首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochronology is useful for understanding provenance, and while it has been applied to the central and western Himalaya, very little data are available in the eastern Himalaya. This study presents detrital zircon U–Pb ages from the late Palaeocene–Eocene Yinkiong Group in NE India. The samples are from the late Palaeocene to early Eocene Lower Yinkiong Formation, and the Upper Yinkiong Formation deposited during the early to mid‐Eocene within the Himalayan foreland basin. The U–Pb ages of the detrital zircon within the Lower Yinkiong Formation are older than late Palaeozoic, with a cratonic and early Himalayan Thrust Belt affinity, whereas the Cenozoic grains in the Upper Yinkiong Formation indicate a Himalayan Thrust Belt source and possibly a granitic body within the Asian plate. The shift of the sources and the changes in the foreland basin system strongly suggest that the India–Asia collision in the Eastern Himalaya began before or immediately after the deposition of the Upper Yinkiong Formation, i.e., within the early Eocene (c. 56 to 50 Ma).  相似文献   

2.
3.
The southern East African Orogen is a collisional belt where the identification of major suture zones has proved elusive. In this study, we apply U–Pb isotopic techniques to date detrital zircons from a key part of the East African Orogen, analyse their possible source region and discuss how this information can help in unravelling the orogen.U–Pb sensitive high-mass resolution ion microprobe (SHRIMP) and Pb evaporation analyses of detrital zircons from metasedimentary rocks in eastern Madagascar reveal that: (1) the protoliths of many of these rocks were deposited between 800 and 550 Ma; and (2) these rocks are sourced from regions with rocks that date back to over 3400 Ma, with dominant age populations of 3200–3000, 2650, 2500 and 800–700 Ma.The Dharwar Craton of southern India is a potential source region for these sediments, as here rocks date back to over 3400 Ma and include abundant gneissic rocks with protoliths older than 3000 Ma, sedimentary rocks deposited at 3000–2600 Ma and granitoids that crystallised at 2513–2552 Ma. The 800–700 Ma zircons could potentially be sourced from elsewhere in India or from the Antananarivo Block of central Madagascar in the latter stages of closure of the Mozambique Ocean. The region of East Africa adjacent to Madagascar in Gondwana reconstructions (the Tanzania craton) is rejected as a potential source as there are no known rocks here older than 3000 Ma, and no detrital grains in our samples sourced from Mesoproterozoic and early Neoproterozoic rocks that are common throughout central east Africa. In contrast, coeval sediments 200 km west, in the Itremo sheet of central Madagascar, have detrital zircon age profiles consistent with a central East African source, suggesting that two late Neoproterozoic provenance fronts pass through east Madagascar at approximately the position of the Betsimisaraka suture. These observations support an interpretation that the Betsimisaraka suture separates rocks that were derived from different locations within, or at the margins of, the Mozambique Ocean basin and therefore, that the suture is the site of subduction of a strand of Mozambique Ocean crust.  相似文献   

4.
秦岭岩群为北秦岭微陆块的主要组成部分,其时代的准确厘定对秦岭造山带构造演化研究具有重要的地质意义。本次工作对五里川—寨根一带秦岭岩群雁岭沟岩组钠长二云片岩和郭庄岩组矽线二云二长片麻岩进行碎屑锆石LA-ICP-MS U-Pb同位素年代学研究。钠长二云片岩具有岩浆成因特征的碎屑锆石核部年龄主要存在545~551 Ma、754~778 Ma、900~1000 Ma、1340~1830 Ma和2300~2500 Ma 5个年龄段,并以900~1000 Ma段碎屑锆石的峰最明显;部分数据点在锆石U-Pb谐和图上拟合成一条上交点年龄为(2478±25)Ma的不一致线。矽线二云二长片麻岩年龄主要集中于1400~1800 Ma,另有4颗锆石年龄为1134~1243 Ma,其中最年轻的1颗碎屑岩浆锆石年龄为(1134±17)Ma。根据分析结果,推断本地区雁岭沟岩组的形成时代应晚于900 Ma,早于438 Ma的五垛山岩体。郭庄岩组的主体形成于中元古代晚期,时代应该晚于1122 Ma,老于962 Ma的新元古代花岗岩类。雁岭沟岩组最主要的物质来源为新元古代花岗岩,其次为新太古代—古元古代陆壳,少部分来源于郭庄岩组;郭庄岩组物质来源主要为的古元古代晚期至中元古代早期的花岗岩陆壳。雁岭沟岩组与郭庄岩组形成时代不同,二者之间存在沉积间断,主要物源区也不相同,雁岭沟岩组中甚至有少量郭庄岩组剥蚀后再沉积的物质。因此,二者是不同的构造岩片,本地区雁岭沟岩组应从秦岭岩群中解体出来。  相似文献   

5.
6.
7.
The Chubut Group constitutes the most widespread sedimentary unit in NE Patagonia, characterized by variable-energy fluvial deposits. U–Pb analysis of detrital zircons from two sections of the Chubut Group constraint the age of the oldest sedimentary rocks in the northeast of the Somuncurá – Cañadón Asfalto Basin. In the Cañadón Williams area, at San Jorge section, 20 km NW of Telsen locality, dating of 56 detrital zircons from a medium to coarse sandstone indicated a maximum depositional age of 109 ± 1 Ma (n = 4). These sandstones were interpreted to represent shallow channels, associated with a lacustrine system. In the Telsen locality, a laser ablation analysis of 115 detrital zircons from a medium to coarse-grained sandstone, from fluvial channel facies, yielded a maximum depositional age of ca. 106 ± 1 Ma (n = 8). Both ages are consistent with volcanic events of the Barremian to Albian age in the central Patagonian Andes Region. Cathodoluminescence images of zircons from the San Jorge sample suggest an igneous origin, which is further supported by Th/U values above 0.5 in most of the grains. The distribution of the statistical modes of the main age populations of detrital zircons for the two samples [182, 185 and 189 Ma for Telsen sample (T2S) and 181 ± 1 Ma for San Jorge sample (SJS)] matches the age of the volcanic Marifil Formation. The rocks of the Marifil Formation of these ages are exposed NE to SE of the study area. The abundance of zircons of similar Jurassic ages (n = 52 for SJS and n = 105 for T2S) and the external morphology of the zircons in the sample SJS, implies a close proximity of the source area. Suggestion that the Marifil Formation was the main provenance source is also supported by northeast–southeasterly paleocurrents measured at the San Jorge and Telsen sections.  相似文献   

8.
The origin and continuity of Phanerozoic lithostratigraphic terranes in southern and Baja California remain an unsolved issue in Cordilleran tectonics. We present data from eight detrital zircon samples collected across the southern extent of the Peninsular Ranges that help constrain the provenance of detritus and the depositional ages of these basement units. Detrital zircon signatures from units in the eastern Peninsular Ranges correlate with Palaeozoic passive margin assemblages in the southwestern North American Cordillera. Units in the central belt, which consists of Triassic–Jurassic metasedimentary turbidite assemblages that probably deformed in an accretionary prism setting, and Cretaceous metasedimentary and metavolcanic units that represent the remnants of a continental margin arc, were derived from both proximal and more distal sources. The westernmost units, which are locally structurally interleaved with the Triassic through Cretaceous units of the central belt, are Cretaceous deposits that represent a series of collapsed basin complexes located within and flanking the Cretaceous Alisitos volcanic island arc. Cretaceous intra-arc units show little influx of cratonal material until approximately 110 Ma, whereas coeval sediments on the northern and eastern flanks of the Alisitos arc contain abundant cratonal detritus. Intra-arc strata younger than approximately 110 Ma contain large amounts of Proterozoic and older detrital zircons. These data suggest that basins associated with the Alisitos arc were either too distant or somehow shielded from North American detritus before 110 Ma. In the case of the former, increased influx of continental detritus after 110 Ma would support a tectonic model in which the arc was separated from North America by an ocean basin and, as the arc approached the continent, associated depositional centres were close enough to receive input from continental sources.  相似文献   

9.
北秦岭-祁连结合区大草滩群碎屑锆石U-Pb年代学研究   总被引:6,自引:0,他引:6  
应用LA-ICP-MS法对北秦岭-祁连结合区的晚泥盆世大草滩群进行了系统的碎屑锆石U-Pb年代学研究。地层剖面从下至上,大草滩群三个岩组的碎屑锆石U-Pb年龄谱具有以下特征:①古生代年龄组分(550Ma)所占的比例依次变小(分别为36%,32%,25%),且最年轻的锆石年龄值也是逐渐变小(分别为403±5Ma,385±5Ma,375±6Ma),这一特征反映的是大陆边缘岩浆弧前缘同岩浆活动的隆升-剥蚀和沉积。②750~2600Ma年龄组分所占的比例逐渐增大(分别为54%,65%,72%),且主要的峰值年龄向老的方向变化,这一特征反映的是往造山带深部基底和大陆内部逐渐延伸的隆升和剥蚀。本研究工作阐明大草滩群的碎屑沉积物来自多种构造环境中的岩石地层单元,主要来自北秦岭-祁连微陆块基底,其次是来自古生代洋壳持续俯冲形成的大陆边缘岩浆弧和加里东期碰撞造山带再旋回物质,还有少量来源于华北克拉通西部地块的物质成分。晚泥盆世大草滩群陆相粗碎屑沉积组合在构造位置上是处于弧(微陆)-大陆碰撞造山带的南缘与安第斯型大陆边缘岩浆弧的弧前盆地这一构造叠加复合地区,是弧(微陆)-大陆碰撞造山作用以后,洋壳持续俯冲造山作用阶段同火山-岩浆活动的沉积响应。  相似文献   

10.
ABSTRACT

The Vorontsovka terrane (VT) is an important component of the East Sarmatian Orogen (ESO) which divides the Precambrian cores of the Sarmatian and Volgo-Uralia segments of the East European Craton (EEC). The tectonic framework of the VT remains controversial due to poor constraints from geochemical and geochronological studies. In this article we present detrital zircon U–Pb ages and geochemical features of the Precambrian meta-sedimentary rocks from the VT, which occur interlayered with calc-silicate rocks and metabasites. Most of the zircons from metasediments possess oscillatory zoning and high Th/U ratios (>0.2), indicating magmatic provenance. Their 207Pb/206Pb ages cluster around 2093 ± 7, 2126 ± 7, 2158 ± 12, 2189 ± 16, and 2210 ± 31 Ma, correlating with the ages of magmatic zircon cores from the surrounding igneous suites, and reflecting a single tectono-magmatic cycle (~2200–2100 Ma) in the source area. Age of the youngest detrital zircon grain from the metasedimentary rocks and the cores of zircon grains from igneous suites show 207Pb/206Pb ages at 2094 and 2106 Ma, respectively. Together with the largest age clusters of 2126 ± 7 and 2158 ± 12 Ma of the magmatic cores of the detrital zircons, the timing of sedimentation is inferred as ~ 2100–2170 Ma.

The metapelites display strong rare earth element fractionation with variable Eu anomalies ((La/Yb)N = 7.0–14.5, Eu/Eu* = 0.49–1.23). In contrast, the calc-silicate rocks and metabasites lack Eu anomalies ((La/Yb)N = 5.2–11.5, Eu/Eu* = 0.87–1.00). The large-ion lithophile (LILE) and high field strength element (HFSE) concentrations of most samples are comparable with those of the upper continental crust (UCC). The rocks possess negative anomalies of Th, Nb, Sr, and Zr relative to UCC. Their high Index of Compositional Variability (0.85–1.32, up to 1.8 in metabasites) and relatively low Chemical Index of Alteration (46.1–70.4) indicate that the metapelitic sediments were immature to weakly immature and probably underwent minor chemical weathering. The protoliths of the metabasites are interpreted as interlayered volcano-sedimentary and pyroclastic material. Relict clastic textures of the VT rocks, their geochemical features, and the grain morphology of detrital zircons suggest that the sediments were derived from intermediate and felsic provenances, which were most likely deposited in an environment with active volcanism. We envisage an active continental margin setting in the southwestern part of the Volgo-Uralia segment of the EEC related to the assembly of the Palaeoproterozoic Columbia supercontinent. Combined with recent data from surrounding terranes of the ESO, our results suggest that the VT represents an accretionary prism along a continental arc within the Sarmatia and Volgo-Uralia oceanic realm in the Palaeoproterozoic.  相似文献   

11.
In the internal zone of the European Alps, late Carboniferous to Permian sediments have been detached from their basement (e.g. the Zone Houillère in the Briançonnais Zone). The Pinerolo Unit (Dora‐Maira Massif) is the deepest unit exposed in the stack of the Western Alps and is considered to be Carboniferous in age based on lithological considerations. Detrital zircon grains from the Pinerolo Unit and the Zone Houillère display similar age patterns, with the youngest and largest population being Carboniferous (340–330 Ma). The distribution of Carboniferous magmatism in the Alps and surrounding areas suggests that the detritus was transported from Maures‐Corsica and possibly from the Helvetic Zone into the Zone Houillère and the Pinerolo basin. Our results highlight the potential of detrital zircon geochronology for deciphering the sources of detrital material in meta‐sediments, even if they have been affected by metamorphic overprints.  相似文献   

12.
The Lützow-Holm Complex(LHC) of East Antarctica has been regarded as a collage of Neoarchean(ca.2.5 Ga), Paleoproterozoic(ca. 1.8 Ga), and Neoproterozoic(ca. 1.0 Ga) magmatic arcs which were amalgamated through the latest Neoproterozoic collisional events during the assembly of Gondwana supercontinent. Here, we report new geochronological data on detrital zircons in metasediments associated with the magmatic rocks from the LHC, and compare the age spectra with those in the adjacent terranes for evaluating the tectonic correlation of East Antarctica and Sri Lanka. Cores of detrital zircon grains with high Th/U ratio in eight metasediment samples can be subdivided into two dominant groups:(1) late Meso-to Neoproterozoic(1.1-0.63 Ga) zircons from the northeastern part of the LHC in Prince Olav Coast and northern Soya Coast areas, and(2) dominantly Neoarchean to Paleoproterozoic(2.8-2.4 Ga) zircons from the southwestern part of the LHC in southern Lutzow-Holm Bay area. The ca.1.0 Ga and ca. 2.5 Ga magmatic suites in the LHC could be proximal provenances of the detrital zircons in the northeastern and southwestern LHC, respectively. Subordinate middle to late Mesoproterozoic(1.3-1.2 Ga) detrital zircons obtained from Akarui Point and Langhovde could have been derived from adjacent Gondwana fragments(e.g., Rayner Complex, Eastern Ghats Belt). Meso-to Neoproterozoic domains such as Vijayan and Wanni Complexes of Sri Lanka, the southern Madurai Block of southern India, and the central-western Madagascar could be alternative distal sources of the late Meso-to Neoproterozoic zircons. Paleo-to Mesoarchean domains in India, Africa, and Antarctica might also be distal sources for the minor ~2.8 Ga detrital zircons from Skallevikshalsen. The detrital zircons from the Highland Complex of Sri Lanka show similar Neoarchean to Paleoproterozoic(ca. 2.5 Ga) and Neoproterozoic(ca. 1.0 Ga) ages, which are comparable with those of the LHC, suggesting that the two complexes might have formed under similar tectonic regimes. We consider that the Highland Complex and metasedimentary unit of the LHC formed a unified latest Neoproterozoic suture zone with a large block of northern LH-Vijayan Complex caught up as remnant of the ca. 1.0 Ga magmatic arc.  相似文献   

13.

东北陆块群是中亚造山带的主要构造单元,关于其前寒武纪古老基底属性的判别、古生代构造单元划分及增生造山演化过程一直是地质学家研究热点。兴安增生地体被认为是东北陆块群的重要组成部分,由于其前寒武纪沉积-岩浆记录的大量缺失,使得奥陶纪沉积-岩浆事件成为研究其构造演化的关键。本文对出露于兴安增生地体奥陶系的多宝山组进行了碎屑锆石LA-ICP-MS U-Pb定年、锆石Hf同位素及地球化学分析,旨在准确限定多宝山组的沉积时限,揭示其沉积环境及物源区性质。研究结果表明,来自大扬气镇南、花朵山南部及伊尔施西北部三个地区的多宝山组变质砂岩的最年轻锆石年龄分别为481±5Ma(D9088)、462±5Ma(296NJ-1)and 473±11Ma(HDG06),类似于其对应加权平均年龄482±3Ma(n=12)、475±6Ma(n=10)和483±8Ma(n=7),由此限定多宝山组的沉积下限为早-中奥陶世。其中 < 1.0Ga样品数量最多的锆石年龄为462~520Ma,峰值年龄为516Ma、497Ma和482Ma;次者在790~980Ma,该年龄区间出现969Ma、830Ma、788Ma、760Ma等峰值;>1.0Ga的具有较弱的峰值(1321~2410Ma),主要为1882Ma和2410Ma两个峰值,以上所有峰值与额尔古纳地块内部同期岩浆岩体完全吻合,说明所研究样品的物源区主要来自额尔古纳地块。对比分析不同区域多宝山组碎屑锆石Hf同位素特征,发现自东向西越靠近额尔古纳地块,多宝山组碎屑锆石εHft)值越小,二阶段模式年龄tDM2越老,暗示物源区基底古老物质逐渐增多。结合奥陶系砂岩的地球化学特征,我们推测这种变化趋势可能反映了由活动大陆边缘向额尔古纳地块内部过渡的构造环境。

  相似文献   

14.
15.
Detrital zircons are important proxies for crustal provenance and have been widely used in tracing source characteristics and continental reconstructions. Southern Peninsular India constituted the central segment of the late Neoproterozoic supercontinent Gondwana and is composed of crustal blocks ranging in age from Mesoarchean to late Neoproterozoic–Cambrian. Here we investigate detrital zircon grains from a suite of quartzites accreted along the southern part of the Madurai Block. Our LA-ICPMS U-Pb dating reveals multiple populations of magmatic zircons, among which the oldest group ranges in age from Mesoarchean to Paleoproterozoic (ca. 2980–1670 Ma, with peaks at 2900–2800 Ma, 2700–2600 Ma, 2500–2300 Ma, 2100–2000 Ma). Zircons in two samples show magmatic zircons with dominantly Neoproterozoic (950–550 Ma) ages. The metamorphic zircons from the quartzites define ages in the range of 580–500 Ma, correlating with the timing of metamorphism reported from the adjacent Trivandrum Block as well as from other adjacent crustal fragments within the Gondwana assembly. The zircon trace element data are mostly characterized by LREE depletion and HREE enrichment, positive Ce, Sm anomalies and negative Eu, Pr, Nd anomalies. The Mesoarchean to Neoproterozoic age range and the contrasting petrogenetic features as indicated from zircon chemistry suggest that the detritus were sourced from multiple provenances involving a range of lithologies of varying ages. Since the exposed basement of the southern Madurai Block is largely composed of Neoproterozoic orthogneisses, the data presented in our study indicate derivation of the detritus from distal source regions implying an open ocean environment. Samples carrying exclusive Neoproterozoic detrital zircon population in the absence of older zircons suggest proximal sources in the southern Madurai Block. Our results suggest that a branch of the Mozambique ocean might have separated the southern Madurai Block to the north and the Nagercoil Block to the south, with the metasediments of the khondalite belt in Trivandrum Block marking the zone of ocean closure, part of which were accreted onto the southern Madurai Block during the collisional amalgamation of the Gondwana supercontinent in latest Neoproterozoic–Cambrian.  相似文献   

16.
漠河盆地位于蒙古—鄂霍茨克褶皱带中的额尔古纳微板块的北缘,地处西伯利亚板块与华北板块碰撞拼合部位。二十二站组是漠河盆地中生代沉积地层之一,前人对其形成时代和物源进行了探讨,但仍存在很大争议,本文在前人研究的基础上,通过碎屑锆石年代学和岩石地球化学再次厘定其形成时代,并对物源及源区大地构造背景进行探讨。碎屑锆石年代学研究表明,二十二站组碎屑锆石大部分为岩浆结晶锆石,少部分锆石颗粒为增生-混合型锆石,显示出经历了后期构造-热事件改造。此外,少部分锆石颗粒磨圆好,显示出其经历了多次搬运、沉积过程的特征,从而指示早先形成的古老沉积岩为二十二站组提供了物源。获得最年轻的锆石年龄为134±1Ma,结合前人区域地质调查报告中发现了时期的古生物化石,将二十二站组的沉积下限限定为早白垩世早期,同时也说明了研究区存在早白垩世早期火成岩物源。主、微量元素构造环境判别及物源分析揭示二十二站组物源主要为活动大陆边缘及大陆岛弧环境的上地壳长英质、安山质源区,并混有下地壳深部物质(基性岩)。锆石LA-ICP-MS U-Pb定年结果表明,二十二站组碎屑锆石有随着时代变新锆石保存数量增多的趋势,其年龄分布整体上可被划分为四个时期:新太古代(2711±10Ma,N=1),说明额尔古纳地块存在新太古代的基底信息;中元古代-古元古代(2428~1238Ma,N=11),指示兴华渡口岩群为二十二站沉积物提供了部分物源;新元古代(921-561Ma,N=7),是晋宁期古亚洲洋向额尔古纳-兴安地块俯冲形成大陆岩浆弧(活动大陆边缘)构造事件在研究区的记录;中生代-晚古生代(540-134Ma,N=280),是蒙古-鄂霍茨克洋俯冲、闭合过程中形成的花岗质岩浆在研究区的物质记录,且显生宙花岗岩质岩浆为二十二站组提供了最为丰富的物源。  相似文献   

17.
Two major granulitic units are recognized in the Gour Oumelalen area. One of the units is composed partially of Archean gneisses (Red Gneiss complex) with U–Pb zircon SIMS and TIMS ages of approximately 2.7 Ga. Although they were formed from 3.0- to 3.2-Ga-old precursors, as indicated by Nd model ages, we find no evidence of any older history (≈3.5 Ga) as suggested by previous Pb–Pb ages. The other formation (Gour Oumelalen supergroup) is a metasedimentary sequence at least partly of Paleoproterozoic age, as indicated by zircon dates of a metavolcanic rock at approximately 2.2 Ga. A later magmatic event is recorded at approximately 1.9 Ga in both units and related to coeval granulite-facies metamorphism that affected both units. Nd model ages at approximately 2.0 Ga suggest an accretion of juvenile crust formation at that time. The existence of TDM Nd model ages intermediate between 2.5 and 2.9 Ga could result from the mixing of 3.2 and 2.0-Ga-old material or may reflect separate events.  相似文献   

18.
利用激光剥蚀电感耦合等离子质谱技术(LA-ICP-MS)对浙东南松阳县枫坪组地层底部的细砂岩进行了锆石U-Pb定年及稀土元素分析。样品中大部分碎屑锆石具有较好的振荡环带且Th/U值大于0. 1,表明其为岩浆成因。碎屑锆石中稀土元素含量变化范围较大,(La/Yb)_N值为0~0. 29,LREE/HREE值为0. 003×10~(-6)~0. 977×10~(-6),表明样品中锆石的轻、重稀土元素分异程度较小且重稀土元素相对富集,具有轻稀土元素含量低、重稀土元素含量高的左倾模式且具有负Eu异常、正Ce异常的特征,表明碎屑锆石主要以岩浆锆石为主,同时存在少量的变质锆石。碎屑锆石U-Pb测年结果表明,最年轻的锆石年龄为193 Ma,显示枫坪组沉积岩成岩年龄不晚于193 Ma。碎屑锆石年龄可分为4组,分别为2 461~1 743 Ma、887 Ma、435和422 Ma、330~193 Ma。碎屑锆石的主要年龄区间分别与已知的构造-岩浆热事件时间相对应(吕梁期、晋宁期、加里东期和印支-海西期),表明本区的构造岩浆活动与中国大地构造运动相一致,并具有幕式发展的特征。通过对枫坪组沉积岩碎屑锆石U-Pb年龄的系统分析并与可能物源区的年代学对比研究,认为枫坪组沉积岩物质来源主要是周边出露的中条期侵入岩体和浙东南出露的印支期花岗岩体。  相似文献   

19.
张卫刚  陈刚  康昱  陈强  杨甫  任战利  戴成城 《岩石学报》2020,36(6):1870-1896

鄂尔多斯(地块)盆地南缘唐王陵砾岩的沉积时代长期存在晚前寒武纪(或震旦纪)与奥陶纪之争,沉积环境和物源组成也存在不同认识,是盆地南缘海相沉积地层及构造古地理研究关注的热点争议问题。本文采用碎屑锆石U-Pb年代学和岩石地球化学研究方法,综合分析探讨了唐王陵砾岩的沉积时代、物源组成及其构造古地理环境。结果表明:唐王陵砾岩自下而上三个组段的砂岩夹层样品、共计396颗碎屑锆石U-Pb谐和年龄数据主要分布在2531~2364Ma (n=25)、2120~1618Ma (n=268)、1230~940Ma (n=29)和905~744Ma (n=10)等四个年龄区间,相应的峰值年龄分别为2440Ma、1800Ma、1090Ma和810Ma,各组段样品单颗粒锆石最小年龄为829±11Ma、820±17Ma和744±8Ma。这一测年结果与盆地西南缘的震旦系正目观组和罗圈组碎屑锆石U-Pb年龄分布基本相似,但明显缺少其近邻剖面奥陶系平凉组碎屑锆石接近454Ma的高频年龄组分,表明唐王陵砾岩的沉积时代更接近新元古代晚期或震旦纪。碎屑锆石年龄谱物源示踪与岩石地球化学、沉积建造特征等综合分析结果揭示,唐王陵砾岩沉积具有来自(华北)鄂尔多斯陆块与祁连-北秦岭(杂岩)地体的双向混合物源特征,总体属于含有多套滑塌和水下扇堆积的滨浅海相碳酸盐岩和碎屑岩沉积建造组合体,主体形成于鄂尔多斯地块南缘新元古代晚期的被动大陆边缘伸展断陷海盆环境。唐王陵砾岩碎屑锆石测年数据接近1.09Ga和0.81Ga的年轻峰值年龄组分,提供并支持祁连-北秦岭地区存在格林威尔期Rodinia大陆聚合-裂解相关的构造岩浆活动事件,指示(华北)鄂尔多斯陆块与北秦岭地体至少在唐王陵砾岩沉积之前的格林威尔期曾经历过拼贴聚合-陆缘增生作用;随后受Rodinia大陆裂解事件的影响,鄂尔多斯地块南缘拼贴增生型大陆边缘发育形成了包括唐王陵砾岩在内的新元古代晚期陆缘滨浅海滑塌-碎屑流沉积。

  相似文献   

20.
为了探讨华北板块南缘中元古代沉积地层的时代归属和物质来源、区域古地理格局和大地构造特征,对豫西灵宝福地地区的高山河群进行碎屑锆石U-Pb年代学和锆石微量元素特征研究。获得的高山河群年龄最小(年轻)的单颗碎屑锆石 207Pb/206Pb 年龄值为1685±39 Ma,从而限制了高山河群最早沉积年龄不早于1700 Ma。结合上覆的龙家园组年代学标定(1594±12 Ma),将高山河群的形成年代限定为1700—1600 Ma,即中元古代长城纪的中晚期,属国际地质年表的“固结纪”。高山河群中碎屑锆石 207Pb/206Pb 年龄范围为1685—2751 Ma,呈现1850 Ma、2150 Ma、2300 Ma和2500 Ma共4个年龄峰值,对应于华北克拉通古元古代重要的地质事件,并且高山河群以1850 Ma和2500 Ma峰值年龄段的地质体为主要的物源区。根据高山河群与云梦山组碎屑锆石年龄频率对比,推测在豫西地区西侧存在以往报道较少的年龄为2500 Ma的地质体。根据熊耳群火山岩及其对应锆石的地球化学特征和熊耳期盆地动力学性质,并结合高山河群沉积相特征和沉积盆地构造属性,认为熊耳群形成于与“岛弧”共生的拉张性质的弧后盆地地区,而其上覆的高山河群为弧后盆地靠近大陆一侧的具有被动大陆边缘性质的滨浅海沉积。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号