首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Conditions of the prograde, peak‐pressure and part of the decompressional P–T path of two Precambrian eclogites in the eastern Sveconorwegian orogen have been determined using the pseudosection approach. Cores of garnet from a Fe–Ti‐rich eclogite record a first prograde and syn‐deformational stage along a Barrovian gradient from ~670 °C and 7 kbar to 710 °C and 8.5 kbar. Garnet rims grew during further burial to 16.5–19 kbar at ~850–900 °C, along a steep dP/dT gradient. The pseudosection model of a kyanite‐bearing eclogite sample of more magnesian bulk composition confirms the peak conditions. Matrix reequilibration associated with subsequent near‐isothermal decompression and partial exhumation produced plagioclase‐bearing symplectites replacing kyanite and clinopyroxene at an estimated 850–870 °C and 10–11 kbar. The validity of the pseudosections is discussed in detail. It is shown that in pseudosection modelling the fractionation of FeO in accessory sulphides may cause a significant shift of field boundaries (here displaced by up to 1.5 kbar and 70 °C) and must not be neglected. Fast burial, exhumation and subsequent cooling are supported by the steepness of both the prograde and the decompressional P–T paths as well as the preservation of garnet growth zoning and the symplectitic reaction textures. These features are compatible with deep tectonic burial of the eclogite‐bearing continental crust as part of the underthrusting plate (Eastern Segment, continent Baltica) in a collisional setting that led to an effectively doubled crustal thickness and subsequent exhumation of the eclogites through tectonic extrusion. Our results are in accordance with regional structural and petrological relationships, which demonstrate foreland‐vergent partial exhumation of the eclogite‐bearing nappe along a basal thrust zone and support a major collisional stage at c. 1 Ga. We argue that the similarities between Sveconorwegian and Himalayan eclogite occurrences emphasize the modern style of Grenvillian‐aged tectonics.  相似文献   

4.
Re–Os dating of molybdenite from small deposits is used to define crustal domains exhibiting ductile versus brittle behaviour during gravitational collapse of the Sveconorwegian orogen in SW Scandinavia. A 1019 ± 3 Ma planar quartz vein defines a minimum age for brittle behaviour in central Telemark. In Rogaland–Vest Agder, molybdenite associated with deformed quartz and pegmatite veins formed between 982 ± 3 and 947 ± 3 Ma in the amphibolite-facies domain (three deposits) and between 953 ± 3 and 931 ± 3 Ma west of the clinopyroxene-in isograd (two deposits) in the vicinity of the 0.93–0.92 Ga Rogaland anorthosite complex. The data constrain the last increment of ductile deformation to be younger than 0.95 and 0.93 Ga in these two metamorphic zones, respectively. Molybdenite is the product of an equilibrium between biotite, oxide and sulfide minerals and a fluid or hydrated melt phase, after the peak of 1.03–0.97 Ga regional metamorphism. Molybdenite precipitation is locally episodic. A model for gravitational collapse of the Sveconorwegian orogen controlled by lithospheric extension after 0.97 Ga is proposed. In the west of the orogen, the Rogaland–Vest Agder sector is interpreted as a large shallow gneiss dome, formed slowly in two stages in a warm and structurally weak crust. The first stage at 0.96–0.93 Ga was associated with intrusion of the post-collisional hornblende–biotite granite suite. The second stage at 0.93–0.92 Ga, restricted to the southwesternmost area, was associated with intrusion of the anorthosite–mangerite–charnockite suite. Most of the central part of the orogen was already situated in the brittle upper crust well before 0.97 Ga, and did not undergo significant exhumation during collapse. In the east of the orogen, situated against the colder cratonic foreland, exhumation of high-grade rocks of the Eastern Segment occurred between 0.97 and 0.95 Ga, and included preservation of high-pressure rocks but no plutonism.  相似文献   

5.
6.
7.
Gravity and magnetic anomalies have previously been interpreted to indicate strongly magnetic Permian or even Tertiary intrusive bodies beneath the Skagerrak waterway (such as the ‘Skagerrak volcano’) and beneath Silkeborg in Denmark. Our combined modelling of the magnetic and gravity anomalies over these rock bodies indicates that a steep upward magnetisation is required to explain the magnetic anomalies at the surface, reminiscent of the magnetic direction in the Sveconorwegian rocks of the Rogaland Igneous Province in southern Norway. The younger rocks of the Permian Oslo Rift region have intermediate and flat magnetisation that is inadequate to explain the observed magnetic field. The positive part of the Skagerrak aeromagnetic anomaly is continuous with the induced anomalies associated with the eastward extension of the Rogaland Igneous Province. This relation also suggests that rocks of the Rogaland Igneous Province and its offshore extension are responsible for the Skagerrak anomalies. Both the negative, remanence-dominated aeromagnetic anomaly and the positive gravity anomaly can be modelled using constraints from seismic reflection lines and available density data and rock-magnetic properties. A 7 km thick complex of ultramafic/mafic intrusions is located below a southward dipping 1–4 km thick section of Mesozoic sediments and 1–2 km of Palaeozoic sediments. The enormous body of dense, ultramafic/mafic rocks implied by the modelling could be the residue of the parental magma that produced the voluminous Rogaland anorthosites. The application of similar petrophysical properties in the forward modelling of the Silkeborg source body provides an improved explanation of the observed gravity and magnetic anomalies compared with earlier studies. The new model is constrained by magnetic depth estimates (from the Located Euler method) ranging between 6 and 8 km. Forward modelling shows that a model with a reverse magnetic body (anorthosite?) situated above a dense, mafic/ultramafic body may account for the Silkeborg anomalies. The anorthosites may have formed by differentiation of the underlying mafic intrusion, similar to the intrusive relations in the Rogaland Igneous Province. We conclude that there is strong evidence for a Sveconorwegian age for both the Skagerrak and the Silkeborg anomalous rock bodies.  相似文献   

8.
Durbachites–Vaugnerites are K–Mg‐rich magmatic rocks derived from an enriched mantle source. Observed throughout the European Variscan basement, their present‐day geographical distribution does not reveal any obvious plate‐tectonic context. Published geochronological data show that most durbachites–vaugnerites formed around 335–340 Ma. Plotted in a Visean plate‐tectonic reconstruction, the occurrences of durbachites–vaugnerites are concentrated in a hotspot like cluster in the Galatian superterrane, featuring a distinctive regional magmatic province. Reviewing the existing local studies on Variscan durbachite–vaugnerite rocks, we interpret their extensive appearance in the Visean in terms of two factors: (i) long‐term mantle enrichment above early Variscan subduction systems; and (ii) melting of this enriched subcontinental mantle source during the Variscan collision stage due to thermal anomalies below the Galatian superterrane, possibly created by slab windows and and/or the sinking of the subducted Rheic slab into the mantle. The tectonic reorganization of Europe in the Late Palaeozoic and during the Alpine orogeny has torn apart and blurred this marked domain of durbachites–vaugnerites.  相似文献   

9.
ABSTRACT Nappe refolding, back-thrusting and normal faulting frequently cause severe late-stage overprinting of the architecture of an orogen. A combined investigation of nappe stack polarity, kinematics of shearing and metamorphic gradients in the Western Alps develops criteria for distinguishing between these three modes of late-stage deformation. This distinction is a prerequisite for any retro-deformation necessary for understanding the main tectonic and metamorphic evolution of collisional orogens. In the case of the Western Alps overprint was by mega-scale nappe refolding in the Oligocene. This implies exhumation of the HP-rocks prior to postnappe folding, i.e. during nappe stacking and by foreland-directed ascent within a subduction channel.  相似文献   

10.
初论碰撞造山环境斑岩铜矿成矿模型   总被引:13,自引:12,他引:13  
杨志明  侯增谦 《矿床地质》2009,28(5):515-538
作为金属Cu最主要来源的斑岩铜矿床主要产于岛弧及陆缘弧环境.基于大量弧环境斑岩铜矿床研究而建立的经典斑岩铜矿成矿模型,在后来环太平洋成矿带斑岩型矿床的勘查中取得了重大突破,成为科学理论指导矿床勘查的典范.然而,近年来国内矿床学家发现,除经典成矿模型所记录的岛弧及陆缘弧环境外,斑岩铜矿还可产于碰撞造山带内,甚至产在陆内环境中.显然,这些斑岩铜矿的成因无法用经典的斑岩铜矿成矿模型解释.文章从弧环境斑岩铜矿成矿模型的综述人手,通过对青藏高原斑岩铜矿床的成矿环境及构造控制、含矿斑岩起源、矿床基本特征、成矿物质来源、金属富集机制以及成矿流体来源及演化等已有研究成果的综合分析,初步提出了碰撞造山环境斑岩铜矿的成矿模型.该模型强调:①碰撞造山环境斑岩铜矿含矿斑岩为强烈挤压构造背景下形成的埃达克岩,岩浆起源于加厚的新生下地壳,板块断离或岩石圈拆沉诱发的软流圈物质上涌,以及斜向碰撞导致的挤压.伸展的构造机制转换通常是引发岩浆源区发生部分熔融的外部条件;②成矿金属的深部富集是因岩浆高氧逸度所致,高氧逸度条件下,S主要以硫酸盐的形式溶解于岩浆之中,从而导致通常优先向硫化物分配的Cu、Au等开始作为不相容元素向硅酸盐熔浆中富集;③含矿斑岩的侵位既可受到因斜向碰撞诱发的大型走滑断裂系统的控制,也可受到岩石圈拆沉诱发的大型张性断层的控制;而含矿斑岩的就位则受矿区尺度的构造控制,多组构造的交汇部位或大型背斜的核部常是斑岩铜矿产出的重要位置;④大型矿床,特别是超大型矿床下部通常存在岩浆房,岩浆房的流体出溶是引发矿床大规模蚀变与矿化的根源;成矿金属与S均来自岩浆,与含矿斑岩可能具有相同的源区;⑤矿床整体上具有与弧环境类似的蚀变分带规律,从内向外依次为钾硅酸盐化、石英-绢云母、粘土化及青磐岩化;不过,因碰撞造山带环境含矿斑岩相对富K,从而导致岩浆房或浅侵的岩株/岩枝中出溶的岩浆热液常具有比弧环境斑岩铜矿床更高的K+/H+比值,从而诱发钾硅酸盐化蚀变的强烈发育;因钾硅酸盐化蚀变持续时间较长,铜钼矿化主要产于该蚀变阶段,特别是以黑云母大量发育为特征的晚期钾硅酸盐化阶段;⑥成矿物质沉淀可能因成矿过程中温度、压力、盐度、氧逸度、pH值等因素的变化所致,而这些因素的变化又直接或间接与高原的快速隆升与剥蚀有关.  相似文献   

11.
Widespread metasomatism affected the 100 km long and 25 km wide Proterozoic Bamble and Modum‐Kongsberg sectors, South Norway, resulting in the chemical and mineralogical transformation of wide segments of continental crust. Scapolitization was associated with veining, and was followed by albitization, transforming metagabbros pervasively over large areas. Fluids played an active role in these reactions, forming H2O‐, CO2‐ and Cl‐bearing phases at the expense of the primary volatile‐free minerals, causing depletion in Fe and infiltration of K, Mg, Na, B and P. The transformation of gabbro to scapolite metagabbro is observed as a fluid front replacing the primary magmatic mineral assemblage in three stages: during an incipient amphibolitization stage, the primary mafic minerals were replaced by anthophyllite or hastingsite, followed by pargasitic and edenitic Ca‐amphibole. Magnetite was dissolved, while rutile formed by the breakdown of ilmenite. Plagioclase was replaced by Cl‐rich scapolite (Me19‐42) reflecting Cl‐saturation, while K‐ and Mg‐saturation produced phlogopite, enstatite, sapphirine and rare corundum. The high modal contents of chlorapatite and tourmaline in the scapolite metagabbro imply infiltration of B and P. The albitites consist dominantly of albite (Ab95‐98) with varying, generally small, amounts of chlorite, calcite, rutile, epidote and pumpellyite. They formed from a H2O–CO2‐fluid rich in Na. The gabbro yields a zircon U–Pb age of 1149 ± 7 Ma and tonalite 1294 ± 38 Ma, whereas rutile from scapolite metagabbro and albitite has U–Pb ages of 1090–1084 Ma, and phlogopite produced during scapolitization Rb–Sr ages of 1070–1040 Ma. Temperature conditions for the scapolitization are inferred to have been 600–700 °C. The reported ages, combined with mineralogical and petrographic observations and inferred P–T conditions, indicate that the metasomatism was a part of the regional Sveconorwegian amphibolite facies metamorphic phase. Initial 87Sr/86Sr of the scapolite ranges from 0.704 to 0.709. The Sr‐signature, the Cl‐ and B‐rich environment and regional distribution of lithologies suggest that the fluid may have originated from evaporites that were mobilized during the regional metamorphism.  相似文献   

12.
The Grenville, Sveconorwegian, and Sunsas orogens are typically inferred to reflect collision between Laurentia, Baltica, and Amazonia at ca. 1.0 Ga, forming a central portion of the Rodinia supercontinent. This triple‐junction configuration is often nearly identical in otherwise diverse Rodinia reconstructions. However, available geological data suggest that although the Grenville and Sveconorwegian provinces shared a similar tectonic evolution from pre‐1.8 to ca. 1.5 Ga, they record distinctly different tectonic histories leading up to, during, and possibly following Grenville–Sveconorwegian orogenesis. Moreover, palaeomagnetic data suggest the two continents were separated at peak orogenesis, further invalidating any direct correlation. A number of possible interpretations are permissible with available geological and palaeomagnetic data, of which a “classic” triple‐junction configuration appears least likely. In contrast to the commonly inferred intertwined Proterozoic evolution of Baltica and Laurentia, the possibility remains that they were unrelated for a billion years between 1.5 and 0.45 Ga.  相似文献   

13.
The Pacific–Australian tectonic plate boundary through the South Island of New Zealand consists of the transpressional Southern Alps mountain belt and the transcurrent Marlborough Fault System, both of which have active tectonically driven hydrothermal systems, with topographically driven meteoric incursion and warm springs. The Southern Alps hydrothermal system is relatively diffuse, with little or no fault control, and is channelled through scattered extensional sites beneath the mountains, where gold mineralisation is occurring locally. The hydrothermal activity along the Marlborough Fault System is controlled by the principal faults in well-defined valleys separated by narrow high ridges. Lateral evolution of Marlborough fault strands southwestwards into the Southern Alps has caused diversion of diffuse Southern Alps hydrothermal activity into the structural superimposition zone, where fluid flow is increasingly being controlled by faults. This hydrothermal diversion was accompanied by major topographic reorientation and river drainage reversal in the late Quaternary. Vein swarms now exposed in the remnants of the Southern Alps north of the superimposition zone formed at shallow levels, with some evidence for fluid boiling, from a mixture of meteoric and deep-sourced fluid. These veins, some of which contain gold, are part of an abandoned <1 million-year-old hydrothermal zone beneath the fossil topographic divide of the Southern Alps that has now been dismembered by lateral incursion of the Marlborough fault strands. Observations on this active plate boundary provide some insights into processes that controlled orogenic gold mineralisation in ancient belts, particularly with respect to relationships between hydrothermal fluid flow, structure and topography.  相似文献   

14.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

15.
It is generally thought that garnet in metapelites is produced by continuous reactions involving chlorite or chloritoid. Recent publications have suggested that the equilibrium temperatures of garnet‐in reactions may be significantly overstepped in regionally metamorphosed terranes. The growth of small spessartine–almandine garnet crystals on Mn‐siderite at the garnet isograd in graphitic metapelites in the Proterozoic Black Hills orogen, South Dakota, demonstrates that Mn‐siderite was the principal reactant that produced the initial garnet in the schists. Moreover, the positions of garnet compositions in isobaric, T–(C/H) pseudosections for the schists show that the temperature of the garnet‐in reaction from Mn‐siderite was overstepped minimally at the most. In the Black Hills, garnet was initially produced during regional metamorphism beginning at c. 1755 Ma due to the collision of Wyoming and Superior cratons, and was subsequently partially or fully re‐equilibrated at more elevated temperatures and pressures during intrusion of the Harney Peak Granite (HPG) at c. 1715 Ma. Garnet occurs in graphitic schists in garnet, staurolite and sillimanite zones, the latter being a product of contact metamorphism by HPG. During metamorphism, coexisting fluid contained both CO2 and CH4. In the garnet zone, garnet crystals contain petrographically distinct cores with inclusions of quartz, graphite and other minerals. Centres of the cores have distinctly elevated Y concentrations that mark the positions of garnet nucleation. The elevated Y is thought to have come from the Mn‐siderite onto which Y was probably absorbed during precipitation in an ocean. In the upper garnet and staurolite zones, the cores were overgrown by inclusion‐poor mantles. Mantles are highly zoned and have more elevated Fe and Mg and lower Mn and Ca than cores. The growth of mantles is attributed to late‐orogenic heating by leucogranite magmas and attendant influx of H2O that caused consumption of graphite in rock matrices. A portion of the Proterozoic terrane that includes the HPG is surrounded by four large faults. In this ‘HPG block’, garnet is inclusion‐poor and its composition does not preserve its early growth history. This garnet appears to have re‐equilibrated by internal diffusion of its major components and/or recrystallization of an earlier inclusion‐rich garnet. It has equilibrated within the kyanite stability range, and together with remnant kyanite in the high‐strain aureole of the HPG, indicates that the HPG block had a ≥6 kbar history. The HPG block has undergone decompression during emplacement of the HPG. The decompression is evident in occurrences of retrograde andalusite and cordierite in the thermal aureole of the HPG. The data support a polybaric metamorphic history of the Black Hills orogen with different segments of the orogen having their own clockwise P–T–t paths.  相似文献   

16.
阿尔金碰撞造山带西段的构造特征   总被引:13,自引:2,他引:13  
根据阿尔金山西段前早古生代变质岩的岩石组成、沉积建造、变形变质作用改造历史、岩石地球化学特征等研究,将阿尔金碰撞造山带西段划分为3个构造单元北阿尔金地块、中阿尔金地块(包括英格里克构造-蛇绿混杂岩带、肖鲁克·布拉克高压变质岩带和塔什萨依玉石矿高绿片岩相-低角闪岩相变质岩带)和南阿尔金地块(包括南阿尔金中-新元古界隆起带和阿尔金南缘复合构造-蛇绿混杂岩带).提出该碰撞造山带经历了前长城纪古陆核形成阶段、长城纪-青白口纪不同基底联合阶段和早古生代洋陆转换阶段3个阶段的构造演化.  相似文献   

17.
The early Palaeozoic South Qilian–North Qaidam orogenic belt in northwestern China records a nearly complete history of early‐stage long‐lived oceanic subduction–accretion followed by late‐stage continental collision. Most previous studies have focused on low dT/dP metamorphism (HP–UHP) in this belt whereas the paired high dT/dP belt in the hinterland has received little attention. In this contribution, phase equilibrium modelling is combined with zircon petrochronology to determine the P–T–t evolution of granulites in the North Wulan gneiss complex in the high dT/dP hinterland of the South Qilian–North Qaidam orogen. Granulites record a clockwise P–T path with near‐peak temperatures of ~800–900°C at 5.5–7 kbar. Peak metamorphism was followed by high‐T decompression. Zircon petrochronology reveals protracted zircon growth from c. 474 to 446 Ma during the high‐T portion of the P–T path. High dT/dP metamorphism in the North Wulan gneiss complex was likely the result of heat transfer from the underlying hot asthenosphere and minor coeval magmatism in an arc–back‐arc system during slab retreat and roll‐back of the South Qilian oceanic plate. Broadly contemporaneous but slightly younger HP–UHP metamorphism in the foreland of the South Qilian–North Qaidam orogenic belt indicates that the region records an early Palaeozoic paired metamorphic belt. This early Palaeozoic paired metamorphic belt provides a detailed example of dual thermal regimes in a modern‐style orogenic system that can be applied to understanding the time‐scales and P–T conditions of high dT/dP metamorphism that accompany subduction in Phanerozoic and Precambrian orogenic belts.  相似文献   

18.
19.
Recognition of non‐linear constitutive rock/soil model from experimental results is often multi‐modal in the large parameter space. A genetic evolution algorithm is thus proposed for its recognition, including that of structure of the model and coefficients in the model. The structure of the model can be firstly determined according to mechanical mechanism if the mechanism is clearly understood or searched by using evolutionary algorithm. The coefficients to be determined are then searched in global optional space. With the new evolutionary algorithm, the non‐linear stress–strain–time constitutive law to describe strain softening behaviours of diatomaceous soil under consolidated and undrained state was recognized by learning stress–strain–time behaviour of an intact sample under consolidated pressure of σc=0.1 MPa and strain velocity ofa=0.175%/min. This model gave reasonable prediction for diatomaceous soils under varying consolidated pressures (0.1–3.5 MPa) and strain velocities (0.0044–1.75%/min). It indicates that the methodology proposed in this paper is robust enough and strongly attractive for recognition of non‐linear constitutive model of soil and rock materials. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号