首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eight papers in this special issue focus on synthetic aperture sonar. The focus is on signal processing and performance characterization for synthetic aperture imaging sonars, with emphasis on systems that operate in stripmap mode--a monostatic approach utilizing broadside beams, and which represents the majority of designs currently seeing practical application.  相似文献   

2.
In this paper, we consider the use of multiple antennas and space-time coding for high data rate underwater acoustic (UWA) communications. Recent advances in information theory have shown that significant capacity gains can be achieved by using multiple-input-multiple-output (MIMO) systems and space-time coding techniques for rich scattering environments. This is especially significant for the UWA channel where the usable bandwidth is severely limited due to frequency-dependent attenuation. In this paper, we propose to use space-time coding and iterative decoding techniques to obtain high data rates and reliability over shallow-water, medium-range UWA channels. In particular, we propose to use space-time trellis codes (STTCs), layered space-time codes (LSTCs) and their combinations along with three low-complexity adaptive equalizer structures at the receiver. We consider multiband transmissions where the available bandwidth is divided into several subbands with guard bands in between them. We describe the theoretical basis of the proposed receivers along with a comprehensive set of experimental results obtained by processing data collected from real UWA communications experiments carried out in the Pacific Ocean. We demonstrate that by using space-time coding at the transmitter and sophisticated iterative processing at the receiver, we can obtain data rates and spectral efficiencies that are not possible with single transmitter systems at similar ranges and depths. In particular, we have demonstrated reliable transmission at a data rate of 48 kb/s in 23 kHz of bandwidth, and 12 kb/s in 3 kHz of bandwidth (a spectral efficiency of 4 bs-1Hz-1) at a 2-km range.  相似文献   

3.
A robust high-resolution direction-of-arrival (DOA) estimation approach for coherent/noncoherent sources is presented. The approach is based on the fact that the signal eigenvectors of the covariance matrix are a linear combination of the direction vectors that contain the DOA information. By applying a high-resolution frequency estimation algorithm to an element sequence from a combination of the signal eigenvectors, the approach achieves better performance at low SNR than the conventional methods. It is shown that the improvement in performance increases with the number of snapshots. For example, the resolution improvement of the proposed signal eigenvector domain approach over spatial-smoothed minimum-norm is about 2.5 dB and 7 dB for 20 and 100 snapshots, respectively  相似文献   

4.
Digital underwater acoustic voice communications   总被引:2,自引:0,他引:2  
This paper describes the design of an underwater acoustic diver communication system controlled by a digital signal processor. The speech signal transmission rate is compressed by using linear predictive coding (LPC) and the extracted parameters are transmitted through the water to a synchronized receiver by employing digital pulse position modulation (DPPM). The pulse position in each time frame is estimated by an energy detection and decision algorithm which enables the received LPC parameters to be recovered and used to synthesize the speech signal  相似文献   

5.
Recent advances in high-speed underwater acoustic communications   总被引:4,自引:0,他引:4  
In recent years, underwater acoustic (UWA) communications have received much attention as their applications have begun to shift from military toward commercial. Digital communications through UWA channels differ substantially from those in other media, such as radio channels, due to severe signal degradations caused by multipath propagation and high temporal and spatial variability of the channel conditions. The design of underwater acoustic communication systems has until recently relied on the use of noncoherent modulation techniques. However, to achieve high data rates on the severely band-limited UWA channels, bandwidth-efficient modulation techniques must be considered, together with array processing for exploitation of spatial multipath diversity. The new generation of underwater communication systems, employing phase-coherent modulation techniques, has a potential of achieving at least an order of magnitude increase in data throughput. The emerging communication scenario in which the modern underwater acoustic systems mill operate is that of an underwater network consisting of stationary and mobile nodes. Current research focuses on the development of efficient signal processing algorithms, multiuser communications in the presence of interference, and design of efficient modulation and coding schemes. This paper presents a review of recent results and research problems in high-speed underwater acoustic communications, focusing on the bandwidth-efficient phase-coherent methods. Experimental results are included to illustrate the state-of-the-art coherent detection of digital signals transmitted at 30 and 40 kb/s through a rapidly varying one-mile shallow water channel  相似文献   

6.
M-sequence waveform coding with a single long codeword has been considered as the basis for long-range underwater acoustic telemetry for one user. (An m-sequence is a periodic, binary, linear-law maximal-length sequence. If the span of the law is n, the maximal length L-2n=1). For a given law, a single m-sequence transmits a maximum of log2 (L) bits of source information per channel word. To increase the number of bits per word, families of m-sequences and Gold codes are considered and compared to a single m-sequence. A hypothetical idealized multipath channel with added white Gaussian noise is assumed. Coding using families of m-sequences is recommended because it requires a smaller bit-energy-to-noise ratio than other waveform codes to achieve an equivalent codeword error probability  相似文献   

7.
A design is presented for a system providing highly reliable command and control acoustic communications between a mother ship and a number of small fast submersibles. The small submersibles may be employed for underwater mining, exploration, bottom mapping, or military surveillance. Modulation and coding design is presented; the techniques discussed provide multiple protection against multipath and fading, high reliability, acceptable transmitted signal total time duration, simplicity, and economy. The required decision point signal-to-noise ratio (SNR) for Rayleigh fading conditions is derived for the modulation and coding design. Particular attention is paid in the receive signal processing to the Doppler (relative velocity) and Doppler variation (relative acceleration) problems inherent in a scenario with mobile endpoints. A Figure-of-Merit (FOM) calculation is provided for typical geometrical and environmental parameters. It is shown for a realistic source level that the required SNR can be achieved at long range with considerable endpoint relative motion.  相似文献   

8.
This review summarizes the concepts of seismogenic tsunami waves. Principles of short-term tsunami forecasting and tsunami recording systems are discussed. The traditional approach to describing tsunami generation by earthquakes is outlined and its drawbacks are analyzed. The main and secondary effects are distinguished which are responsible for the formation of waves by underwater earthquakes. The existing numerical codes of tsunami dynamics are described.  相似文献   

9.
The state of the art in underwater acoustic telemetry   总被引:6,自引:0,他引:6  
Progress in underwater acoustic telemetry since 1982 is reviewed within a framework of six current research areas: (1) underwater channel physics, channel simulations, and measurements; (2) receiver structures; (3) diversity exploitation; (4) error control coding; (5) networked systems; and (6) alternative modulation strategies. Advances in each of these areas as well as perspectives on the future challenges facing them are presented. A primary thesis of this paper is that increased integration of high-fidelity channel models into ongoing underwater telemetry research is needed if the performance envelope (defined in terms of range, rate, and channel complexity) of underwater modems is to expand  相似文献   

10.
Despite their potential ability to produce highly resolved images of the seabed, synthetic aperture sonars are not widely used. The primary reason for this restricted use is that most synthetic aperture systems are based on the radiation and detection of short-duration modulated pulses. Due to the low speed of sound in water, the pulse repetition frequency is low and so it has been difficult to maintain the required pulse-to-pulse phase coherence. This paper describes a new approach to synthetic aperture sonars based on continuous transmission with some form of frequency modulation. That is, a sonar that transmits and receives continuously but uses some form of frequency coding (in this case a linear frequency sweep) to determine range. Using a continuous transmission frequency modulated sonar it is possible to make a synthetic aperture sonar that can produce coherent apertures many wavelengths long. In addition to the combination of synthetic apertures and continuous transmission frequency modulation, further modifications are suggested to reduce the effect of lateral towfish movement and the effects of medium turbulence resulting in random path-length variations.  相似文献   

11.
This paper comprehensively investigates the properties of self phase modulation based optical delay systems consisting of dispersion compensation fibre and highly nonlinear fibres. It researches into the impacts of power level launched into highly nonlinear fibres, conversion wavelength, dispersion slope, modulation format and optical filter bandwidth on the overall performance of optical delay systems. The results reveal that, if the power launched into highly nonlinear fibres is fixed, the time delay generally varies linearly with the conversion wavelength, but jumps intermittently at some conversion wavelengths. However, the time delay varies semi-periodically with the power launched into highly nonlinear fibres. The dispersion slope of highly nonlinear fibres has significant influence on the time delay, especially for the negative dispersion slope. The time delay differs with modulation formats due to the different combined interaction of nonlinearity and dispersion in fibres. The bandwidth of the optical filters also greatly affects the time delay because it determines the bandwidth of the passed signal in the self phase modulation based time delay systems. The output signal quality of the overall time delay systems depends on the conversion wavelength and input power level. The optimisation of the power level and conversion wavelength to provide the best output signal quality is made at the end of this paper.  相似文献   

12.
A role of passive sonar signal processing is the detection and estimation of the parameters associated with amplitude modulated broad-band signals. An example of such signals is propeller noise. Discrete frequency lines occur at the rotational frequency of the propulsion shaft and at the blade frequency. This correspondence provides expressions for the Cramer-Rao lower bounds for the estimates of broad-band signal power, modulation level, modulation frequency, and modulation phase. It is shown that for low broad-band-signal-to-broad-band-noise ratios, the estimates of power and modulation level are uncoupled from the estimates of modulation frequency and phase  相似文献   

13.
Zheng  Yu  Zhang  Xiao-yang  Wang  Xiao-rui  Guo  Xing-xin  Li  Hong-zhi 《中国海洋工程》2019,33(6):753-761
To improve the transmission performance of XCTD channel, this paper proposes a method to measure directly and fit the channel transmission characteristics by using frequency sweeping method. Sinusoidal signals with a frequency range of 100 Hz to 10 k Hz and an interval of 100 Hz are used to measure transmission characteristics of channels with lengths of 300 m, 800 m, 1300 m, and 1800 m. The correctness of the fitted channel characteristics by transmitting square wave, composite waves of different frequencies, and ASK modulation are verified. The results show that when the frequency of the signal is below 1500 Hz, the channel has very little effect on the signal. The signal compensated for amplitude and phase at the receiver is not as good as the uncompensated signal.Alternatively, when the signal frequency is above 1500 Hz, the channel distorts the signal. The quality of signal compensated for amplitude and phase at receiver is better than that of the uncompensated signal. Thus, we can select the appropriate frequency for XCTD system and the appropriate way to process the received signals. Signals below1500 Hz can be directly used at the receiving end. Signals above 1500 Hz are used after amplitude and phase compensation at the receiving end.  相似文献   

14.
The motion response of marine structures in waves can be studied using finite-dimensional linear-time-invariant approximating models. These models, obtained using system identification with data computed by hydrodynamic codes, find application in offshore training simulators, hardware-in-the-loop simulators for positioning control testing, and also in initial designs of wave-energy conversion devices. Different proposals have appeared in the literature to address the identification problem in both time and frequency domains, and recent work has highlighted the superiority of the frequency-domain methods. This paper summarises practical frequency-domain estimation algorithms that use constraints on model structure and parameters to refine the search of approximating parametric models. Practical issues associated with the identification are discussed, including the influence of radiation model accuracy in force-to-motion models, which are usually the ultimate modelling objective. The illustration examples in the paper are obtained using a freely available MATLAB toolbox developed by the authors, which implements the estimation algorithms described.  相似文献   

15.
《Coastal Engineering》2005,52(9):793-810
In this paper we outline the development and application of a simple two-dimensional hydraulic model for use in assessments of coastal flood risk. Such probabilistic assessments typically need evaluation of many thousands of model simulations and hence computationally efficient codes of the type described here are required. The code, LISFLOOD-FP, uses a storage cell approach discretized as a regular grid and calculates the flux between cells explicitly using analytical relationships derived from uniform flow theory. The resulting saving in computational cost allows fine spatial resolution simulations of regional scale flooding problems within minutes or a few hours on a standard desktop PC. The development of the code for coastal applications is described, followed by an evaluation of its performance against four test cases representing a variety of flooding problems at different scales. For three of these cases an observed flood extent is available to compare to model predictions. In each case the model is able to match the observed shoreline to within the error of the of the observed flow, topography and validation data and outperforms a non-model flood extent prediction made using a simple Geographical Information System (GIS) technique.  相似文献   

16.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

17.
An improved coupling of numerical and physical models for simulating 2D wave propagation is developed in this paper. In the proposed model, an unstructured finite element model (FEM) based Boussinesq equations is applied for the numerical wave simulation, and a 2D piston-type wavemaker is used for the physical wave generation. An innovative scheme combining fourth-order Lagrange interpolation and Runge-Kutta scheme is described for solving the coupling equation. A Transfer function modulation method is presented to minimize the errors induced from the hydrodynamic invalidity of the coupling model and/or the mechanical capability of the wavemaker in area where nonlinearities or dispersion predominate. The overall performance and applicability of the coupling model has been experimentally validated by accounting for both regular and irregular waves and varying bathymetry. Experimental results show that the proposed numerical scheme and transfer function modulation method are efficient for the data transfer from the numerical model to the physical model up to a deterministic level.  相似文献   

18.
This paper investigates an approach to limit the fullness of ‘tuning’ provided by wave-by-wave impedance matching control of wave energy devices in irregular waves. A single analytical formulation based on the Lagrange multiplier approach of Evans [1] is used to limit the velocity amplitude while also limiting the closeness of the phase match between velocity and exciting force. The paper studies the effect of the present technique in concurrently limiting the device velocity and the required control/actuation force. Time domain application requires wave-profile prediction, which here is based on a deterministic propagation model. Also examined in the time domain is the effect of possible violation of the displacement constraint, which for many designs implies impacts at hard stops within the power take-off mechanism. Time domain simulations are carried out for a 2-body axisymmetric converter (with physical end-stops) in sea states reported for a site off the US east coast. It is found that the approach leads to effective power conversion in the less energetic sea states, while as desired, considerable muting of the optimal response is found in the larger sea states. Under the assumptions of this work, the end-stop collisions are found to have a minor effect on the power conversion. The present approach could be used to guide the design of power take-off systems so that their displacement stroke, maximum force, and resistive and reactive power limits are well-matched to the achievable performance of a given controlled primary energy converter.  相似文献   

19.
One of the most difficult challenges in shallow-water active sonar processing is false-alarm rate reduction via active classification. In impulsive-echo-range processing, an additional challenge is dealing with stochastic impulsive source variability. The goal of active classification is to remove as much clutter as possible while maintaining an acceptable detection performance. Clutter in this context refers to any non-target, threshold-crossing cluster event. In this paper, we present a clutter-reduction algorithm using an integrated pattern-recognition paradigm that spans a wide spectrum of signal and image processing-target physics, exploration of projection spaces, feature optimization, and mapping the decision architecture to the underlying good-feature distribution. This approach is analogous to a classify-before-detect strategy that utilizes multiple informations to arrive at the detection decision. After a thorough algorithm evaluation with real active sonar data, we achieved over an order of magnitude performance improvement in clutter reduction with our methodology over that of the baseline processing  相似文献   

20.
A blind estimator of the ocean acoustic channel impulse response envelope is presented. The signal model is characterized by a deterministic multipath channel excited by a highly nonstationary deterministic source signal. The time-frequency (TF) representation of the received signal allows for the separation between the channel and the source signal. The proposed estimator proceeds in two steps: First, the unstable initial arrivals allow for the estimation of the source signal instantaneous frequency (IF) by maximization of the radially Gaussian kernel distribution; then, the Wigner-Ville distribution (WV) is sequentially windowed and integrated, where the window is defined by the previously estimated IF. The integral gives the channel impulse response envelope, which turns to be an approximation to the blind conventional matched filter (MF). The blind channel estimator (CE) is applicable upon the following conditions: that the multipath channel contains at least one dominant arrival well separated from the others, and that the IF of the source signal is a one-to-one function. Results obtained on real data from the INternal TIde Measurements with Acoustic Tomography Experiments (INTIMATE'96), where the acoustic channel was driven by an linear frequency modulation signal, show that the channel's envelope detailed structure could be accurately and consistently recovered, with the correlation of the estimates ranging from 0.796 to 0.973, as compared to the MF result  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号