首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Examples of the three volcanic rock types, wyomingite, orendite and madupite from the Leucite Hills have been examined with the electron microprobe. The results show that leucite is non-stoichiometric as predicted byCross (1897), having an excess of potassium and silicon, and that the only feldspar found, a sanidine, contains up to 18 percent of the iron-feldspar molecule. The co-existing phlogopite, diopside and olivine together with the groundmass amphibole are all highly magnesian. Of the varied accessory minerals, priderite (K2Ti8O16) and wadeite (K4Zr2Si6O18) have been identified and analyzed together with ubiquitous apatite and perovskite, both of which contain rare earths in abundance. Comparative mineralogical data has been obtained on a few representative specimens from West Australia and on the jumillite from Spain.The new rock analyses together with the existing data from the Leucite Hills show the rare but characteristic molecular excess of potassium over aluminium; this excess is considered to account for the ahsence of the iron-titanium oxides in the orendites and wyomingites, and of course for the unusual composition and species of the minerals. Exploratory melting experiments show that these potassic lavas have a comparable melting range to magnesian basalts, and a crustal origin is thereby considered precluded. There is no evidence that sialic contamination contributed notably to the composition of the oversaturated orendites and wyomingites, and their relationship by any process of crystal fractionation to the undersaturated madupite is obscure. The generation of madupite could be achieved by crystal fractionation at high pressure of a liquid derived by partial fusion of mantle material.  相似文献   

2.
Green, salitic pyroxenes occur as megacrysts and as cores in diopsidic pyroxene phenocrysts and microphenocrysts in a wyomingite lava from Hatcher Mesa, Leucite Hills, Wyoming. Al-rich phlogopite (16–21% Al2O3), apatite, Fe-Ti-oxide, Mg-rich olivine (Fo93) and orthopyroxene (En61) also occur as megacrysts or as inclusions in diopside phenocrysts. All of these phases are found in ultramafic xenoliths in the host lava, and petrographic and chemical evidence is presented that the megacrysts originate by the disaggregation of the xenoliths. It is concluded that the latter are accidental fragments of the wall rocks traversed by the wyomingite magma and it is suggested that the clinopyroxene-rich xenoliths, from which the green pyroxenes are derived, formed in the upper mantle as a result of local metasomatism or by crystallization from magmas of unknown composition during an earlier igneous event. The precise role of the clinopyroxene-rich xenoliths (which also contain apatite, Fe-Ti-oxide and amphibole) in the genesis of the Leucite Hills magmas cannot be elucidated on the basis of the available data, but it is unlikely that they represent the source material from which these magmas are derived.  相似文献   

3.
Nd and Sr isotopic compositions and Rb, Sr, Sm and Nd concentrations are reported for madupites, wyomingites and orendites from the Pleistocene volcanic field of the Leucite Hills, Wyoming. All Leucite Hills rocks have negative εNd signatures, indicating derivation or contribution from an old light rare earth element (LREE) enriched source. In this respect they are similar to all occurrences of high potassium magmas so far investigated. But Sr isotopic variations are comparatively small and 87Sr/ 86Sr ratios are unusually low for high-K magmas (0.7053–0.7061, one sample excluded). These values suggest that the light REE enrichment of the source was not accompanied by a strong increase in Rb/Sr. Wyomingites and orendites are isotopically indistinguishable which is consistent with chemical and petrographic evidence for their derivation from a common magma series depending on emplacement conditions. Basic to ultrabasic madupites and more silicic wyomingites/orendites are distinct in their Nd isotopic variations (madupites: εNd= ?10.5 to ?12.3; wyomingites/orendites: εNd= ?13.7 to ?17.0) despite similar Sm/Nd ratios and complete overlap in 87Sr/86Sr. Selective or bulk assimilation of crustal material is unlikely to have significantly affected the Nd and Sr isotopic compositions of the magmas. The measured isotopic ratios are considered to reflect source values. The distinct isotopic characteristics of madupite and wyomingite/orendite magmas preclude their derivation by fractional crystallization, from a common primary magma, by liquid immiscibility or by partial melting of a homogeneous source. Two isotopically distinct, LREE enriched and slightly heterogeneous sources are required. Heterogeneities were most pronounced between magma sources from each volcanic centre (butte or mesa). The relationship between the madupite and wyomingite/orendite sources and their evolution is discussed on the basis of two simple alternative sets of models:
  1. a two-stage evolution model with an old enrichment event (a metasomatic event?) perhaps taking place during the stabilization of the Wyoming Craton 3.2 to 2.5 Gyr ago but not later than 1.2 Gyr ago or
  2. a mixing model involving mixing between one endmember with εNd near zero and another end-member with a strong negative εNd signature.
  相似文献   

4.
The water-saturated phase relations of three Leucite Hills lavas have been determined at pressures up to 5 kb. Phlogopite is the major primary liquidus phase in orendite and wyomingite at pressures, > 1 kb, but clinopyroxene and olivine are the major primary liquidus phases in madupite at pressures up to 5 kb. Leucite is a liquidus phase in all three magmas at pressures <0.5kb. The experimental results are in reasonable agreement with the inferred crystallization sequences for the Leucite Hills lavas and have applications to the crystallization and differentiation of potassium-rich magmas within the crust.  相似文献   

5.
Wyomingite collected from Leucite Hills is composed mainly of leucite, diopside, phlogopite, and small amounts of apatite, calcite, magnetite and rare amphibole, and is characterized by very high content of potash. Thermal experiments at atmospheric pressure indicate that the liquidus phase is always diopside with liquidus temperature of 1320 °C, and solidus temperature is about 1000 °C. Various kinds of melt inclusions are abundant in all constituent minerals. They comprise mono-phase (glass only), two-phase (gas+glass), three-phase (gas+glass+one crystalline phase) and multi-phase (gas+glass+more than two crystalline phases) inclusions. Thermal experiments have been made on these inclusions in phlogopite, diopside, and leucite in order to estimate the temperature of crystallization by homogenizing these inclusions. The results show that the crystallization of wyomingite began with formation of phlogopite accompanied by diopside at 1270 °C. Although diopside ceased crystallization at 1220 °C recurrent crystallization of phlogopite was noticed between 1120 ° and 1040 °C. Leucite crystallized out abundantly between 1250 ° and 1150 °C. Complete solidification of wyomingite occurred at about 1000 °C.  相似文献   

6.
MIRNEJAD  H.; BELL  K. 《Journal of Petrology》2006,47(12):2463-2489
Whole-rock major and trace element and O, Sr, Nd and Pb isotopicdata are reported for 3·0–0·89 Ma lamproitesfrom the Leucite Hills, Wyoming, USA. The two main groups oflamproites, madupitic lamproites and phlogopite lamproites,are geochemically distinct and cannot be related to one anotherby either fractional crystallization or crustal contamination.It seems likely that the geochemical differences between thesetwo rock types are related to variations in source mineralogyand depth of partial melting. The high Mg-number and large ionlithophile element abundances and negative Nd values of thelamproites indicate a mantle source that has experienced stagesof both depletion and enrichment. The negative Nb, Ta and Tianomalies in mantle-normalized trace element diagrams and lowtime-integrated U/Pb, Rb/Sr and Sm/Nd ratios of both lamproitegroups and other Cenozoic igneous rocks from the Wyoming ArcheanProvince indicate an ancient metasomatic enrichment (>1·0Ga) of the mantle source associated with the subduction of carbonate-bearingsediments. Other chemical characteristics of the Leucite Hillslamproites, especially their high K2O and volatile contents,are attributed to more recent metasomatism (<100 Ma) involvinginflux from upwelling mantle during back-arc extension or plumeactivity. KEY WORDS: isotopes; lamproites; metasomatism; Leucite Hills; Wyoming  相似文献   

7.
Low‐pressure crystal‐liquid equilibria in pelitic compositions are important in the formation of low‐pressure, high‐temperature migmatites and in the crystallization of peraluminous leucogranites and S‐type granites and their volcanic equivalents. This paper provides data from vapour‐present melting of cordierite‐bearing pelitic assemblages and augments published data from vapour‐present and vapour‐absent melting of peraluminous compositions, much of which is at higher pressures. Starting material for the experiments was a pelitic rock from Morton Pass, Wyoming, with the major assemblage quartz‐K feldspar‐biotite‐cordierite, approximately in the system KFMASH. A greater range in starting materials was obtained by addition of quartz and sillimanite to aliquots of this rock. Sixty‐one experiments were carried out in cold‐seal apparatus at pressures of 1–3.5 kbar (particularly 2 kbar) and temperatures from 700 to 840 °C, with and without the addition of water. In the vapour‐present liquidus relations at 2 kbar near the beginning of melting, the sequence of reactions with increasing temperature is: Qtz + Kfs + Crd + Sil + Spl + V = L; Qtz + Kfs + Crd + Spl + Ilm + V = Bt + L; and Qtz + Bt + V = Crd + Opx + Ilm + L. Vapour‐absent melting starts at about 800 °C with a reaction of the form Qtz + Bt = Kfs + Crd + Opx + Ilm + L. Between approximately 1–3 kbar the congruent melting reaction is biotite‐absent, and biotite is produced by incongruent melting, in contrast to higher‐pressure equilibria. Low pressure melts from pelitic compositions are dominated by Qtz‐Kfs‐Crd. Glasses at 820–840 °C have calculated modes of approximately Qtz42Kfs46Crd12. Granites or granitic leucosomes with more than 10–15% cordierite should be suspected of containing residual cordierite. The low‐pressure glasses are quite similar to the higher‐pressure glasses from the literature. However, XMg increases from about 0.1–0.3 with increasing pressure from 1 to 10 kbar, and the low‐temperature low‐pressure glasses are the most Fe‐rich of all the experimental glasses from pelitic compositions.  相似文献   

8.
Anatectic migmatites in medium- to low-pressure granulite facies metasediments exposed in the Larsemann Hills, East Antarctica, contain leucosomes with abundant quartz and plagioclase and minor interstitial K-feldspar, and assemblages of garnet–cordierite–spinel–ilmenite–sillimanite. Qualitative modelling in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2, in conjunction with various PT calculations indicate that the high-grade retrograde evolution of the terrane was dominated by decompression from peak conditions of c. 7 kbar at c. 800 °C to 4–5 kbar at c. 750 °C. Extensive partial melting during decompression involved the replacement of biotite by the assemblage cordierite–garnet–spinel within the leucosomes. These leucosomes represent the site of partial melt generation, the cordierite–garnet–spinel–ilmenite assemblage representing the solid products and excess reactants from the melting reaction. The extraction and accumulation of this decompression-generated melt led to the formation of syntectonic pegmatites and extensive granitic plutons. Leucosome development and terrane decompression proceeded during crustal transpression, synchronous with upper crustal extension, during a progressive Early Palaeozoic collisional event. Subsequent retrograde evolution was characterized by cooling, as indicated by the growth of biotite replacing spinel and garnet, thin mantles of cordierite replacing spinel and quartz within metapelites, and garnet replacing orthopyroxene and hornblende within metabasites. P–T calculations on late mylonites indicate lower grade conditions of formation of c. 3.5 kbar at c. 650 °C, consistent with the development of late cooling textures.  相似文献   

9.
Calculated results using thermocalc for melting of pelitic compositions are compared with the results of experimental melting of pelite from Morton Pass, Wyoming, USA. The experiments were carried out at 1, 2 and 3.5 kbar, dominantly at 2 kbar. For experimental charges with ('wet') and without ('dry') added H2O, the agreement is good. This is true for the compositions without added H2O, in which liquid first appears with the production of orthopyroxene at ∼800 °C, and for the runs with added H2O, in which melting begins at ∼700 °C, and continues, with the appearance of orthopyroxene between 780 and 800 °C at 2 kbar. The compositions of melts are also compared: the comparison is generally good, except in the modelling of wet runs below ∼780 °C, where the calculated values for FeO and MgO are about one-tenth of the already low analytical values, and in somewhat low calculated values of Al2O3 compared to the analytical data. A quantitative model to illustrate melting of pelite at Morton Pass is calculated, giving T – X (H2O) conditions for the observed sets of natural assemblages, along with the reactions at and near the beginning of melting.  相似文献   

10.
11.
Harkerite, found in metamorphic ejecta of the Alban Hills associated with cuspidine, grossular, phlogopite, vesuvian, biotite, and minor amounts of diopside, aegirinaugite, leucite, magnetite and calcito, shows cubic Laue symmetry m3m, possible space groups Fm3m, F432, F43m, a0 = 14.82 Å.On the basis of isomorphous replacements suggested by the crystal structure analysis, chemical data may be represented by the formula: Ca48Mg16(AlSi4O16)4(BO3)12(CO3)20 · 4H2O. Refractive index nD = 1.6490.The relations between harkerite from Albano, harkerite from Skye and other known harkerites and sakhaites are discussed.  相似文献   

12.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   

13.
The anhydrous melting behaviour of two synthetic peridotite compositions has been studied experimentally at temperatures ranging from near the solidus to about 200° C above the solidus within the pressure range 0–15 kb. The peridotite compositions studied are equivalent to Hawaiian pyrolite and a more depleted spinel lherzolite (Tinaquillo peridotite) and in both cases the experimental studies used peridotite –40% olivine compositions. Equilibrium melting results in progressive elimination of phases with increasing temperature. Four main melting fields are recognized; from the solidus these are: olivine (ol)+orthopyroxene (opx)+clinopyroxene (cpx)+Al-rich phase (plagioclase at low pressure, spinel at moderate pressure, garnet at high pressure)+liquid (L); ol+opx+cpx+Cr-spinel+L; ol+opx+Cr-spinel +L: ol±Cr-spinel+L. Microprobe analyses of the residual phases show progressive changes to more refractory compositions with increasing proportion of coexisting melt i.e. increasing Mg/(Mg+Fe) and Cr/(Cr+Al) ratios, decreasing Al2O3, CaO in pyroxene.The degree of melting, established by modal analysis, increases rapidly immediately above the solidus (up to 10% melting occurs within 25°–30° C of the solidus), and then increases in roughly linear form with increasing temperature.Equilibrium melt compositions have been calculated by mass balance using the compositions and proportions of residual phases to overcome the problems of iron loss and quench modification of the glass. Compositions from the melting of pyrolite within the spinel peridotite field (i.e. 15 kb) range from alkali olivine basalt (<15% melting) through olivine tholeiite (20–30% melting) and picrite to komatiite (40–60% melting). Melting in the plagioclase peridotite field produces magnesian quartz tholeiite and olivine-poor tholeiite and, at higher degrees of melting (30–40%), basaltic or pyroxenitic komatiite. Melts from Tinaquillo lherzolite are more silica saturated than those from pyrolite for similar degrees of partial melting, and range from olivine tholeiite through tholeiitic picrite to komatiite for melting in the spinel peridotite field.The equilibrium melts are compared with inferred primary magma compositions and integrated with previous melting studies on basalts. The data obtained here and complementary basalt melting studies do not support models of formation of oceanic crust in which the parental magmas of common mid-ocean ridge basalts (MORB) are attributed to segregation from source peridotite at shallow depths ( 25 km) to leave residual harzburgite. Liquids segregating from peridotite at these depths are more silica-rich than common MORB.  相似文献   

14.
Exsolved augite pyroxenes from the ferromonzonite border facies of the ferrosyenite in the Laramie Anorthosite Complex have been studied with the transmission electron microscope and the electron microprobe to determine their exsolution histories. The Lindsley and Andersen (1983) geothermometer gives initial crystallization temperatures of 1000° C for the bulk augite crystal (Wo32 En22 Fs46). Exsolved lamellae are predominantly pigeonites with very low calcium contents (Wo1–3 En23–24 Fs71–74) and have formation temperatures estimated to be in the range of 600 to 975° C. The uniform compositions of lamellae and hosts, despite the range in lamellar size and orientation, suggest that either 1) the ferromonzonite experienced an extended plateau in cooling or a reheating event at 600 to 650° C or 2) the pyroxenes recorded a blocking temperature. Two-feldspar geothermometry on exsolved feldspars also records 600° C and suggests that these low temperatures are not blocking temperatures.  相似文献   

15.
Gordon G. Goles 《Lithos》1975,8(1):47-58
Five Ne-normative basalts are unusually rich in Cr, to a lesser degree in Co, and have very high La/Lu ratios and high contents of several excluded trace elements resembling kimberlites in these and other aspects. They seem to represent mantle-derived magmas, only slightly modified by shallow level crystal/liquid fractionation. Cr was apparently excluded from the crystalline phases in equilibrium with these magmas in the upper mantle.The Chyulu rocks differ in several respects from other Gregory Rift basalts, but closely resemble those from Jan Mayen Island near the Mid-Atlantic ridge. The generation of these unusual basalts is therefore not related simply to mantle composition or tectonic setting, but may reflect unusually high-T (1450°C), low-P (15–29 kbars) environments in the zones of last effective equilibration of these magmas with mantle rocks.  相似文献   

16.
《Lithos》2007,93(1-2):199-213
Kimberlite pipes K11, K91 and K252 in the Buffalo Head Hills, northern Alberta show an unusually large abundance (20%) of Type II (no detectable nitrogen) diamonds. Type I diamonds range in nitrogen content from 6 ppm to 3300 ppm and in aggregation states from low (IaA) to complete (IaB). The Type IaB diamonds extend to the lowest nitrogen concentrations yet observed at such high aggregation states, implying that mantle residence occurred at temperatures well above normal lithospheric conditions. Syngenetic mineral inclusions indicate lherzolitic, harzburgitic, wehrlitic and eclogitic sources. Pyropic garnet and forsteritic olivine characterize the peridotitic paragenesis from these pipes. One lherzolitic garnet inclusion has a moderately majoritic composition indicating a formation depth of ∼ 400 km. A wehrlitic paragenesis is documented by a Ca-rich, high-chromium garnet and very CaO-rich (0.11–0.14 wt.%) olivine. Omphacitic pyroxene and almandine-rich garnet are characteristic of the eclogitic paragenesis. A bimodal δ13C distribution with peaks at − 5‰ and − 17‰ is observed for diamonds from all three kimberlite pipes. A large proportion (∼ 40%) of isotopically light diamonds (δ13C < −10‰) indicates a predominantly eclogitic paragenesis.The Buffalo Head Terrane is of Lower Proterozoic metamorphic age (2.3–2.0 Ga) and hence an unconventional setting for diamond exploration. Buffalo Hills diamonds formed during multiple events in an atypical mantle setting. The presence of majorite and abundance of Type II and Type IaB diamonds suggests formation under sublithospheric conditions, possibly in a subducting slab and resulting megalith. Type IaA to IaAB diamonds indicate formation and storage under lower temperature in normal lithospheric conditions.  相似文献   

17.
U-Th-Pb systematics were investigated in 15 samples representing two types of deuterically altered Archean granite (albitized and silicified-epidotized granite) from the Granite Mountains, Wyoming. The loss of K-feldspar during both types of deuteric alteration was accompanied by an extreme reduction of Pb content from roughly 40 ppm to less than 12 ppm in the most altered samples. Nine of the 15 samples yield anomalously young whole-rock Pb-Pb and Th-Pb ages compared to concordia ages for zircons and to whole-rock Pb-Pb and Th-Pb ages for samples of unaltered granite. The young ages are interpreted to be the result of radiogenic Pb loss during a middle Proterozoic metamorphism that disturbed several isotopic systems in the unaltered granite. The loss of radiogenic Pb from the whole-rock systems of the deuterically altered granites is most likely due to the absence of microcline. In many granitic rocks, potassium feldspar tends to act as a receptor for Pb that has been mobilized, and this effect may account for the closed-system behavior of Pb in whole-rock samples of the unaltered granite. It may also account for the apparent gain of radiogenic Pb during the Proterozoic by one sample which was collected at the edge of an alteration zone. The deuterically altered granites may have also lost U during the Proterozoic, but, except for two samples, the dominant U loss occurred relatively recently, probably during Tertiary uplift and erosion.The low common-Pb contents and rather high U and Th contents of the hydrothermally altered granites might seem to indicate that these rocks are well suited for geochronologic studies in the U-Th-Pb system because such rocks should have a high percentage of radiogenic Pb. Unfortunately, open-system behavior in response to post-crystallization metamorphism shows that apparent ages for these types of rocks must be interpreted with caution.  相似文献   

18.
Excavations in 1964 at the Pine Spring site in southwest Wyoming concluded that the site contains three cultural occupation levels; the earliest allegedly dates to the terminal Pleistocene and is associated with megafauna. However, excavations in 1998 and 2000, and analysis of the stratigraphy, AMS dates, micromorphology, and artifact carbonate isotopes, along with debitage refitting, density, orientation, inclination, burning, and trample damage, could not replicate the 1964 findings. A hiatus in deposition accounts for the highest density of artifacts, and the three original occupations are palimpsests. There is no unequivocal association between evidence of human activity and megafaunal remains. © 2006 Wiley Periodicals, Inc.  相似文献   

19.
In order to provide a better chronological constraint on a British Middle Pleistocene interglacial, a large stalagmite boss from the Mendip Hills was selected for palaeoclimate data using pollen analysis. Dating analyses by thermal ionisation mass spectrometry (TIMS) of uranium–thorium ratios and by magnetostratigraphy constrain the age of the sample to 450–780 ka. The isotopic consistency of the TIMS analyses, plus the presence of luminescence laminations, suggest that the sample has been preserved under closed-system conditions. Pollen assemblages have been recovered from the speleothems, despite the fact that the pH of calcite deposition is usually greater than 7. Furthermore the evidence presented here indicates that the pollen was probably transported by the speleothem feedwater, rather than entering the cave aerially. The pollen record contained within the stalagmite is interpreted as early–mid-interglacial but does not have clear Cromerian affinity. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Summary Chemical data on clinopyroxene phenocrysts in twenty-four lava samples from the Alban Hills (Roman comagmatic region) show coexistence, within the same rock, of two core-rim evolution trends: diopside-salite and salite-diopside, respectively. The Alban volcanics can be divided in two groups depending on which type of core predominates.Geochemical mixing tests, conducted with elements showing a different degree of incompatibility, such as Ce, Sr, Th, La, Ta, and Hf, show no evidence of a mixing process which might be responsible for coexistence of both diopside and salite clinopyroxenes within the same lava.Taking into account the results of known experiments on the influence of water on clinopyroxene composition in potassium rich lavas, the reverse zoning trend observed and the consequent predominance of salite cores in some lavas are ascribed to the effect of volatiles, and particularly to water. Changes of water pressure may also be responsible for phenocryst corrosion and salitic clinopyroxene replacement by olivine, phlogopite and titaniferous magnetite.The prominent role of water in the Alban Hills magma evolution is also supported by the high fluorine content found in the Alban products, which enhances water solubility in the magmas, by the frequent occurrence of mica in the rock groundmass and, finally, by the explosive character of Alban volcanism.
Zusammenfassung Die Ergebnisse chemischer Analysen von Klinopyroxen in vierundzwanzig Lavaproben aus den Albaner Bergen (Römische Komagmatische Region) zeigen die Koexistenz von zwei Kern-Rand-Entwicklungstendenzen: Diopsid-Salit und Salit-Diopsid. Die Vulkanite können auf Grund der Zusammensetzung der Kerne in zwei Gruppen unterteilt werden.Mit Elementen verschiedener Inkompatibilität, wie Ce, Sr, Th, La, Ta und Hf, ausgeführte Mischversuche geben keinen Hinweis dafür, daß ein Mischungsprozeß für die Koexistenz von Diopsid und Salit in derselben Lava verantwortlich sei.In Anbetracht der Ergebnisse von Experimenten über den Einfluß von H2O auf die Klinopyroxen-Zusammensetzung in K-reichen Laven, werden die beobachtete Zonierung und die daraus folgende Dominanz von Salit-Kernen in bestimmten Lavatypen der Wirkung von volatilen Bestandteilen, besonders Wasser, zugeschrieben. änderungen des H2O-Drucks können für Phenokristall-Korrosion und Verdrängung der salitischen Klinopyroxene durch Olivin, Phlogopit und Titanomagnetit verantwortlich sein.Die entscheidende Rolle des Wassers in der Entwicklung des Magmas stimmt mit dem hohen Fluor-Gehalt der Produkte, der die H2O-Löslichkeit in Magmen erhöht, mit der Häufigkeit des Glimmers in der Grundmasse der Gesteine und mit der explosiven Natur des Vulkanismus im Untersuchungsgebiet überein.

Zur Chemie der Klinopyroxene in den Kali-reichen Gesteinen der Albaner Berge
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号