首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holocene stromatolites are described from Lake Walyungup, a coastal hyposaline lake in south-western Australia. At summer low water, this groundwater-fed depression comprises two permanent shallow water bodies and an ephemeral southern pool, set within an areally extensive littoral zone of variably cemented carbonate crust. Up to 5 m of organic-rich carbonate mud has been deposited within each of these basins in less than 7000 years. Stromatolites rim the water bodies with individual columns up to 2 m tall. Stromatolite-capped tepee structures in subparallel alignment are widespread in the littoral crust, suggesting a linkage between stromatolite growth and zones of groundwater discharge. Lake Walyungup stromatolites, regardless of external morphology and setting, are coarsely laminated and have aragonitic mesoclot microfabrics. These microfabrics are similar to those from lithified portions of active thrombolitic microbialites from nearby Lake Clifton. Hydromagnesite is a minor to subdominant phase (up to 47 wt%) of the carbonate mineral assemblage in Lake Walyungup. It occurs mainly in the littoral zone as a diagenetic replacement of precursor aragonite, particularly within the mesoclot fabric of stromatolites, but also in sediments (strandline and dune sand, crusts) derived mainly from erosion of stromatolites. In contrast with nonreplaced and impermeable inorganic aragonitic cements, stromatolite mesoclots are microper- meable. Micropermeability is inferred to facilitate hydromagnesite diagenesis. Dolomite is also present in minor amounts as a pore fill in stromatolites, and as a subdominant to dominant (up to 100 wt%) phase in thin, mudcracked micrite layers within the crust package. The layered dolomite may be precipitated directly from the lake water. Major element abundance of the lake water is: Na+ > Mg2+ » K+ > Ca2+ for cations, and Cl? » SO42? ≈ HCO3? > CO32? for anions. Compared to other nearby coastal lakes, Lake Walyungup has a high pH (> 9·0), and an extremely high molar Mg/Ca ratio of > 90. Groundwater in the area has a Mg/Ca ratio generally less than 1. The unusual Mg/Ca ratio in Lake Walyungup is partially a result of in-lake processes with additional minor contribution of Mg2+ sourced from basal marine sand because no Mg-rich bedrock source has been found in the region.  相似文献   

2.
ABSTRACT The middle Miocene sedimentary fill of the Calatayud Basin in north‐eastern Spain consists of proximal to distal alluvial fan‐floodplain and shallow lacustrine deposits. Four main facies groups characteristic of different sedimentary environments are recognized: (1) proximal and medial alluvial fan facies that comprise clast‐supported gravel and subordinate sandstone and mudstone, the latter exhibiting incipient pedogenic features; (2) distal alluvial fan facies, formed mainly of massive mudstone, carbonate‐rich palaeosols and local carbonate pond deposits; (3) lake margin facies, which show two distinct lithofacies associations depending on their distribution relative to the alluvial fan system, i.e. front (lithofacies A), comprising massive siliciclastic mudstone and tabular carbonates, or lateral (lithofacies B) showing laminated and/or massive siliciclastic mudstone alternating with tabular and/or laminated carbonate beds; and (4) mudflat–shallow lake facies showing a remarkable cyclical alternation of green‐grey and/or red siliciclastic mudstone units and white dolomitic carbonate beds. The cyclic mudflat–shallow lake succession, as exposed in the Orera composite section (OCS), is dominantly composed of small‐scale mudstone–carbonate/dolomite cycles. The mudstone intervals of the sedimentary cycles are interpreted as a result of sedimentation from suspension by distal sheet floods, the deposits evolving either under subaerial exposure or water‐saturated conditions, depending on their location on the lacustrine mudflat and on climate. The dolomite intervals accumulated during lake‐level highstands with Mg‐rich waters becoming increasingly concentrated. Lowstand to highstand lake‐level changes indicated by the mudstone/dolomite units of the small‐scale cycles reflect a climate control (from dry to wet conditions) on the sedimentation in the area. The spatial distribution of the different lithofacies implies that deposition of the small‐scale cycles took place in a low‐gradient, shallow lake basin located in an interfan zone. The development of the basin was constrained by gradual alluvial fan aggradation. Additional support for the palaeoenvironmental interpretation is derived from the isotopic compositions of carbonates from the various lithofacies that show a wide range of δ18O and δ13C values varying from ?7·9 to 3·0‰ PDB and from ?9·2 to ?1·7‰ PDB respectively. More negative δ18O and δ13C values are from carbonate‐rich palaeosols and lake‐margin carbonates, which extended in front of the alluvial fan systems, whereas more positive values correspond to dolomite beds deposited in the shallow lacustrine environment. The results show a clear trend of δ18O enrichment in the carbonates from lake margin to the centre of the shallow lake basin, thereby also demonstrating that the lake evolved under hydrologically closed conditions.  相似文献   

3.
柴达木盆地西部地区古近系和新近系湖相碳酸盐岩主要分布于下干柴沟组上段到油砂山组,其中,下干柴沟组上段和上干柴沟组的碳酸盐岩更发育。碳酸盐岩主要岩石类型有泥晶灰岩、藻灰岩和颗粒灰岩等三大类,此外,还普遍发育由石灰质、白云质和陆源碎屑等3种组分构成的混积岩。碳酸盐岩沉积相可划分为滨湖灰泥坪、滨湖藻坪、浅湖颗粒滩、浅湖藻丘以及半深湖泥灰岩相。滨湖灰泥坪的主要岩石类型有泥晶灰岩、含陆屑泥晶灰岩、陆屑泥晶灰岩以及陆屑泥灰岩等;滨湖藻坪为藻泥晶灰岩、藻纹层灰岩、含陆屑藻泥晶灰岩;浅湖颗粒滩有亮晶或泥微晶的鲕粒灰岩、生屑灰岩和内碎屑灰岩,其次为含陆屑颗粒灰岩;浅湖藻丘为藻叠层灰岩、藻团块灰岩、藻泥晶灰岩和含陆屑藻泥晶灰岩;而半深湖泥灰岩相的主要岩石类型为泥晶灰岩、泥灰岩以及含少量陆屑泥和粉砂的泥晶灰岩或泥灰岩。碳酸盐岩沉积相表现出很强的由西南向东北的迁移性。  相似文献   

4.
The Bonneville Basin is a continental lacustrine system accommodating extensive microbial carbonate deposits corresponding to two distinct phases: the deep Lake Bonneville (30 000 to 11 500 14C bp ) and the shallow Great Salt Lake (since 11 500 14C bp ). A characterization of these microbial deposits and their associated sediments provides insights into their spatio‐temporal distribution patterns. The Bonneville phase preferentially displays vertical distribution of the microbial deposits resulting from high‐amplitude lake level variations. Due to the basin physiography, the microbial deposits were restricted to a narrow shoreline belt following Bonneville lake level variations. Carbonate production was more efficient during intervals of relative lake level stability as recorded by the formation of successive terraces. In contrast, the Great Salt Lake microbial deposits showed a great lateral distribution, linked to the modern flat bottom configuration. A low vertical distribution of the microbial deposits was the result of the shallow water depth combined with a low amplitude of lake level fluctuations. These younger microbial deposits display a higher diversity of fabrics and sizes. They are distributed along an extensive ‘shore to lake’ transect on a flat platform in relation to local and progressive accommodation space changes. Microbial deposits are temporally discontinuous throughout the lake history showing longer hiatuses during the Bonneville phase. The main parameters controlling the rate of carbonate production are related to the interaction between physical (kinetics of the mineral precipitation, lake water temperature and runoff), chemical (Ca2+, Mg2+ and HCO3? concentrations, Mg/Ca ratio, dilution and depletion) and/or biological (trophic) factors. The contrast in evolution of Lake Bonneville and Great Salt Lake microbial deposits during their lacustrine history leads to discussions on major chemical and climatic changes during this interval as well as the role of physiography. Furthermore, it provides novel insights into the composition, structure and formation of microbialite‐rich carbonate deposits under freshwater and hypersaline conditions.  相似文献   

5.
Lake Estanya is a small (19 ha), freshwater to brackish, monomictic lake formed by the coalescence of two karstic sinkholes with maximum water depths of 12 and 20 m, located in the Pre‐Pyrenean Ranges (North‐eastern Spain). The lake is hydrologically closed and the water balance is controlled mostly by groundwater input and evaporation. Three main modern depositional sub‐environments can be recognized as: (i) a carbonate‐producing ‘littoral platform’; (ii) a steep ‘talus’ dominated by reworking of littoral sediments and mass‐wasting processes; and (iii) an ‘offshore, distal area’, seasonally affected by anoxia with fine‐grained, clastic sediment deposition. A seismic survey identified up to 15 m thick sedimentary infill comprising: (i) a ‘basal unit’, seismically transparent and restricted to the depocentres of both sub‐basins; (ii) an ‘intermediate unit’ characterized by continuous high‐amplitude reflections; and (iii) an ‘upper unit’ with strong parallel reflectors. Several mass‐wasting deposits occur in both sub‐basins. Five sediment cores were analysed using sedimentological, microscopic, geochemical and physical techniques. The chronological model for the sediment sequence is based on 17 accelerator mass spectrometry 14C dates. Five depositional environments were characterized by their respective sedimentary facies associations. The depositional history of Lake Estanya during the last ca 21 kyr comprises five stages: (i) a brackish, shallow, calcite‐producing lake during full glacial times (21 to 17·3 kyr bp ); (ii) a saline, permanent, relatively deep lake during the late glacial (17·3 to 11·6 kyr bp ); (iii) an ephemeral, saline lake and saline mudflat complex during the transition to the Holocene (11·6 to 9·4 kyr bp ); (iv) a saline lake with gypsum‐rich, laminated facies and abundant microbial mats punctuated by periods of more frequent flooding episodes and clastic‐dominated deposition during the Holocene (9·4 to 0·8 kyr bp ); and (v) a deep, freshwater to brackish lake with high clastic input during the last 800 years. Climate‐driven hydrological fluctuations are the main internal control in the evolution of the lake during the last 21 kyr, affecting water salinity, lake‐level changes and water stratification. However, external factors, such as karstic processes, clastic input and the occurrence of mass‐flows, are also significant. The facies model defined for Lake Estanya is an essential tool for deciphering the main factors influencing lake deposition and to evaluate the most suitable proxies for lake level, climate and environmental reconstructions, and it is applicable to modern karstic lakes and to ancient lacustrine formations.  相似文献   

6.
The non-marine Campins Basin developed in the Oligocene, during a period of early rifting of the Catalan Coastal Ranges. Lacustrine deposits, interbedded between two alluvial units, comprise shallow and deep lacustrine facies. The lower, shallow lacustrine facies are made up of microbialite buildups and thin limestone beds. In the studied area, these facies are overlain by deep lacustrine facies which consist of alternations of several, metre-thick carbonate- and mudstone-dominated intervals. In addition to calcite, which is characteristic of the shallow lacustrine facies, aragonite and abundant dolomite are present in the deep lacustrine facies. This mineralogical change in the sequence reflects an overall increase in the Mg/Ca ratio of the lake waters. The deep lacustrine sequences are interpreted as having formed in a hydrologically closed basin that was subject to changes in the Mg/Ca ratio of the water, probably related to variations in the evaporation/precipitation rate. The sedimentological, mineralogical and isotopic characteristics of the Campins Basin dolomites suggest that, in general, they are primary in origin. The stable isotope data show an approximate covariance between δ13C and δ18O in the lower shallow lacustrine carbonates (calcite) which suggests that they formed during the onset of closure of the lake. The δ13C and δ18O values of the deep lacustrine carbonates display three different clusters that are roughly related to the carbonate mineralogy. Normalisation with respect to calcite of the isotopic compositions of dolomite and aragonite from the deep lacustrine carbonates allows the integration of all these isotope values into one covariant trend. The sequential appearance of different carbonate minerals and the isotopic covariant trend may indicate an overall evaporative concentration of the lake waters. The change in slope of the covariant trend for the isotope values between the shallow and the deep lacustrine carbonates might reflect the change in the waterbody morphology recorded in the basin fill sequence.  相似文献   

7.
Lake Chungará (18°15′S, 69°09′W, 4520 m above sea‐level) is the largest (22·5 km2) and deepest (40 m) lacustrine ecosystem in the Chilean Altiplano and its location in an active volcanic setting, provides an opportunity to evaluate environmental (volcanic vs. climatic) controls on lacustrine sedimentation. The Late Quaternary depositional history of the lake is reconstructed by means of a multiproxy study of 15 Kullenberg cores and seismic data. The chronological framework is supported by 10 14C AMS dates and one 230Th/234U dates. Lake Chungará was formed prior to 12·8 cal kyr bp as a result of the partial collapse of the Parinacota volcano that impounded the Lauca river. The sedimentary architecture of the lacustrine succession has been controlled by (i) the strong inherited palaeo‐relief and (ii) changes in the accommodation space, caused by lake‐level fluctuations and tectonic subsidence. The first factor determined the location of the depocentre in the NW of the central plain. The second factor caused the area of deposition to extend towards the eastern and southern basin margins with accumulation of high‐stand sediments on the elevated marginal platforms. Synsedimentary normal faulting also increased accommodation and increased the rate of sedimentation in the northern part of the basin. Six sedimentary units were identified and correlated in the basin mainly using tephra keybeds. Unit 1 (Late Pleistocene–Early Holocene) is made up of laminated diatomite with some carbonate‐rich (calcite and aragonite) laminae. Unit 2 (Mid‐Holocene–Recent) is composed of massive to bedded diatomite with abundant tephra (lapilli and ash) layers. Some carbonate‐rich layers (calcite and aragonite) occur. Unit 3 consists of macrophyte‐rich diatomite deposited in nearshore environments. Unit 4 is composed of littoral sediments dominated by alternating charophyte‐rich and other aquatic macrophyte‐rich facies. Littoral carbonate productivity peaked when suitable shallow platforms were available for charophyte colonization. Clastic deposits in the lake are restricted to lake margins (Units 5 and 6). Diatom productivity peaked during a lowstand period (Unit 1 and subunit 2a), and was probably favoured by photic conditions affecting larger areas of the lake bottom. Offshore carbonate precipitation reached its maximum during the Early to Mid‐Holocene (ca 7·8 and 6·4 cal kyr bp ). This may have been favoured by increases in lake solute concentrations resulting from evaporation and calcium input because of the compositional changes in pyroclastic supply. Diatom and pollen data from offshore cores suggest a number of lake‐level fluctuations: a Late Pleistocene deepening episode (ca 12·6 cal kyr BP), four shallowing episodes during the Early to Mid‐Holocene (ca 10·5, 9·8, 7·8 and 6·7 cal kyr BP) and higher lake levels since the Mid‐Holocene (ca 5·7 cal kyr BP) until the present. Explosive activity at Parinacota volcano was very limited between c. >12·8 and 7·8 cal kyr bp . Mafic‐rich explosive eruptions from the Ajata satellite cones increased after ca 5·7 cal kyr bp until the present.  相似文献   

8.
下扬子盆地石炭纪的岩石学特征及沉积相   总被引:5,自引:0,他引:5  
位于扬子板块东部的下扬子盆地,在石炭纪时,为被动大陆边缘的陆表海沉积,陆源碎屑来自于北边的胶南古陆和南边的江南古陆东延部分─—皖浙赣古陆。石炭系分为上、下两统。早石炭世,盆地南部宣城、广德等地主要发育碎屑岩,中部巢县、南京一带以及北部滨海、洪泽一带为碎屑岩和碳酸盐岩沉积。从南往北,金陵期从滨岸碎屑岩相→开阔海台地碳酸盐岩相→潮坪碳酸盐岩和碎屑岩相;高骊山期为滨岸平原沼泽碎屑岩相→浅海陆棚碎屑岩相→海岸萨布哈白云岩、石膏、碎屑岩相;和州期盆地南部隆起,中部到北部为礁及礁后泻湖一潮坪碳酸盐岩相→开阔海台地碳酸盐相。晚石炭世主要是碳酸盐沉积,黄龙期从滨岸石英砾岩相→潮坪白云岩相→开阔海台地碳酸盐岩相;船山期是黄龙期开阔海台地碳酸盐岩相的继续,以发育核形石生物碎屑颗粒岩为特征。整个盆地的岩相带均以NEE—NE方向展布。  相似文献   

9.
A significant portion of calcium carbonate is deposited in lake sediments as a result of biological processes related to the photosynthetic activity of phytoplankton in the pelagic realm and, in addition, macrophytes in the littoral zone. Lake Wigry, one of the largest lakes in Poland (north‐east Poland), is characterized by: (i) carbonate sediments with a CaCO3 content exceeding 80% within the littoral zone; and (ii) large areas of submerged vegetation dominated by charophytes (macroscopic green algae, Characeae family). It is claimed that charophytes are highly effective in utilizing HCO3? and forming thick CaCO3 encrustations. Thus, this study was aimed at evaluating the CaCO3 production by dense Chara stands overgrowing the lake bottom reaching a depth of 4 m. In late July 2009, the fresh and dry mass of plants, the percentage contribution of calcium carbonate and the production of CaCO3 per 1 m2 were investigated along three transects at three depths (1 m, 2 m and 3 m, with each sample area equal to 0·0625 m2) per transect. The composition and structure of phytoplankton and the physico‐chemical properties of the water analysed in both the littoral and pelagic zones served as the environmental background and demonstrated moderately low fertility in the lake. The greatest dry plant mass exceeded 1000 g m?2 and CaCO3 encrustations constituted from 59% to over 76% of the charophyte dry weight. Thus, the maximum and average values of carbonates precipitated by charophytes were 685·5 and 438 g m?2, respectively, which exceeded previously reported results. A correlation of carbonate production with the depth of Chara stands was detected, and intermediate depths offered the most favourable conditions for carbonate precipitation (589 g m?2 on average). As precipitated carbonates are ultimately stored in bottom deposits, the results highlight the significance of charophytes in lacustrine CaCO3 sedimentation.  相似文献   

10.
笔者通过关键井的岩性,测井相和地震相的研究,认为东营凹陷广北地区的下第三系沙四段为滨湖亚相的砂坝,砂泥混合滩,泥滩等微相以及浅湖亚相的远砂坝,席状砂,浅湖泥等微相构成的滨湖沉积体系,由老到新的垂向上沉积演化为浅湖亚相(ES^64)-滨湖亚相(ES^34,ES^44,ES^54)-浅湖亚相(ES^14,ES^24),反映出水进-水退-水进的沉积旋回,通过地震剖面的对比和地震相的解释,建立和各沉积微相与地震相对应关系,探索不同沉积微相砂体中油气的富集规律。  相似文献   

11.
Palaeogene passive margin sediments on the US mid‐Atlantic coastal plain provide valuable insight into facies interaction and distribution on mixed carbonate–siliciclastic shelves. This study utilizes well cuttings, outcrop, core, and seismic data to document temporal and spatial variations in admixed bryozoan‐rich skeletal carbonates and sandy siliciclastic units that were deposited on a humid passive margin located in the vicinity of a major marine transition zone. This zone was situated between north‐flowing, warm waters of the ancestral Gulf Stream (carbonate dominated settings) and south‐flowing, cold waters of the ancestral Labrador Current (siliciclastic dominated settings). Some degree of mixing of carbonates and siliciclastics occurs in all facies; however, siliciclastic‐prone sediments predominate in nearshore settings, while carbonate‐prone sediments are more common in more open marine settings of the inner shelf break and deep shelf. A distinctive dual‐break shelf depositional profile originated following a major Late Cretaceous to Palaeocene transgression that drowned the earlier shallow platform. This profile was characterized by prominent mid‐shelf break dividing the shallow shelf from the deep shelf and a major continental shelf/slope break. Incomplete filling of available accommodation space during successive buildup of the shallow shelf preserved the topographic break on this passive margin. Storm wave base also contributed to the preservation of the dual‐break shelf geometry by beveling shallow shelf sediments and transporting them onto and seaward of the mid‐shelf break. Sediment fines in deep shelf facies were produced in place, transported downdip from the shallow shelf by storm ebb currents and boundary currents, and reworked from adjacent areas of the deep shelf by strike‐parallel boundary currents. Regional climate and boundary currents controlled whether carbonate or siliciclastic material was deposited on the shelf, with warmer waters and more humid climates favouring carbonate deposition and cooler, more arid conditions favouring glaucony and siliciclastic dominated deposition. Continuous wave and current sweeping of the shallow shelf favoured deposition of mud‐lean facies across much of the shallow shelf. Skeletal components in much of the carbonate‐rich strata formed in warm, nutrient‐rich subtropical waters, as indicated by widespread occurrences of larger benthic foraminifera and molluscan assemblages. These indicators of warm water deposition within the bryozoan‐mollusk‐rich carbonate assemblage on this shelf provide an example of a warm water bryomol assemblage; such facies generally are associated with cooler water depositional settings.  相似文献   

12.
Relatively pure lacustrine carbonates referred to as marl are being deposited in Littlefield Lake, central Michigan, a hard-water lake with little terrigenous clastic influx. Thick accumulations of marl form both progradational marl benches along lake margins, and islands or lakemounts in the lake centre. Marl benches develop flat platforms up to 20 m wide in very shallow water and steeply inclined slopes, up to 30°, extending into deep water. The flat landward platform is frequently covered by algal pisoliths while the upper portion of the lakeward-sloping bottom is overgrown by Chara which in the summertime becomes thickly encrusted with low-magnesian calcite. Marl islands are flat-topped features that formed over relict highs on Pleistocene drift which underlies the lake basin. These are fringed by marl benches identical to those found along lake margins. Marl benches are composed of four units: two thin facies deposited on the shallow-water bench platform and two thicker faces deposited on the bench slope developed in moderate water depths. These in turn overlie a fifth facies deposited in deep water. A coarsening-upward sequence is developed in these sediments as a result of both mechanical sorting, and primary production of carbonate sand and gravel in shallow water. In addition to facies sequences and size grading, trends upsection of increasing carbonate content and decreasing insoluble content may serve to identify temperate-region lacustrine carbonate deposits in the rock record.  相似文献   

13.
The Murray Supergroup records temperate‐water carbonate deposition within a shallow, mesotrophic, Oligo‐Miocene inland sea protected from high‐energy waves and swells of the open ocean by a granitic archipelago at its southern margin. Rocks are very well preserved and exposed in nearly continuous outcrop along the River Murray in South Australia. Most facies are rich in carbonate silt, contain a background assemblage of gastropods (especially turritellids) and infaunal bivalves, and are packaged on a decimetre‐scale defined by firmground and hardground omission surfaces. Bioturbation is pervasive and overprinted, resulting in rare preservation of physical sedimentary structures. Facies are grouped into four associations (large foraminiferan–bryozoan, echinoid–bryozoan, mollusc and clay facies) interpreted to represent shallow‐water (<50 m) deposition under progressively higher trophic resource levels (from low mesotrophy to eutrophy), and restricted marine conditions from relatively offshore to nearshore regions. A large‐scale shift from high‐ to low‐mesotrophic conditions within lower Miocene strata reflects a change in climate from wet to seasonally dry conditions and highlights the influence terrestrially derived nutrients had upon this shallow, land‐locked sea. Overall, low trophic resource levels during periods of seasonally dry climate resulted in a deepening of the euphotic zone, a widespread proliferation of foraminiferan photozoan fauna and a relatively high carbonate productivity. Inshore, heterozoan facies became progressively muddier and restricted towards the shoreline. In contrast, periods of wet climate led to rising trophic resource levels, resulting in a shallowing of the euphotic zone, a decrease in epifaunal and seagrass cover and widespread development of a mostly heterozoan biota dominated by infaunal echinoids. Rates of carbonate production and accumulation were relatively low. The Murray Basin is best described as an epeiric ramp. Wide facies belts developed in a shallow sea on a low‐angled slope reaching many hundreds of kilometres in length. Grainy shoal and back‐barrier facies were absent. Internally generated waves impinged the sea floor in offshore regions and, because of friction along a wide and shallow sea floor, created a low‐energy expanse of waters across the proximal ramp. Storms were the dominating depositional process capable of disrupting the entire sea floor.  相似文献   

14.
Continental carbonates of Quaternary age in southern Italy commonly exhibit the facies of calcareous tufa, often reported as related to shallow aquifers fed by meteoric waters and to organic processes. A close spatial relationship exists between the mappable tufa deposits and major Quaternary extensional faults. With respect to the Ca‐Mg‐HCO3 composition of limestone aquifers’ springs, tufa‐depositing springs exhibit higher salinity and alkalinity, are slightly warmer, have lower pH and are enriched in SO4 and CO2. Their δ13C values are systematically positive and compatible with a deep‐seated carbon source. A clear input of soil‐derived organic carbon is indicated only for small, non‐mappable tufas deposited by perched springs. The dataset indicates that the large tufa deposits owe their origin to a supplementary source of CO2 advected by degassing through active faults, as a necessary prerequisite for inducing a rise of total dissolved salts and alkalinity. Meteoric waters that have come from a shallow aquifer are able to precipitate only limited amount of carbonates.  相似文献   

15.
A. Sáez  L. Cabrera 《Sedimentology》2002,49(5):1073-1094
ABSTRACT A small, closed, lacustrine system developed during the restraining overstep stages of the Oligocene As Pontes strike‐slip basin (Spain). The increase in basin accommodation and the headward spread of the drainage, which increased the water input, triggered a change from shallow, holomictic to deeper, meromictic conditions. The lower, shallow, lacustrine assemblage consists of mudstone–carbonate cycles recording lacustrine–palustrine ramp deposition in a saline lake. High Sr content in some early diagenetic calcites suggests that aragonite and calcite made up the primary carbonate muds. Early dolomitization took place together with widespread pedogenic activity. The upper, deep, freshwater, lacustrine assemblage includes bundles of carbonate–clay rhythmites and fine‐grained turbidite beds. Primary calcite and diagenetic siderite make up the carbonate laminae. The Mg content of the primary carbonates records variations in Mg/Ca ratios in lacustrine waters. δ18O and δ13C covariance trends in calcite reinforce closed drainage conditions. δ18O data indicate that the lake system changed rapidly from short‐lived isotopically light periods (i.e. from seasonal to pluriannual) to longer steady‐state periods of heavier δ18O (i.e. from pluriannual to millennial). The small δ13C changes in the covariant trends were caused by dilute inflow, changing the contributions of dissolved organic carbon in the system and/or internal variations in lacustrine organic productivity and recycling. In both shallow and deep carbonate facies, sulphate reduction and methanogenesis may account, respectively, for the larger negative and positive δ13C shifts recorded in the early diagenetic carbonates (calcite, dolomite and siderite). The lacustrine system was very susceptible to high‐frequency, climatically forced water balance variations. These climatic oscillations interfered with the low‐frequency tectonic and morphological changes in the basin catchment. This resulted in the superposition of high‐order depositional, mineralogical and geochemical cycles and rhythms on the lower order lacustrine infill sequence.  相似文献   

16.
Eclogites from the Jæren nappe in the Caledonian orogenic belt of SW Norway contain aragonite, magnesite and dolomite in quartz‐rich layers. The carbonates comprise composite grains that occur interstitially between phases of the eclogite facies assemblage: garnet + omphacite + zoisite + clinozoisite + quartz + apatite + rutile ± dolomite ± kyanite ± phengite. Pressure and temperature conditions for the main eclogite stage are estimated to be 2.3–2.8 GPa and 585–655 °C. Published ultrahigh pressure (UHP) experiments on CaO‐, MgO‐ and CO2‐bearing systems have shown that equilibrium assemblages of aragonite and magnesite form as a result of dolomite breakdown at pressures >5 GPa. As a result, recognition of magnesite and aragonite in eclogite facies rocks has been used as an indicator for UHP conditions. However, petrological testing showed that the samples studied here have not experienced such conditions. Aragonite and magnesite show disequilibrium textures that indicate replacement of magnesite by aragonite. This process is inferred to have occurred via a coupled dissolution–precipitation reaction. The formation of aragonite is constrained to eclogite facies conditions, which implies that the studied rocks have experienced metasomatic, reactive fluid flow during their residence at high pressure (HP) conditions. During decompression, the bimineralic carbonate aggregates were overgrown by rims of dolomite, which partially reacted with aragonite to form Mg‐calcite. The well‐preserved carbonate assemblages and textures observed in the studied samples provide a detailed record of the reaction series that affected the rocks during and after their residence at P–T conditions near the coesite stability field. Recognition of the HP mechanism of magnesite replacement by aragonite provides new insight into metasomatic processes that occur in subduction zones and illustrates how fluids facilitate HP carbonate reactions that do not occur in dry systems at otherwise identical physiochemical conditions. This study documents that caution is warranted in interpreting aragonite‐magnesite associations in eclogite facies rocks as evidence for UHP metamorphic conditions.  相似文献   

17.
末次间冰期以来新疆巴里坤湖蒸发盐的沉积环境记录   总被引:16,自引:9,他引:16       下载免费PDF全文
沉积物岩芯的碳酸盐、石膏等蒸发盐含量和矿物组成的证据显示了新疆巴里坤湖末次间冰期以来一直是一个水位变化频繁的浅水盐湖,有时甚至为间歇式的湖泊,约在34000aB.P.前后巴里坤湖沉积相发生了显著的变化,34000aB.P.之前为泥坪-湖滨相沉积,34000aB.P.之后为成湖相沉积。尽管我们对巴里坤湖34000aB.P.前后的沉积相变难以理解,但是长期处于浅水状态的巴里坤湖沉积物中蒸发盐的含量和矿物组成仍然与气候变化密切相关。在泥坪-湖滨相形成的碳酸盐中白云石相对的增加是地表强烈蒸发的结果。以石膏为主的蒸发盐含量增加是温度和降水增加所致,而其含量减少则是冰川前进致使补给水矿化度降低造成的。这使我们获得了该区古气候变化并不服从于冰期与雨期同步模式的信息。  相似文献   

18.
聂宗笙 《地学前缘》2019,26(4):259-272
内蒙古河套盆地为受断裂控制形成的新生代断陷盆地,盆地中积水成湖,称河套古湖。晚更新世时期,河套古湖为继承性闭塞型断陷湖。上更新统主要为湖泊沉积体系,地层划分建组为上部东河村组、中部万水泉组、下部达拉特组。达拉特组在湖盆连续沉降条件及半深湖深湖中硫酸盐型、碳酸盐型湖水交替环境下沉积形成。万水泉组在湖盆沉降速率与沉积速率大体平衡条件及浅湖半深湖中半咸水湖环境下沉积形成。东河村组在湖盆沉降速率小于沉积速率条件下以及半咸水湖、局部时期为碳酸盐湖环境下的滨浅湖中沉积形成。晚更新世末期,河套古湖处于大湖水期,晋陕内蒙古交界处河流袭夺、河套盆地北侧山前断裂强烈活动和超强地震导致河套古湖湖水快速外泄,银川盆地、河套盆地、晋陕峡谷贯通而形成今日黄河河道。  相似文献   

19.
Ma, L., Wu, J., Yu, H., Zeng, H. & Abuduwaili, J. 2011: The Medieval Warm Period and the Little Ice Age from a sediment record of Lake Ebinur, northwest China. Boreas, Vol. 40, pp. 518–524. 10.1111/j.1502‐3885.2010.00200.x. ISSN 0300‐9483. Lake Ebinur, Xinjiang, northwest China, is a closed‐basin, shallow lake that responds rapidly to changes in the ratio of precipitation to evaporation (P/E). A sediment record spanning the last 1500 years was obtained from the lake. We used δ18O and δ13C in bulk carbonate, and δ13C of organic matter in the lake sediments to infer environmental changes in the Ebinur region during the Medieval Warm Period (MWP) and the Little Ice Age (LIA). Decreased δ18O values of carbonate largely reflect an enhanced P/E ratio within the basin and a higher lake level. Bulk carbonates with higher δ13C values are deposited during periods when lake‐water pH is high, while lower δ13C values reflect a lower pH in the water column. δ13C in organic matter is associated with the amount of precipitation. The results indicate that the Ebinur region experienced a dry MWP and a wet LIA, although the MWP and LIA were warm and cold periods, respectively, as expected. Furthermore, the MWP and LIA were hydrologically complex and cannot be characterized as uniformly wet or dry. Peak wet periods are recorded in the sediment core around AD 1000, 1400 and 1700, and a dry event also occurred in the period of temperature change within the LIA (cold to warm around AD 1500). A comparison of the Lake Ebinur data with proxy records for the strength of the Siberian High and climate proxy indicators suggests that precipitation in the Ebinur region was a consequence, in part, of an enhanced Siberian High during the LIA.  相似文献   

20.
Abstract Barremian and Aptian shallow‐water carbonate facies (uppermost Lekhwair, Kharaib and Shuaiba Formations) are described from outcrops in northern Oman. Based on facies analysis and bedding pattern, three orders of depositional sequences are defined (third to fifth order) and correlated between sections. Over the course of three third‐order sequences, covering the Barremian to Lower Aptian, a third‐order depositional pattern is documented that consists of a succession of three distinct faunal assemblages: discoidal orbitolinids and calcareous algae were deposited during early transgression; microbialites and microencrusters dominate the late transgressive to early highstand facies; and a rudist‐ and miliolid‐dominated facies is typical of the highstand. This ecological succession was controlled largely by palaeoenvironmental changes, such as trophic level and clay influx, rather than sedimentological factors controlled by variations in accommodation space. Orbitolinid beds and carbonates formed by microbialites and microencrusters seem to be the shallow‐water carbonate response to global changes affecting Late Barremian to Aptian palaeoclimate and palaeoceanography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号