首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tsuneta  Saku 《Solar physics》1987,113(1-2):35-48
Solar Physics - Some X-class flares (hot thermal flares, HTF) observed with the Hinotori satellite show unique behavior: slow time variability, a compact hard X-ray source containing dense (n...  相似文献   

2.
T. N. La Rosa 《Solar physics》1990,126(1):153-175
The thermal interpretation of solar flare impulsive phase hard X-ray emission requires rapid heating of a substantial coronal volume to very high temperatures. In this study we investigate the possibility of producing such heating by current dissipation, driven by a tearing instability associated with a single uni-directional current system. Earlier research is synthesized by coupling the energy equation, including loss terms previously neglected, with an equation describing the evolution of the growing electric field. The resistivity due to the excitation of ion-cyclotron and ion-acoustic waves is computed by assuming marginal stability.It is found, for the fast tearing mode, that for initial growth rates f 0.3 s-1 (corresponding to a current channel width l 3 × 105 cm), the electron heating is offset by convective losses, resulting in a very slow temperature rise. Furthermore, hard X-ray emitting temperatures (2 × 108 K) are never realized. For the larger growth rates corresponding to smaller current channel widths, heating from 107 to 108 K can be achieved in a few seconds. However, in this regime the maximum volume that can be heated is only of order 1020 cm3, some three to five orders of magnitude less than the volume of heated material that is inferred from hard X-ray emission measures. These results suggest that in the case of the fast tearing mode a more complicated geometry involving multiple small-scale, oppositely-directed, current channels may be necessary to achieve the required heating.  相似文献   

3.
Spectral and polarization characteristics of radio emission from hot X-ray kernels are considered. It is shown that the frequency spectrum of thermal cyclotron radio emission and bremsstrahlung from these regions may contain a set of lines at cyclotron harmonics and the maximum at plasma frequency. This makes possible the diagnostics of the X-ray kernel plasma and magnetic fields according to spectral and polarization observations of microwave radio emission in solar flares.  相似文献   

4.
F. Nagai 《Solar physics》1980,68(2):351-379
A dynamical model is proposed for the formation of soft X-ray emitting hot loops in solar flares. It is examined by numerical simulations how a solar model atmosphere in a magnetic loop changes its state and forms a hot loop when the flare energy is released in the form of heat liberation either at the top part or around the transition region in the loop.When the heat liberation takes place at the top part of the loop which arches in the corona, the plasma temperature around the loop apex rises rapidly and, as the result, the downward thermal conductive flux is increased along the magnetic tube of force. Soon after the thermal conduction front rushes into the upper chromosphere, a local peak of pressure is produced near the conduction front and the chromospheric material begins to expand into the corona to form a high-temperature (107 K-3 × 107 K at the loop apex) and high-density (1010 cm–3-1011 cm–3 at the loop apex) loop. The velocity of the expanding material can reach a few hundred kilometres per second in the coronal part. The thermal conduction front also plays a role of piston pushing the chromospheric material downward and gives birth to a shock wave which propagates through the minimum temperature region into the photosphere. If, on the other hand, the heat source is placed around the transition region in the loop, the expansion of the material into the corona occurs from the beginning of the flare and the formation process of the hot loop differs somewhat from the case with the heat source at the top part of the loop.Thermal components of radiations emitted from flare regions, ranging from soft X-rays to radio wavelengths, are interpreted in a unified way by using physical quantities obtained as functions of time and position in our flare loop model as will be discussed in detail in a following paper.  相似文献   

5.
Hot regions in solar flares produce X-radiation and microwaves by thermal processes. Recent X-ray data make it possible to specify the temperature and emission measure of the soft X-ray source, by using, for instance, a combination of the 1–8 Å (peak response at about 2 keV) and the 0.5–3 Å (peak response at about 5 keV) broad-band photometers. The temperatures and emission measures thus derived satisfactorily explain the radio fluxes, within systematic errors of about a factor of 3. Comparison of 15 events with differing parameters shows that a hot solar flare region has an approximately isothermal temperature distribution. The time evolution of the correlation in a single event shows that the hot material originates in the chromosphere, rather than the corona. The density must lie between 1010 and 2 × 1011 cm–3. For an Importance 1 flare, this implies a stored energy of roughly 2 x 1030-1029 ergs. A refinement of the data will enable us to choose between conductive and radiative cooling models.  相似文献   

6.
Characteristic times for heating and cooling of the thermal X-ray plasma in solar flares are estimated from the time profile of the thermal X-ray burst and from the temperature, emission measure and over-all length scale of the flare-heated plasma at thermal X-ray maximum. The heating is assumed to be due to magnetic field reconnection, and the cooling is assumed to be due to heat conduction and radiation. Temperatures and emission measures derived from UCSD OSO-7 X-ray flare observations are used, and length scales are obtained from Big Bear large-scale Hα filtergrams for 17 small (subflare to Class 1) flares. The empirical values obtained for the characteristic times imply (1) that flares are produced by magnetic field reconnection, (2) that conduction cooling of the thermal X-ray plasma dominates radiative cooling and (3) that reconnection heating and conduction cooling of the thermal X-ray plasma are approximately in balance at thermal X-ray maximum. This model in combination with the data gives estimates for the electron number density (1010–1011 cm?3) and the magnetic field strength (10–100 G) in the thermal X-ray plasma and for the total thermal energy generated in a subflare (≈ 1030 erg for an Hα area ≈ 1 square degree) which agree with previous observational and theoretical estimates obtained by others.  相似文献   

7.
E. Schatzman 《Solar physics》1967,1(3-4):411-419
Some ideas are developed concerning solar flares which have been presented earlier by the author (Schatzman, 1966a). Emphasis is laid on the problem of energy transport; from the energy supply to the region of the optical flare, on the storage of low energy cosmic ray particles in a magnetic bottle before the beginning of the optical flare, and the mechanism which triggers both the optical flare, and the production of high-energy cosmic rays. The relation between solar and stellar flares is considered.Lecture given at Goddard Space Flight Center, November 4, 1966.  相似文献   

8.
Using the results of numerical simulations of the solar atmospheric response to heating by nonthermal electron beams during solar flares, we have calculated the spatial and temporal evolution of both (i) the direct (beam-target) nonthermal bremsstrahlung and (ii) the thermal bremsstrahlung arising from the hot plasma energized by the electron beam. Typically, we find that below a certain cross-over energy E *, the emission is dominated by the thermal component, while at higher energies the direct bremsstrahlung component becomes more important. This cross-over energy is dependent on the position within the loop, generally increasing with height.We have also investigated the dependence of the cross-over energy E * on the parameters of the electron energy input. At the time of peak electron flux injection the cross-over energy E * can, for plausible parameters, be as high as 52 keV at the top 1 pixel, and as low as 16 keV at the bottom 1 pixel. We conclude that a possible reassessment of SMM HXIS data as an indicator of the thermal or nonthermal character of the primary energy release (based primarily on the geometric properties of the hard X-ray source) is required. Our results also point to the minimum photon energy that future instruments should observe (where practical, giving due consideration to detector sensitivity) in order to be sure that, in the context of the thick-target interpretation, the nonthermal component is not swamped by the self-consistent thermal counterpart created by the beam heating.  相似文献   

9.
Solar X-ray observations from balloons and from the SMM and HINOTORI spacecraft have revealed evidence for a super-hot thermal component with a temperature of 3 × 107 K in many solar flares, in addition to the usual 10–20 × 106 K soft X-ray flare plasma. We have systematically studied the decay phase of 35 solar flare X-ray events observed by ISEE-3 during 1980. Based on fits to the continuum X-ray spectrum in the 4.8–14 keV range and to the intensity of the 1.9 Å feature of iron lines, we find that 15 (about 43%) of the analyzed events have a super-hot thermal component in the decay phase of the flare. In this paper the important properties of the super-hot thermal component in the decay phase are summarized. It is found that an additional input of energy is required to maintain the super-hot thermal components. Finally, it is suggested that the super-hot thermal component in the decay phase is created through the reconnection of the magnetic field during the decay phase of solar flares.  相似文献   

10.
Giannina Poletto 《Solar physics》1989,121(1-2):313-322
According to one of the most popular classifications, solar flares may be assigned either to the category of small short-lived events, or to the category of large, long-duration two-ribbon (2-R) flares. Even if such abroad division oversimplifies the flare phenomenon, our knowledge of the characteristics of stellar flares is so poor, that it is worthwhile to investigate the possibility of adopting this classification scheme for stellar flares as well. In particular we will analyze Einstein observations of a long duration flare on EQ Peg to establish whether it might be considered as a stellar analogy of 2-R solar events. To this end we apply to EQ Peg data a reconnection model, developed originally for solar 2-R flares, and conclude that stellar observations are consistent with model predictions, although additional information is required to identify uniquely the physical parameters of the flare region. Application of the model to integrated observations of a 2-R solar flare, for which high spatial resolution data are also available, shows, however, that future integrated observations may allow us to solve the ambiguities of the model and use it as a diagnostic tool for a better understanding of stellar flares.  相似文献   

11.
A flare model based on force-free currents in the solar atmosphere is considered. The energy of the flare is supposed to be stored as magnetic energy in the current system. If the current density exceeds a certain critical limit an over-voltage may arise in the circuit which will give rise to a rapid release of the stored energy. At the end of the paper some results yielded by the model are compared with observational evidence of flares.  相似文献   

12.
Assuming that basic plasma processes associated with magnetospheric substorms and solar flares are similar and thus assuming also that a flare ribbon is produced by the impact of field-aligned current-carrying electrons on the chromosphere, a chain of processes leading to solar flares is considered, including the dynamo process in the photospheric level in the vicinity of bipolar sunspots, the formation of a sheet current in the lower coronal level, the interruption of the sheet current, the subsequent diversion of it to the chromosphere, the development of a potential drop along magnetic field lines, the acceleration of current-carrying electrons and their impact on the chromosphere, producing a pair of flare ribbons.  相似文献   

13.
Observations using the Bent Crystal Spectrometer instrument on the Solar Maximum Mission show that turbulence and blue-shifted motions are characteristic of the soft X-ray plasma during the impulsive phase of flares, and are coincident with the hard X-ray bursts observed by the Hard X-ray Burst Spectrometer. A method for analysing the Ca xix and Fe xxv spectra characteristic of the impulsive phase is presented. Non-thermal widths and blue-shifted components in the spectral lines of Ca xix and Fe xxv indicate the presence of turbulent velocities exceeding 100 km s-1 and upward motions of 300–400 km s-1.The April 10, May 9, and June 29, 1980 flares are studied. Detailed study of the geometry of the region, inferred from the Flat Crystal Spectrometer measurements and the image of the flare detected by the Hard X-ray Imaging Spectrometer, shows that the April 10 flare has two separated footpoints bright in hard X-rays. Plasma heated to temperatures greater than 107 K rises from the footpoints. During the three minutes in which the evaporation process occurs an energy of 3.7 × 1030 ergs is deposited in the loop. At the end of the evaporation process, the total energy observed in the loop reaches its maximum value of 3 × 1030 ergs. This is consistent with the above figures, allowing for loss by radiation and conduction. Thus the energy input due to the blue-shifted plasma flowing into the flaring loop through the footpoints can account for the thermal and turbulent energy accumulated in this region during the impulsive phase.On leave from Torino University, Italy.  相似文献   

14.
15.
B. Vršnak 《Solar physics》1989,120(1):79-92
The properties and development of a high-temperature current sheet characterized by increasing merging velocity are studied and related to the early phases of solar flares. It is shown that the system can be described by the Petschek-type geometry for a wide range of merging velocities. In the diffusion region and the standing MHD shocks a certain low-frequency plasma microturbulence is generated from the very beginning of the reconnection process. We present qualitative solutions for the case of ion-acoustic turbulence in marginally stable state, which provide a comparison with observations. The increasing merging velocity leads to the appearance of the soft X-ray precursor. The precursor temperature maximum should appear during the current sheet formation, before the Petschek regime is established. In the Petschek regime the temperature of the hot plasma decreases due to the decrease of the magnetic field strength at the diffusion region boundary, while the soft X-ray radiation still increases, reaching precursor maximum for merging velocities about 1% of the external Alfvén velocity. The precursor phase ends when the value of the merging velocity surpasses the upper limit for the Petschek regime and the system enters into the pile-up regime, causing a new increase of plasma temperature and soft X-ray radiation.It is shown that Alfvén velocities in the range 800–1200 km s –1 are sufficient to explain typical soft X-ray precursors. Cases of low merging velocities and low Alfvén velocities are discussed and can be applied to describe the properties of spotless flares.  相似文献   

16.
A superposed epoch analysis of 1964–1970 solar flares shows a marked increase in flare occurrence within a day (13° of longitude) of (- +) solar sector boundaries as well as a local minimum in flare occurrence near (+ -)sector boundaries. This preference for (- +) boundaries is more noticeable for northern hemisphere flares, where these polarities match the Hale polarity law, but is not reversed in the south. Plage regions do not show such a preference.  相似文献   

17.
A theory of two-ribbon solar flares is presented which identifies the primary energy release site with the tops of the flare loops. The flare loops are formed by magnetic reconnection of a locally opened field configuration produced by the eruption of a pre-flare filament. Such eruptions are commonly observed about 15 min prior to the flare itself. It is proposed that the flare loops represent the primary energy release site even during the earliest phase of the flare, i.e., the flare loops are in fact the flare itself.Based upon the supposition that the energy release at the loop tops is in the form of Joulean dissipation of magnetic energy at the rising reconnection site, a quantitative model of the energy release process is developed based upon an analytic reconnecting magnetic field geometry believed to represent the basic process. Predicted curves of energy density vs time are compared with X-ray observations taken aboard Skylab for the events of 29 July, 13 August, and 21 August in 1973. Considering the crudity of the model, the comparisons appear reasonable. The predicted field strengths necessary to produce the observed energy density curves are also reasonable, being in the range 100–1000 G.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

18.
Priest  E. R. 《Solar physics》1983,84(1-2):33-44
We have used the 512 channel diode array and vacuum telescope at KPNO to study the photospheric intensity distribution around sunspots, for comparison with isotherms predicted by convective blocking models of heat flow. Raster scan observations of 10 spots on 18 days were carried out in 1980 and 1981. Continuum passbands of 0.25 Å width were selected to avoid contamination by weak Fraunhofer lines, whose strength is sensitive to the presence of magnetic faculae often found near spots. Our observations show no evidence of extended bright rings around the spots at the level of 1–2%, as reported in one recent study using photographic photometry and much wider passbands. But 6 of the 10 spots we measured show marginally significant (2–3σ) bright rings of peak amplitude 0.1–0.3%. We are not able to explain these rings as a result of either residual facular signal, or instrumental effects. The excess radiative flux in these rings is small compared to the missing flux in the spot umbra and penumbra. We compare the brightness of the observed rings with peak brightnesses calculated from models of heat flow around spots of various depths and radii. Even if the spot is assumed to be unrealistically shallow, a detectable bright ring requires that the effective thermal conductivity (and/or its depth gradient) in layers surrounding the spot be significantly lower than the values indicated by mixing length models of the solar convection zone.  相似文献   

19.
Statistical tests, based on the maximum-likelihood method, have been performed on flare series extending over several years. If all flares in each plage region are taken into account, a rich spectrum is obtained. If one carries out similar analysis of a reduced flare series, which includes at most one flare from each plage region, the spectrum is almost devoid of structure, and what structure does remain is not statistically significant. The inference is that solar activity does not display genuine rigid-rotation modulation, but that repeated events from individual centers of activity yield modulation which may be mistaken for rigid-rotation modulation.A test for correlation between reduced flare series for the northern and southern hemispheres gives no significant correlation. This test therefore yieds no support to the hypothesis that solar activity is modulated by planetary effects.Department of Statistics.  相似文献   

20.
We have observed 10 solar bursts during the thermal phase using the Haystack radio telescope at 22 GHz. We show that these high frequency flux observations, when compared with soft X-ray band fluxes, give useful information about the temperature profile in the flare loops. The microwave and X-ray band fluxes provide determinations of the maximum loop temperature, the total emission measure, and the index of the differential emission measure (q(T)/T = cT–1). The special case of an isothermal loop ( = ) has been considered previously by Thomas et al. (1985), and we confirm their diagnostic calculations for the GOES X-ray bands, but find that the flare loops we observed departed significantly from the isothermal regime. Our results ( = 1–3.5) imply that, during the late phases of flares, condensation cooling ( 3.5) competes with radiative cooling ( 1.5). Further, our results appear to be in good agreement with previous deductions from XUV rocket spectra ( 2–3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号