共查询到20条相似文献,搜索用时 15 毫秒
1.
Models are presented which illustrate the various methods used for the determination of the thickness and nature of deep seismic boundaries according to the observed amplitude and frequency of subcritical reflected waves. From this study it becomes clear that the model which most nearly satisfies the observational requirements is one in which the boundaries are represented by a zone of thin diverse lamellae which produce localized velocity inversion. 相似文献
2.
依据重力、磁力异常数据及其处理结果( 水平梯度模和斜导数) ,对敦化盆地边界、基底起伏、断裂位置及以火成岩为代表的磁性体分布进行了研究。盆地重力异常的分析和水平梯度模及斜导数的计算结果表明,盆地基底具南部凹陷、中央凸起和北部凹陷的“两凹一凸”的起伏形态特征,盆地内断裂以SW--NE 向为主,盆地为单断半地堑式盆地。依据航磁异常,将盆地划分为4 个异常区: 东北部磁异常区、中部低磁异常区、西南高磁异常区和西南边部相对低磁异常区。结合磁异常水平梯度模和斜导数的计算结果显示,以火成岩为代表的磁性体受SW--NE 向构造控制。 相似文献
3.
基于深度学习的地震数据噪声压制方法是当前地震数据去噪处理的重要方向。深度学习方法突破了传统滤波处理的局限,在对常规地震数据的噪声压制中表现出效率高、信噪分离效果好的特点。但针对深部弱有效反射数据,当前的深度学习方法特征提取能力有限,难以取得较好的去噪效果。笔者等结合深反射地震数据特点,针对当前深度学习噪声压制方法在特征提取及对数据集依赖上的局限,提出了基于注意力循环生成对抗网络(Attention Cycle- Consistent Generative Adversarial Networks,A- CGAN)的深反射地震数据随机噪声压制方法。借助循环一致生成对抗网络(Cycle- Consistent Generative Adversarial Networks,Cycle- GAN)的域映射思想,降低对数据集的要求。为了构建适用于深反射地震数据的去噪网络,从3个方面对Cycle- GAN进行改进:在Cycle- GAN的生成器(去噪器)中加入残差结构和注意力机制,用于加深网络深度和提高其特征提取能力;在Cycle- GAN的鉴别器中使用块判决,提高鉴别精度和准确度;在损失函数部分加入感知一致性损失函数,提升网络模型恢复纹理细节信息的能力。通过合成地震数据和实际深反射地震数据测试,验证了优化算法的有效性,体现了良好的应用价值。 相似文献
4.
基于深度学习的地震数据噪声压制方法是当前地震数据去噪处理的重要方向。深度学习方法突破了传统滤波处理的局限,在对常规地震数据的噪声压制中表现出效率高、信噪分离效果好的特点。但针对深部弱有效反射数据,当前的深度学习方法特征提取能力有限,难以取得较好的去噪效果。笔者等结合深反射地震数据特点,针对当前深度学习噪声压制方法在特征提取及对数据集依赖上的局限,提出了基于注意力循环生成对抗网络(Attention Cycle- Consistent Generative Adversarial Networks,A- CGAN)的深反射地震数据随机噪声压制方法。借助循环一致生成对抗网络(Cycle- Consistent Generative Adversarial Networks,Cycle- GAN)的域映射思想,降低对数据集的要求。为了构建适用于深反射地震数据的去噪网络,从3个方面对Cycle- GAN进行改进:在Cycle- GAN的生成器(去噪器)中加入残差结构和注意力机制,用于加深网络深度和提高其特征提取能力;在Cycle- GAN的鉴别器中使用块判决,提高鉴别精度和准确度;在损失函数部分加入感知一致性损失函数,提升网络模型恢复纹理细节信息的能力。通过合成地震数据和实际深反射地震数据测试,验证了优化算法的有效性,体现了良好的应用价值。 相似文献
5.
A. S. Belyakov V. S. Lavrov V. A. Muchamedov A. V. Nikolaev 《Doklady Earth Sciences》2016,467(1):293-294
We performed joint analysis of the seismic noises recorded at the Japanese Ogasawara station located on Titijima Island in the Philippine Sea using the STS–2 seismograph at the OSW station in the winter period of January 1–15, 2015, over the background of a velocity gravity model. The graphs prove the existence of a cause-and-effect relation between the seismic noise and gravity and allow us to consider it as a desired signal. 相似文献
6.
7.
《Tectonophysics》1987,140(1):1-12
A crustal depth section was obtained from Deep Seismic Soundings (DSS) along the Alampur-Koniki-Ganapeshwaram profile, cutting across the northern part of the Proterozoic Cuddapah basin, India, running just south of latitude 16° N and between longitude 78° E and 81°E. The existence of a low-angle thrust fault at the eastern margin of the Cuddapah basin (Kaila et al., 1979) was confirmed along a second profile. Another low-angle thrust, along which charnockites with the granitic basement are upthrust against the Dharwars was delineated further east. The contact of the khondalites (lower Precambrian) with quaternary sediments near the east coast of India seems to be a fault boundary, which may be responsible for the thick sedimentary accumulation in the adjoining offshore region.The basement in the western part of the Cuddapah basin is very shallow and is gently downdipping eastward, to a depth of 1.7 km about 20 km west of Atmakur. It attains a depth of about 4.5 km in the deepest part of the Kurnool sub-basin, around Atmakur. Under the Nallamalai ranges its depth varies between 3.5 and 6.5 km, with an easterly dip. In the region north of the Iswarkuppam dome, the basement is at a depth of about 5.0 km, to about 6.8 km in the eastern part of the Cuddapah basin. Outside the eastern margin of the basin, the depth of the basement is about 1.8 km and further eastwards it is exposed. A fault at the contact of the khondalites with quaternary sediments near the east coast brings the basement down to a depth of approximately 1.3 km.In the Kurnool sub-basin the depth to the Moho discontinuity varies from 35 km under Atmakur to 39 km under the Nallamalai hills. In the region of the Iswarkuppam dome it is at a depth of about 36 km, deepening to about 39 km before rising to 37 km towards the east. Two-dimensional velocity modelling using ray-tracing techniques tends to confirm these results.Gravity modelling of the crustal structure, utilizing a four-layer crustal model in most parts along this profile, conforms to the observed gravity values. A weak zone in the eastern part of the profile where high-density material (density 3.05 g/cm3) has been found seems to be responsible for the gravity high in that part. 相似文献
8.
9.
The metabasites and mylonitic granites of the East and South East of Chadegan in the Isfahan province are a part of the Sanandaj-Sirjan Zone. This region is a large-scale ductile shear zone which has experienced different phases of deformation and dynamothermal metamorphism. There are at least three phases of deformation in this area. During the first phase which was related to the subduction of the Neotethys oceanic lithosphere under the Iranian microcontinent, the study rocks have experienced regional metamorphism. The second deformational phase was concurrent with the collision between the Arabian plate and the Iranian plate in the Late Cretaceous and caused mylonitization of the metamorphic rocks. The NW–SE trending fold and thrust faults have formed in this stage. The mylonitization have been formed along the dextral transpressional faults. During the third stage of deformation and exhumation of the metamorphic complex, the mylonitic zones have been uplifted to the surface. In this the deformation phase, developed the current morphology of the rocks. The granites have been injected along the extensional shear zones related to the dextral transpressional displacements. These granites are related to the continental collision granites type and have been formed synchronous to the collision between the Arabian and the Iranian plate. Enrichment in LREEs comparison to HREEs and the negative Eu anomaly in the primitive mantle-normalized spidergram and Chondrite-normalized REE patterns support an intra-crustal origin for these granites. Upper continental crust-normalized REE patterns show that in terms of LREEs, are similar to Upper continental crust. 相似文献
10.
相比重力数据,重力张量数据通常包含更多的异常信息。本文根据重力数据与重力张量数据的关系,利用位场转化技术,将重力张量数据应用于传统的Parker-Oldenburg密度界面反演算法中。通过模型试验,证明了在网格间距较大或者数据存在一定噪音时,使用本文算法进行反演能得到更好的效果。实验结果说明利用重力张量数据可以有效地提高密度界面反演的分辨率。 相似文献
11.
A channel‐like, low‐velocity zone in the lithospheric mantle beneath W Norway coincides spatially with the extension of a recently discovered 200 × 50 km granite batholith, which formed as a result of oceanic subduction beneath the SW Fennoscandian margin between 1.07 and 1.01 Ga. Based on results from numerical modelling, we argue that the low‐velocity zone, at least in part, reflects the thermal (radioactive) effects of the refertilized mantle wedge of this magmatic arc. The geological record in SW Fennoscandia suggests that active‐margin magmatism terminated as a result of rapid slab rollback and trench retreat starting at ca. 1 Ga. The rapid shift from active‐ to passive‐margin processes was probably critical in preserving the mantle wedge, and its identification can therefore shed light on how active‐margin processes terminated in ancient orogens. 相似文献
12.
为提高重力及重力梯度数据的正演效率,笔者引入基于MPI (Message Passing Interface)和OpenMP (Open Multi-Processing)的并行计算,通过对比分析不同数据规模的网格数和模型体个数对并行效率和加速比的影响,得出随着正演数据规模的增加,并行效率和加速比均得到提高。同时对比了基于MPI和基于OpenMP的两种并行方式的性能,结果表明,重力及重力梯度数据正演的并行计算中MPI的提速能力优于OpenMP,且在较大规模数据的正演计算中基于MPI的并行效率优于基于OpenMP的并行效率。 相似文献
13.
反射地震资料的属性与油气勘探的最终目标——油、气有密切联系。利用地震波场的属性中隐藏着识别油气藏的密码进行油气检测,是一项新的油气检测技术。有油气存在时其地震属性会在局部产生非常规变异,寻找这种变异的差异,就可以进行油气检测,这也就为油气圈闭的地球物理评价提供了基础。通过在塔里木油田的试验表明,上述检测油气的属性差异分析方法技术是有效的。建议在油气钻探之前,首先进行油气检测和圈闭评价,以减少风险,提高油气勘探的成功率。 相似文献
14.
Crustal structure of mainland China from deep seismic sounding data 总被引:18,自引:0,他引:18
Since 1958, about ninety seismic refraction/wide angle reflection profiles, with a cumulative length of more than sixty thousand kilometers, have been completed in mainland China. We summarize the results in the form of (1) a new contour map of crustal thickness, (2) fourteen representative crustal seismic velocity–depth columns for various tectonic units, and, (3) a Pn velocity map. We found a north–south-trending belt with a strong lateral gradient in crustal thickness in central China. This belt divides China into an eastern region, with a crustal thickness of 30–45 km, and a western region, with a thickness of 45–75 km. The crust in these two regions has experienced different evolutionary processes, and currently lies within distinct tectonic stress fields. Our compilation finds that there is a high-velocity (7.1–7.4 km/s) layer in the lower crust of the stable Tarim basin and Ordos plateau. However, in young orogenic belts, including parts of eastern China, the Tianshan and the Tibetan plateau, this layer is often absent. One exception is southern Tibet, where the presence of a high-velocity layer is related to the northward injection of the cold Indian plate. This high-velocity layer is absent in northern Tibet. In orogenic belts, there usually is a low-velocity layer (LVL) in the crust, but in stable regions this layer seldom exists. The Pn velocities in eastern China generally range from 7.9 to 8.1 km/s and tend to be isotropic. Pn velocities in western China are more variable, ranging from 7.7 to 8.2 km/s, and may display azimuthal anisotropy. 相似文献
15.
Helen A. Williams John Cassidy Corinne A. Locke K. Bernhard Sprli 《Tectonophysics》2006,424(1-2):119-133
Gravity studies have delineated the largest ultramafic massif in New Zealand, embedded within a buried major SW Pacific crustal suture zone. This suture records terrane collision onto the Gondwana margin during the Mesozoic and separates a forearc terrane from an outboard accretionary prism terrane. It can be traced throughout the length of New Zealand as the Junction Magnetic Anomaly and contains the Permian Dun Mountain Ophiolite Belt, which in the South Island of New Zealand is characterized by a string of isolated ultramafic massifs in a sheared matrix of serpentinite and sediment. Our analysis reveals a steep gravity gradient at the suture boundary which is attributed to a newly recognised density contrast (0.1 Mg m− 3) between terranes of the forearc and the accretionary prism. The massif itself is marked by the occurrence of a strong, elongate residual gravity anomaly (+ 120 g.u.) extending 50 km along the suture and coincident with the Junction Magnetic Anomaly. It is modelled, at its southern end, as a dense, 15 km wide source body, extending to at least 6 km in depth. In conjunction with detailed aeromagnetic data, this modeling indicates the presence of a spindle-shaped ultramafic massif, analogous to, but larger than similar bodies found within the Dun Mountain Ophiolite Belt elsewhere. This fabric of sheared serpentinites enclosing ultramafic massifs therefore extends at least the length of New Zealand and probably beyond. In part it may result from accretion of asperities in the subducting plate, but it is also due to disruption of larger ultramafic bodies during subsequent strike-slip motion, which caused the remarkable linearity of the Dun Mountain Belt. Given the common occurrence of the plate tectonic processes involved, it is likely that such structures can be found in other regions around the world using similar geophysical potential field methods. 相似文献
16.
The SW Baltic Sea occupies an area where crustal-scale regional tectonic zones of different age merge and overlap, creating a complex tectonic pattern. This pattern influenced the evolution of the Mesozoic sedimentary basin in this area. We present an interpretation of new high-resolution seismic data from the SW Baltic Sea which provided new information both on modes of the Late Cretaceous inversion of this part of the Danish–Polish Mesozoic basin system as well as on relationship between tectonic processes and syn-tectonic depositional systems. Within the Bornholm–Dar
owo Fault Zone, located between the Koszalin Fault and Christiansø Block, both strike-slip and reverse faulting took place during the inversion-related activity. The faulting was related to reactivation of extensional pre-Permian fault system. Syn-tectonic sedimentary features include a prominent, generally S- and SE-directed, progradational depositional system with the major source area provided by uplifted basement blocks, in particular by the Bornholm Block. Sediment progradation was enhanced by downfaulting along a strike-slip fault zone and related expansion of accommodation space. Closer to the Christiansø Block, some syn-tectonic deposition also took place and resulted in subtle thickness changes within the hinge zones of inversion-related growth folds. Lack of significant sediment supply from the inverted and uplifted offshore part of the Mid-Polish Trough suggests that in this area NW–SE-located marginal trough parallel to the inversion axis of the Mid-Polish Trough did not form, and that uplifted Bornholm Block played by far more prominent role for development of syn-inversion depositional successions. 相似文献
17.
18.
采用多级中值滤波分离混采数据,可以很好地保持单炮的有效信息;对分离后的单炮数据,采用双曲Radon变换进行地震数据道重建,可以在Radon域获得极高的分辨率从而准确地重建地震数据。单炮道重建时,通过稀疏约束控制Radon变换来提高地震数据的重建精度。双曲Radon变换计算耗时较长,在算子求解时,本文采用快速迭代收缩阈值算法(FISTA),明显加快收敛速度,提高计算效率。模拟数据和实际数据表明,采用多级中值滤波和双曲Radon变换的方法重建混采地震数据可以获得较高的重建精度。 相似文献
19.