首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the data of the 321 pulsars so far known the Galactic distribution and the luminosity function of pulsars have been investigated. The total number of pulsars in our Galaxy is found to be 9 × 104. If the mean age of pulsars is 1.8 × 106 years, the birth-rate of pulsars in the Galaxy will be one every 20 years. This rate is not in contradiction with the birth-rate of supernovae.  相似文献   

2.
The role of binary progenitors of neutron stars (NSs) in the apparent distribution of space velocities and spin–velocity alignment observed in young pulsars is studied. We performed a Monte Carlo synthesis of pulsar populations originated from single and binary stars with different assumptions about the NS natal kick (kick–spin alignment, kick amplitude and kick reduction in electron-capture supernovae in binary progenitors with initial main-sequence masses from the range  8–11 M  which experienced mass exchange due to Roche lobe overflow). The calculated spin–velocity alignment in pulsars is compared with data inferred from radio polarization measurements. The observed space velocity of pulsars is found to be mostly affected by the natal kick velocity form and its amplitude; the fraction of binaries is not important here for reasonably large kicks. The natal kick–spin alignment is found to strongly affect the spin–velocity correlation of pulsars. Comparison with the observed pulsar spin–velocity angles favours a sizeable fraction of binary progenitors and kick–spin angles  ∼5°–20°  .  相似文献   

3.
Traditionally, studies aimed at inferring the distribution of birth periods of neutron stars are based on radio surveys. Here we propose an independent method to constrain the pulsar spin periods at birth based on their X-ray luminosities. In particular, the observed luminosity distribution of supernovae (SNe) poses a constraint on the initial rotational energy of the embedded pulsars, via the     correlation found for radio pulsars, and under the assumption that this relation continues to hold beyond the observed range. We have extracted X-ray luminosities (or limits) for a large sample of historical SNe observed with Chandra , XMM and Swift , which have been firmly classified as core-collapse SNe. We have then compared these observational limits with the results of Monte Carlo simulations of the pulsar X-ray luminosity distribution for a range of values of the birth parameters. We find that a pulsar population dominated by millisecond periods at birth is ruled out by the data.  相似文献   

4.
Cosmic rays are a sample of solar, galactic and extragalactic matter. Their origin and properties are one of the most intriguing question in modern astrophysics. The most energetic events and active objects in the Universe: supernovae explosion, pulsars, relativistic jets, active galactic nuclei, have been proposed as sources of cosmic rays although unambiguous evidences have still to be found. Electrons, while comprising ∼1% of the cosmic radiation, have unique features providing important information regarding the origin and propagation of cosmic rays in the Galaxy that is not accessible from the study of the cosmic-ray nuclear components due to their differing energy-loss processes. In this paper we will analyse, discussing the experimental uncertainties and challenges, the most recent measurements on cosmic-ray nuclei and, in particular, electrons with energies from tens of GeV into the TeV region.  相似文献   

5.
The capabilities and limitations of pulsars as sources of cosmic rays are reviewed in the light of experimental observations. Pulsars can supply the cosmic ray power if they have rotational velocities in excess of 700 rad s?1 at birth. Though this is theoretically possible, there is no experimental proof for the same. Pulsars can accelerate particles to the highest energies of 1020 eV, but in general, the spectra on simple considerations, turn out to be flatter than the observed cosmic ray spectrum. At the highest energies, absorption processes due to fragmentation and photodisintegration dominate for heavy nuclei. The existence of a steady flux of cosmic rays of energy greater than 1017 eV demands acceleration of particles to last over fifty years, the time interval between supernovae outbursts, whereas the expected period of activity is less than a few years. Finally, the problem of anisotropy with relevance to pulsars as sources and the possibility of observing pulsar accelerated particles from galactic clusters is considered.  相似文献   

6.
Small hydrocarbon grains in the vicinity of a supernova could be annealed by the absorption of several far-ultraviolet photons to produce the tiny diamonds found in meteorites. These freshly-synthesized diamond grains would be bombarded by the heavy ions and neutrals in the supernovae outflow and would thereby acquire the distinctive noble-gas isotopic signature by which they were first isolated. Only diamonds formed relatively close to supernovae would acquire such a signature, since grains formed farther out would be subjected to a much diluted and less energetic plasma environment.  相似文献   

7.
Discovery of 28 pulsars using new techniques for sorting pulsar candidates   总被引:1,自引:0,他引:1  
Modern pulsar surveys produce many millions of candidate pulsars, far more than can be individually inspected. Traditional methods for filtering these candidates, based upon the signal-to-noise ratio of the detection, cannot easily distinguish between interference signals and pulsars. We have developed a new method of scoring candidates using a series of heuristics which test for pulsar-like properties of the signal. This significantly increases the sensitivity to weak pulsars and pulsars with periods close to interference signals. By applying this and other techniques for ranking candidates from a previous processing of the Parkes Multi-beam Pulsar Survey, 28 previously unknown pulsars have been discovered. These include an eccentric binary system and a young pulsar which is spatially coincident with a known supernova remnant.  相似文献   

8.
Within the more than 30 yr of cosmic ray astrophysics, neither their origin nor their precise mode of propagation have found undisputable explanations. Among the favoured boosters have been point sources, like supernovae and pulsars, as well as extended sources, like cosmic clouds and supernova remnants. Extended sources have been proposed by Fermi (1949), and pushed more recently by a number of investigators because of the huge available reservoirs, and because repetitive shock acceleration can generate power law spectra which are similar to the ones observed (Axfordet al., 1977; Bell, 1978; Blandford and Ostriker, 1978; Krymsky, 1977). Yet the shock acceleration model cannot easily be adjusted to achieve particle energies in excess of some critical energy, of order 104±1 GeV (Völket al., 1981). For this and several other reasons, the suggestion is revived that neutron stars are the dominant source of high-energy cosmic rays. To be more precise: the (relativistic) ionic component of the cosmic rays is argued to be injected by young binary neutron stars (?105 yr) whose rotating magnetospheres act like grindstones in the wind of their companion (Kundt, 1976). The high-energy (?30 GeV) electron-positron component may be generated by young pulsars (?105 yr) and by collision processes, and the electron component below 30 GeV predominantly by supernova remnants.  相似文献   

9.
The rotation periods, surface magnetic field strengths, as well as the spatial distribution of the several kinds of pulsars discovered sofar are analyzed statistically. It is revealed that the spatial distribution of the millisecond pulsars is more dispersive than that of the normal radio pulsars. And that the spatial distribution of the pulsars in low-mass X-ray binaries (LMXBs) is also more dispersive than that of the pulsars in high-mass X-ray binaries (HMXBs). The distribution of rotation periods of the isolated millisecond pulsars has a peak at 4.7ms, and the corresponding peak values for the normal radio pulsars and the millisecond pulsars in binaries are 0.6 s and 3.5ms, respectively. The surface magnetic field strengths of the FERMI pulsars (the gamma-ray pulsars observed by the Large Area Telescope/Fermi Gamma-ray Space Telescope) and normal pulsars are all concentrated around 1012 Gs. It is found also that some young high-energy pulsars are associated with supernova remnants. In combination with the formation and evolution models of pulsars, we have made some remarks on the characteristics of these distributions.  相似文献   

10.
We present improved timing parameters for 13 millisecond pulsars (MSPs), including nine new proper motion measurements. These new proper motions bring to 23 the number of MSPs with measured transverse velocities. In light of these new results we present and compare the kinematic properties of MSPs with those of ordinary pulsars. The mean transverse velocity of MSPs was found to be 85±13 km s−1, a value consistent with most models for the origin and evolution of MSPs and approximately a factor of 4 lower than that of ordinary pulsars. We also find that, in contrast to young ordinary pulsars, the vast majority of which are moving away from the Galactic plane, almost half of the MSPs are moving towards the plane. This near-isotropy would be expected of a population that has reached dynamic equilibrium. Accurate measurements of MSP velocities have allowed us to correct their measured spin-down rates for Doppler acceleration effects, and thereby derive their intrinsic magnetic field strengths and characteristic ages. We find that close to half of our sample of MSPs have a characteristic age comparable to or greater than the age of the Galactic disc.  相似文献   

11.
毫秒脉冲星定时研究进展   总被引:1,自引:0,他引:1  
毫秒脉冲星守时的理论和方法研究己取得重要进展,利用现有2颗毫秒脉冲星约10yr的计时观测资料分析得到的 TAI-PT,其长期稳定度为 2×10-14。采用合适的长期稳定度算法,由多颗毫秒脉冲星计时观测可以建立综合脉冲星时间尺度。它可以成为与原子时系统比较的重要手段,并对原子时长期稳定度的改进做出贡献。介绍了该领域研究的基本状况,重点对毫秒脉冲星守时的理论方法,综合脉冲星时间及与原子时的关系等进行了讨论和评述。对由双星系统内毫秒脉冲星的轨道运动定义的双星脉冲星时也做了介绍。  相似文献   

12.
We present results of a population synthesis study of radio-loud and radio-quiet γ-ray pulsars from the Galactic plane and the Gould Belt. The simulation includes the Parkes multibeam pulsar survey, realistic beam geometries for radio and γ-ray emission from neutron stars and the new electron density model of Cordes and Lazio. Normalizing to the number of radio pulsars observed by a set of nine radio surveys, the simulation suggests a neutron star birth rate of 1.4 neutron stars per century in the Galactic plane. In addition, the simulation predicts 19 radio-loud and 7 radio-quiet γ-ray pulsars from the plane that EGRET should have observed as point sources. Assuming that during the last 5 Myr the Gould Belt produced 100 neutron stars, only 10 of these would be observed as radio pulsars with three radio-loud and four radio-quiet γ-ray pulsars observed by EGRET. These results are in general agreement with the recent number of about 25 EGRET error boxes that contain Parkes radio pulsars. Since the Gould Belt pulsars are relatively close by, the selection of EGRET radio-quiet γ-ray pulsars strongly favors large impact angles, β, in the viewing geometry where the off-beam emission from curvature radiation provides the γ-ray flux. Therefore, the simulated EGRET radio-quiet γ-ray pulsars, being young and nearby, most closely reflect the current shape of the Gould Belt suggesting that such sources may significantly contribute to the EGRET unidentified γ-ray sources correlated with the Gould Belt.  相似文献   

13.
Motivated by recent results on the location of the radio emission in pulsar magnetospheres, we have developed a model which can account for the large diversity found in the average profile shapes of pulsars. At the centre of our model lies the idea that radio emission at a particular frequency arises from a wide range of altitudes above the surface of the star, and that it is confined to a region close to the last open field lines. We assert that the radial height range over which emission occurs is responsible for the complex average pulse shapes rather than the transverse (longitudinal) range proposed in most current models. By implementing an abrupt change in the height range to discriminate between young, short-period, highly energetic pulsars and their older counterparts, we obtain the observed transition between the simple and complex average pulse profiles observed in each group respectively. Monte Carlo simulations are used to demonstrate the match of our model to real observations.  相似文献   

14.
The general case of non-radial accretion is assumed to occur in real binary systems containing X-ray pulsars. The structure and the stability of the magnetosphere, the interaction between the magnetosphere and accreted matter, as well as evolution of neutron star in close binary system are examined within the framework of the two-stream model of nonradial accretion onto a magnetized neutron star. Observable parameters of X-ray pulsars are explained in terms of the model considered.  相似文献   

15.
The global structure of current flows in pulsar magnetosphere is investigated, with rough calculations of the circuit elements. It is emphasized that the potential of the critical field lines (the field lines that intersect the null surface at the light cylinder radius) should be the same as that of interstellar medium, and that pulsars whose rotation axes and magnetic dipole axes are parallel should be positively charged, in order to close the pulsar's current flows. The statistical relation between the radio luminosity and pulsar's electric charge (or the spindown power) may hint that the millisecond pulsars could be low-mass bare strange stars.  相似文献   

16.
The distribution of pulsars in the wide range of observed luminosities has been obtained. It is shown that the function of luminosity (FL) within 3×1026L2×1030 erg s–1 conforms to the power law dN/dLc 1 L , where =1.76±0.06. ForL3×1026 erg s–1, FL changes its inclination and may be approximated as , where 1 = 0.7±0.2. On the basis of statistical selection, including all pulsars withL>3×1028 erg s–1, the distribution of pulsars has been investigated as a function of the distance to the centreR and galactic planeZ.The obtained laws of the radial andZ-distribution of pulsars and galactic supernova remnants and also the radial distribution of types I and II supernovae in the models Sb and Sc support the hypothesis of their origin from the objects of the flat subsystem of Population I. Since there are some arguments in favour of a possible connection between supernovae I and the objects of the intermediate component of the Galaxy, one cannot exclude the possibility of supernovae explosions at the end of the evolution of stars with masses of 1.5–2M . It is also shown that pulsars and supernovae are evidently objects that are connected genetically, and, within the limits of statistical error, they have a similar birth-rate.The empirical law of the evolution of a pulsar's luminosity as a function of its true age has been obtained, according to whichL=c 2 t , wherec 2=(3.69±3.4)×1035, =1.32±0.11.  相似文献   

17.
The observed values of the time-derivatives of the spin or orbital frequency of pulsars are affected by their dynamical properties. We derive thorough analytical expressions for such dynamical contributions in terms of the Galactic coordinates, the proper motion, the pulsar distance, and the radial velocity. We find that the effects of the dynamical terms in the second-derivative of frequencies or parameters based on such second derivatives, e.g., braking index, are usually negligible. However, unique pulsars for which the effects of the dynamical terms are significant can exist. In particular, dynamical effects can make the magnitude of the observed value of the braking index to be in the order of thousand while the true value of it is close to the theoretically expected value three, especially if the pulsars lie close to the Galactic centre. Dynamics can also affect the value of the second derivative of the orbital frequency of a binary pulsar at the first decimal place. We also emphasize the fact that our expressions provide more accurate results than pre-existing approximate ones that exclude some of the terms. Comparison with a set of pulsars showed that the median value of the difference between the results obtained by our method and a pre-existing method is about 50 percent.  相似文献   

18.
Type Ib/c supernovae are shown to be concentrated to the inner edges of the spiral arms, with the distributions for type Ib and Ic supernovae being identical. We have found differences between the distributions of type II and Ib/c supernovae relative to spiral arms, suggesting that the type Ib/c presupernovae are, on average, younger.  相似文献   

19.
We present the discovery and follow-up observations of 142 pulsars found in the Parkes 20-cm multibeam pulsar survey of the Galactic plane. These new discoveries bring the total number of pulsars found by the survey to 742. In addition to tabulating spin and astrometric parameters, along with pulse width and flux density information, we present orbital characteristics for 13 binary pulsars which form part of the new sample. Combining these results from another recent Parkes multibeam survey at high Galactic latitudes, we have a sample of 1008 normal pulsars which we use to carry out a determination of their Galactic distribution and birth rate. We infer a total Galactic population of  30 000 ± 1100  potentially detectable pulsars (i.e. those beaming towards us) having 1.4-GHz luminosities above 0.1 mJy kpc2. Adopting the Tauris & Manchester beaming model, this translates to a total of  155 000 ± 6000  active radio pulsars in the Galaxy above this luminosity limit. Using a pulsar current analysis, we derive the birth rate of this population to be  1.4 ± 0.2  pulsars per century. An important conclusion from our work is that the inferred radial density function of pulsars depends strongly on the assumed distribution of free electrons in the Galaxy. As a result, any analyses using the most recent electron model of Cordes & Lazio predict a dearth of pulsars in the inner Galaxy. We show that this model can also bias the inferred pulsar scaleheight with respect to the Galactic plane. Combining our results with other Parkes multibeam surveys we find that the population is best described by an exponential distribution with a scaleheight of 330 pc. Surveys underway at Parkes and Arecibo are expected to improve the knowledge of the radial distribution outside the solar circle, and to discover several hundred new pulsars in the inner Galaxy.  相似文献   

20.
The evolution of neutron stars in close binary systems with a low-mass companion is considered, assuming the magnetic field to be confined within the solid crust. We adopt the standard scenario for the evolution in a close binary system, in which the neutron star passes through four evolutionary phases ('isolated pulsar'–'propeller'– accretion from the wind of a companion – accretion resulting from Roche-lobe overflow). Calculations have been performed for a great variety of parameters characterizing the properties of both the neutron star and the low-mass companion. We find that neutron stars with more or less standard magnetic field and spin period that are processed in low-mass binaries can evolve to low-field rapidly rotating pulsars. Even if the main-sequence life of a companion is as long as 1010 yr, the neutron star can maintain a relatively strong magnetic field to the end of the accretion phase. The model that is considered can account well for the origin of millisecond pulsars.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号