are very likely to be active galactic nuclei (AGN), and the radial distribution shows that they are quite evenly distributed over the central 1 Mpc of the cluster, with almost no sources found beyond this radius. We also use this pipeline to successfully reproduce the results of previous studies, particularly the higher density of sources in the central 0.5 Mpc of a few cluster fields, but show that these conclusions are not generally valid for this larger sample of clusters. We conclude that some of these differences may be due to the sample properties, such as the size and redshift of the clusters studied, or a lack of publications for cluster fields with no excess sources. This paper also presents the basic X-ray properties of the galaxy clusters, and in subsequent papers in this series the dependence of the AGN population on these cluster properties will be evaluated.
In addition the properties of over 9500 X-ray point sources in the fields of galaxy clusters are tabulated in a separate catalogue available online or at http://www.sc.eso.org~rgilmour .  相似文献   

10.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous haloes of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ∼30 per cent of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott, except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disc) and takes into account that stripping is not instantaneous but occurs on a characteristic time-scale. The model reproduces the results of the simulations to within ≈10 per cent at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10 per cent of the group or cluster into which it is falling (in which case the model underpredicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically simulated galaxies and as a way to improve present semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.  相似文献   

11.
We investigate the correlation of star formation quenching with internal galaxy properties and large-scale environment (halo mass) in empirical data and theoretical models. We make use of the halo-based group catalogue of Yang and collaborators, which is based on the Sloan Digital Sky Survey. Data from the Galaxy evolution explorer are also used to extract the recent star formation rate. In order to investigate the environmental effects, we examine the properties of 'central' and 'satellite' galaxies separately. For central galaxies, we are unable to conclude whether star formation quenching is primarily connected with halo mass or stellar mass, because these two quantities are themselves strongly correlated. For satellite galaxies, a nearly equally strong dependence on halo mass and stellar mass is seen. We make the same comparison for five different semi-analytic models based on three independently developed codes. We find that the models with active galactic nuclei feedback reproduce reasonably well the dependence of the fraction of central red and passive galaxies on halo mass and stellar mass. However, for satellite galaxies, the same models badly overproduce the fraction of red/passive galaxies and do not reproduce the empirical trends with stellar mass or halo mass. This satellite overquenching problem is caused by the too-rapid stripping of the satellites' hot gas haloes, which leads to rapid strangulation of star formation.  相似文献   

12.
Ram-pressure stripping can remove significant amounts of gas from galaxies that orbit in clusters and massive groups, and thus has a large impact on the evolution of cluster galaxies. In this paper, we reconstruct the present-day distribution of ram pressure and the ram-pressure histories of cluster galaxies. To this aim, we combine the Millennium Simulation and an associated semi-analytic model of galaxy evolution with analytic models for the gas distribution in clusters. We find that about one quarter of galaxies in massive clusters are subject to strong ram pressures that are likely to cause an expedient loss of all gas. Strong ram pressures occur predominantly in the inner core of the cluster, where both the gas density and the galaxy velocity are higher. Since their accretion on to a massive system, more than 64 per cent of galaxies that reside in a cluster today have experienced strong ram pressures of  >10−11 dyn cm−2  which most likely led to a substantial loss of the gas.  相似文献   

13.
We perform a combined X-ray and strong lensing analysis of RX J1347.5−1145, one of the most luminous galaxy clusters at X-ray wavelengths. We show that evidence from strong lensing alone, based on published Very Large Telescope (VLT) and new Hubble Space Telescope ( HST ) data, strongly argues in favour of a complex structure. The analysis takes into account arc positions, shapes and orientations, and is done thoroughly in the image plane. The cluster inner regions are well fitted by a bimodal mass distribution, with a total projected mass of   M tot= (9.9 ± 0.3) × 1014 M  h −1  within a radius of 360 kpc  h −1 (1.5 arcmin). Such a complex structure could be a signature of a recent major merger as further supported by X-ray data. A temperature map of the cluster, based on deep Chandra observations, reveals a hot front located between the first main component and an X-ray emitting south-eastern subclump. The map also unveils a filament of cold gas in the innermost regions of the cluster, most probably a cooling wake caused by the motion of the cD inside the cool core region. A merger scenario in the plane of the sky between two dark matter subclumps is consistent with both our lensing and X-ray analyses, and can explain previous discrepancies with mass estimates based on the virial theorem.  相似文献   

14.
If a galaxy resides in a cluster, then its passage through the pervasive intracluster medium will produce a detectable signature in the X-ray emission from the cluster. Such features have now been detected in a number of systems. The simplest kinematic information that can be extracted from this signature is the galaxy's direction of motion on the plane of the sky. This paper explores the constraints on cluster dynamics that could be derived from such information. In particular, we show that it is possible to define a projected anisotropy parameter, B ( r ), which is directly analogous to the usual orbital anisotropy parameter. We describe an estimator for this quantity, ( R ), which can be derived in a robust and straightforward manner. We present a simple dynamical model for a cluster consisting of a Michie distribution function of galaxies orbiting in a truncated singular isothermal sphere potential. Using this model, we demonstrate the ambiguity between the distribution of mass and the distribution of galaxy orbits when interpreting the traditional measures of cluster kinematics (the projected density of galaxies and their line-of-sight velocity dispersion). As an example, we show how two very different dynamical models can fit the kinematic properties of the Coma cluster. We demonstrate that the measurement of using a relatively small sample of wake directions ( N wake≈50) would provide an effective mechanism for lifting this degeneracy. Thus, by combining X-ray measurements of wake directions with number counts and line-of-sight velocities derived from optical data, it will prove possible to measure both the orbit distribution and the form of the gravitational potential in clusters of galaxies. The requisite X-ray observations lie within reach of the soon-to-be-launched AXAF satellite.  相似文献   

15.
We report the first detection, with Chandra , of X-ray emission from the jet of the powerful narrow-line radio galaxy 3C 346. X-rays are detected from the bright radio and optical knot at which the jet apparently bends by approximately 70°. The Chandra observation also reveals a bright galaxy-scale atmosphere within the previously known cluster and provides a good X-ray spectrum for the bright core of 3C 346. The X-ray emission from the knot is synchrotron radiation, as seen in lower-power sources. In common with these sources, there is evidence of morphological differences between the radio/optical and X-ray structures, and the spectrum is inconsistent with a one-component continuous-injection model. We suggest that the X-ray-bright knot is associated with a strong oblique shock in a moderately relativistic, light jet, at ∼ 20° to the line of sight, and that this shock is caused by the jet interacting with the wake in the cluster medium behind the companion galaxy of 3C 346. The general jet curvature can result from pressure gradients in the cluster atmosphere.  相似文献   

16.
We report the discovery of a 40 arcsec long X-ray filament in the core of the cluster of galaxies Abell 1795. The feature coincides with an H α +N  ii filament found by Cowie et al. in the early 1980s and resolved into at least two U -band filaments by McNamara et al. in the mid-1990s. The (emission-weighted) temperature of the X-ray emitting gas along the filament is 2.5–3 keV, as revealed by X-ray colour ratios. The deprojected temperature will be less. A detailed temperature map of the core of the cluster presented. The cD galaxy at the head of the filament is probably moving through or oscillating in the cluster core. The radiative cooling time of the X-ray emitting gas in the filament is about     which is similar to the age of the filament obtained from its length and velocity. This suggests that the filament is produced by cooling of the gas from the intracluster medium. The filament, much of which is well separated from the body of the cD galaxy and its radio source, is potentially of great importance in helping to understand the energy and ionization source of the optical nebulosity common in cooling flows.  相似文献   

17.
The cluster 3C 129 is classified as a rich cluster. An analysis of the properties of the cluster 3C 129 from ROSAT PSPC and HRI, Einstein IPC, and EXOSAT ME observations is presented. The mean temperature from a joint fit of the ROSAT PSPC and EXOSAT ME data is 5.5(±0.2) keV. The luminosity is 0.6×1044 erg s−1 in 0.2–2.4 keV and 2.7×1044 erg s−1 in 0.2–10 keV. We find a cooling flow with a rate of ∼84 M yr−1. The central gas density is 6×10−3 cm−3, and the ICM mass is 3.6×1013 M. The total cluster mass is ∼5×1014 M. The X-ray morphology shows an east–west elongation, which is evidence for a recent merger event. The radio source 3C 129.1 is located near the X-ray centre. Another cluster member galaxy (the radio galaxy 3C 129) is a prototype of head-tailed radio galaxies, and is located in the west part of the cluster. The tail points along the gradient of intracluster gas pressure. There are no significant point X-ray sources associated with the AGNs of the two radio galaxies.  相似文献   

18.
The group of galaxies RXJ1340.6+4018 has approximately the same bolometric X-ray luminosity as other bright galaxy groups and poor clusters such as the Virgo cluster. However, 70 per cent of the optical luminosity of the group comes from a dominant giant elliptical galaxy, compared with 5 per cent from M87 in Virgo.The second brightest galaxy in RXJ1340.6+4018 is a factor of 10 fainter (Δ m 12=2.5 mag) than the dominant elliptical, and the galaxy luminosity function has a gap at about L *.
We interpret the properties of the system as a result of galaxy merging within a galaxy group. We find that the central galaxy lies on the Fundamental Plane of ellipticals, has an undisturbed, non-cD morphology, and has no spectral features indicative of recent star formation, suggesting that the last major merger occurred ≳4 Gyr ago. The deviation of the system from the cluster L X− T relation in the opposite sense to most groups may be caused by an early epoch of formation of the group or a strong cooling flow.
The unusual elongation of the X-ray isophotes and the similarity between the X-ray and optical ellipticities at large radii (∼230 kpc) suggest that both the X-ray gas and the outermost stars of the dominant galaxy are responding to an elongated dark matter distribution. RXJ1340.6+4018 may be part of a filamentary structure related to infall in the outskirts of the cluster A1774.  相似文献   

19.
By creating and analyzing two dimensional gas temperature and abundance maps of the RGH 80 compact galaxy group with high-quality Chandra data,we detect a high-abundance (■0.7 Z⊙) arc,where the metal abundance is significantly higher than the surrounding regions by ■0.3Z⊙.This structure shows tight spatial correlations with the member galaxy PGC 046529,as well as with the arm-like feature identified on the X-ray image in the previous work of Randall et al.(2009).Since no apparent signature of AGN activity i...  相似文献   

20.
Galaxy merger simulations have explored the behaviour of gas within the galactic disc, yet the dynamics of hot gas within the galaxy halo have been neglected. We report on the results of high-resolution hydrodynamic simulations of colliding galaxies with metal-free hot halo gas. To isolate the effect of the halo gas, we simulate only the dark matter halo and the hot halo gas over a range of mass ratios, gas fractions and orbital configurations to constrain the shocks and gas dynamics within the progenitor haloes. We find that (i) a strong shock is produced in the galaxy haloes before the first passage, increasing the temperature of the gas by almost an order of magnitude to   T ∼ 106.3 K  . (ii) The X-ray luminosity of the shock is strongly dependent on the gas fraction; it is  ≳1039 erg s−1  for halo gas fractions larger than 10 per cent. (iii) The hot diffuse gas in the simulation produces X-ray luminosities as large as  1042 erg s−1  . This contributes to the total X-ray background in the Universe. (iv) We find an analytic fit to the maximum X-ray luminosity of the shock as a function of merger parameters. This fit can be used in semi-analytic recipes of galaxy formation to estimate the total X-ray emission from shocks in merging galaxies. (v) ∼10–20 per cent of the initial gas mass is unbound from the galaxies for equal-mass mergers, while 3–5 per cent of the gas mass is released for the 3:1 and 10:1 mergers. This unbound gas ends up far from the galaxy and can be a feasible mechanism to enrich the intergalactic medium with metals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号