首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fluvial channel geometry classification schemes are commonly restricted in relation to the scale at which the study took place, often due to outcrop limitations or the need to conduct small‐scale detailed studies. A number of classification schemes are present in the literature; however, there is often limited consistency between them, making application difficult. The aim of this study is to address this key problem by describing channel body geometries across a depositional basin to ensure that a wide range of architectures are documented. This was achieved by studying 28 locations over 4000 m of vertical succession in Palaeocene‐aged and Early Eocene‐aged deposits within the Bighorn Basin, Wyoming, USA. Five different channel body geometries have been defined based on the external geometric form, and internal arrangement and nature of storey contacts. These include the massive channel body geometry, semi‐amalgamated channel body geometry, internally amalgamated channel body geometry and offset stacked channel body geometry, which are considered to be subdivisions of the sheet geometry of many other classifications. An isolated channel body geometry has also been recognized alongside splay channel and sheet sandstone geometries in the floodplain facies associations. Field evidence, including the stacking style of storey surfaces, suggests that the different geometries form a continuum. The nature and degree of amalgamation at the storey scale are important in producing the different geometries and are related to the degree of channel migration. It is speculated that this is the result of differences in sediment supply and available accommodation. In contrast to previous schemes, the classification scheme presented here recognizes the importance of transitional geometries. This geometrical range has been recognized because of the basin‐scale nature of the study.  相似文献   

2.
Basin‐scale models are required to interpret ancient continental sedimentary successions, and reduce uncertainty in assessing geological resources in basins. Recently, modern studies show distributive fluvial systems to comprise a substantial proportion of modern sedimentary basins, but their role in ancient basin fills has yet to be quantitatively documented at the basin scale. This study analysed key fluvial characteristics to construct a detailed basin‐wide model of the Palaeogene Fort Union and Willwood formations (Bighorn Basin, Wyoming), using observations from modern studies, and ancient system scale studies of distributive fluvial systems, to guide interpretations. Mapping showed these formations to be highly heterogeneous with channel‐body proportion (from 12 to 81%) and geometry types (large amalgamated bodies to isolated channels), grain size (silt to conglomerate), average channel‐body thickness (4 to 20 m) and average storey thickness (3 to 10 m) varying significantly across the basin. Distributive fluvial systems in the form of alluvial and fluvial fans in transverse configurations were recognized as well as a wide axial system, with heterogeneity in the formations being closely aligned to these interpretations. Furthermore, numerous individual depositional systems were identified within the formations (Beartooth Absaroka, Washakie, Owl Creek and axial). Predicted downstream distributive fluvial system trends (i.e. downstream decrease in channel proportion, size and grain size) were identified in the Beartooth, Absaroka and Owl Creek systems. However, predicted trends were not identified in the Washakie system where intrabasinal thrusting disturbed the sequence. Importantly, a wide axial fluvial system was identified, where reverse downstream distributive fluvial system trends were present, interpreted to be the result of the input of transverse systems of variable size. This study provides a new level of detail in the application of basin‐scale models, demonstrating their usefulness in trying to understand and predict alluvial architecture distribution and heterogeneity, with important implications for economic resources and palaeogeographic reconstructions.  相似文献   

3.
《Sedimentology》2018,65(3):775-808
Fluvial systems in which peat formation occurs are typified by autogenic processes such as river meandering, crevasse splaying and channel avulsion. Nevertheless, autogenic processes cannot satisfactorily explain the repetitive nature and lateral continuity of many coal seams (compacted peats). The fluvial lower Palaeocene Tullock Member of the Fort Union Formation (Western Interior Williston Basin; Montana, USA ) contains lignite rank coal seams that are traceable over distances of several kilometres. This sequence is used to test the hypothesis that peat formation in the fluvial system was controlled by orbitally forced climate change interacting with autogenic processes. Major successions are documented with an average thickness of 6·8 m consisting of ca 6 m thick intervals of channel and overbank deposits overlain by ca 1 m thick coal seam units. These major coal seams locally split and merge. Time‐stratigraphic correlation, using a Cretaceous–Palaeogene boundary event horizon, several distinctive volcanic ash‐fall layers, and the C29r/C29n magnetic polarity reversal, shows consistent lateral recurrence of seven successive major successions along a 10 km wide fence panel perpendicular to east/south‐east palaeo‐flow. The stratigraphic pattern, complemented by stratigraphic age control and cyclostratigraphic tests, suggests that the major peat‐forming phases, resulting in major coal seams, were driven by 100 kyr eccentricity‐related climate cycles. Two distinct conceptual models were developed, both based on the hypothesis that the major peat‐forming phases ended when enhanced seasonal contrast, at times of minimum precession during increasing eccentricity, intensified mire degradation and flooding. In model 1, orbitally forced climate change controls the timing of peat compaction, leading to enhancement of autogenic channel avulsions. In model 2, orbitally forced climate change controls upstream sediment supply and clastic influx determining the persistence of peat‐forming conditions. At the scale of the major successions, model 2 is supported because interfingering channel sandstones do not interrupt lateral continuity of major coal seams.  相似文献   

4.
The Niers valley was part of the Rhine system that came into existence during the maximum Saalian glaciation and was abandoned at the end of the Weichselian. The aim of the study was to explain the Late Pleniglacial and Late Glacial fluvial dynamics and to explore the external forcing factors: climate change, tectonics and sea level. The sedimentary units have been investigated by large‐scale coring transects and detailed cross‐sections over abandoned channels. The temporal fluvial development has been reconstructed by means of geomorphological relationships, pollen analysis and 14C dating. The Niers‐Rhine experienced a channel pattern change from braided, via a transformational phase, to meandering in the early Late Glacial. This change in fluvial style is explained by climate amelioration at the Late Pleniglacial to Late Glacial transition (at ca. 12.5 k 14C yr BP) and climate‐related hydrological, lithological and vegetation changes. A delayed fluvial response of ca. 400 14C yr (transitional phase) was established. The channel transformations are not related to tectonic effects and sea‐level changes. Successive river systems have similar gradients of ca. 35–40 cm km?1. A meandering river system dominated the Allerød and Younger Dryas periods. The threshold towards braiding was not crossed during the Younger Dryas, but increased aeolian activity has been observed on the Younger Dryas point bars. The final abandonment of the Niers‐Rhine was dated shortly after the Younger Dryas to Holocene transition. Traces of Laacher See pumice have been found in the Niers valley, indicating that the Niers‐Rhine was still in use during the Younger Dryas. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Current models of alluvial to coastal plain stratigraphy are concept‐driven and focus on relative sea‐level as an allogenic control. These models are tested herein using data from a large (ca 100 km long and 300 m thick), continuous outcrop belt (Upper Cretaceous Blackhawk Formation, central Utah, USA). Many channelized fluvial sandbodies in the Blackhawk Formation have a multilateral and multistorey internal character, and they generally increase in size and abundance (from ca 10% to ca 30% of the strata) from base to top of the formation. These regional, low‐resolution trends exhibit much local variation, but are interpreted to reflect progressively decreasing tectonic subsidence in the upper Blackhawk Formation and overlying Castlegate Sandstone. The trend may also incorporate progressively more frequent channel avulsion during deposition of the lower Blackhawk Formation. Laterally extensive coal zones formed on the coastal plain during shallow‐marine transgressions, and define the high‐resolution stratigraphic framework of the lower Blackhawk Formation. Large (up to 25 m thick and 1 to 6 km wide), multistorey, multilateral, fluvial channel‐complex sandbodies that overlie composite erosion surfaces occur at distinct stratigraphic levels, and are interpreted as fluvial incised valley fills. Low amplitude (<30 m) relative sea‐level variations are interpreted as the dominant control on stratigraphic architecture in the lower Blackhawk Formation, which was deposited up to 50 km inland from the coeval shoreline. In contrast, the high‐resolution stratigraphy of the upper Blackhawk Formation is poorly defined, and channelized fluvial sandbodies are poorly organized. Vertical and laterally offset stacking of a small proportion (<10%) of sandbodies produced ‘clusters’ that are not confined by ‘master’ erosion surfaces. Avulsion is interpreted to dominate the stratigraphic architecture of the upper Blackhawk Formation. This data‐driven analysis indicates that alluvial to coastal plain stratigraphic architecture reflects a combination of various allogenic controls and autogenic behaviours. The relative sea‐level control emphasized in sequence stratigraphic models is only rarely dominant.  相似文献   

7.
Eighteen coastal-plain depositional sequences that can be correlated to shallow- to deep-water clinoforms in the Eocene Central Basin of Spitsbergen were studied in 1 × 15 km scale mountainside exposures. The overall mud-prone (>300 m thick) coastal-plain succession is divided by prominent fluvial erosion surfaces into vertically stacked depositional sequences, 7–44 m thick. The erosion surfaces are overlain by fluvial conglomerates and coarse-grained sandstones. The fluvial deposits show tidal influence at their seaward ends. The fluvial deposits pass upwards into macrotidal tide-dominated estuarine deposits, with coarse-grained river-dominated facies followed further seawards by high- and low-sinuosity tidal channels, upper-flow-regime tidal flats, and tidal sand bar facies associations. Laterally, marginal sandy to muddy tidal flat and marsh deposits occur. The fluvial/estuarine sequences are interpreted as having accumulated as a series of incised valley fills because: (i) the basal fluvial erosion surfaces, with at least 16 m of local erosional relief, are regional incisions; (ii) the basal fluvial deposits exhibit a significant basinward facies shift; (iii) the regional erosion surfaces can be correlated with rooted horizons in the interfluve areas; and (iv) the estuarine deposits onlap the valley walls in a landward direction. The coastal-plain deposits represent the topset to clinoforms that formed during progradational infilling of the Eocene Central Basin. Despite large-scale progradation, the sequences are volumetrically dominated by lowstand fluvial deposits and especially by transgressive estuarine deposits. The transgressive deposits are overlain by highstand units in only about 30% of the sequences. The depositional system remained an estuary even during highstand conditions, as evidenced by the continued bedload convergence in the inner-estuarine tidal channels.  相似文献   

8.
The Oligo‐Miocene Caspe Formation corresponds to the middle fluvial facies of the wider Guadalope‐Matarranya fluvial fan, located in the South‐east Ebro foreland basin (North‐east Spain). At the time of the Caspe Formation deposition, this sector of the Ebro basin underwent a very continuous, moderate sedimentation rate. Lithofacies comprise deposits from channellized and unchannellized flows. Channellized flow lithofacies form multi‐storey ribbon‐like sandstone bodies that crop out as extensive sandstone ridges belonging to exhumed channel networks. Width/thickness ratios of these channel‐fill bodies average close to six. Sinuosity is usually low (most common values around 1·1), although it can be high locally (up to 2). Thicknesses range from a few metres to 15 m. Unchannellized flow lithofacies form tabular bodies that can be ascribed to overbank deposits (levées, crevasse splays and fine‐grained floodplain deposits) and also to frontal lobes, although recognition of this last case requires exceptional outcrop conditions or geophysical subsurface studies. The unchannellized flow lithofacies proportion ranges from 75% to 97·8%. Methods applied to this study include detailed three‐dimensional architectural analysis in addition to sedimentological analysis. The architecture is characterized by an intricate network of highly interconnected ribbon‐like sandstone bodies. Such bodies are connected by three kinds of connections: convergences, divergences and cross‐cuttings. Although the Caspe Formation lithofacies and architecture resemble anastomosed channels (low topographic gradient, high preservation potential, moderate aggradation rate, high lateral stability of the channels, dominance of the ribbon‐like morphologies and high proportion of floodplain to channel‐fill sediments), an unambiguous interpretation of the channel networks as anastomosed or single threaded cannot be established. Instead, the observed architecture could be considered as the product of the complex evolution of a fluvial fan segment, where different network morphologies could develop. A facies model for aggrading ephemeral fluvial systems in tectonically active, endorheic basins is proposed.  相似文献   

9.
The Pennsylvanian to Permian lower Cutler beds comprise a 200 m thick mixed continental and shallow marine succession that forms part of the Paradox foreland basin fill exposed in and around the Canyonlands region of south‐east Utah. Aeolian facies comprise: (i) sets and compound cosets of trough cross‐bedded dune sandstone dominated by grain flow and translatent wind‐ripple strata; (ii) interdune strata characterized by sandstone, siltstone and mudstone interbeds with wind‐ripple, wavy and horizontal planar‐laminated strata resulting from accumulation on a range of dry, damp or wet substrate‐types in the flats and hollows between migrating dunes; and (iii) extensive, near‐flat lying wind‐rippled sandsheet strata. Fluvial facies comprise channel‐fill sandstones, lag conglomerates and finer‐grained overbank sheet‐flood deposits. Shallow marine facies comprise carbonate ramp limestones, tidal sand ridges and bioturbated marine mudstones. During episodes of sand sea construction and accumulation, compound transverse dunes migrated primarily to the south and south‐east, whereas south‐westerly flowing fluvial systems periodically punctuated the dune fields from the north‐east. Several vertically stacked aeolian sequences are each truncated at their top by regionally extensive surfaces that are associated with abundant calcified rhizoliths and bleaching of the underlying beds. These surfaces record the periodic shutdown and deflation of the dune fields to the level of the palaeo‐water‐table. During episodes of aeolian quiescence, fluvial systems became more widespread, forming unconfined braid‐plains that fed sediment to a coastline that lay to the south‐west and which ran approximately north‐west to south‐east for at least 200 km. Shallow marine systems repeatedly transgressed across the broad, low‐relief coastal plain on at least 10 separate occasions, resulting in the systematic preservation of units of marine limestone and calcarenite between units of non‐marine aeolian and fluvial strata, to form a series of depositional cycles. The top of the lower Cutler beds is defined by a prominent and laterally extensive marine limestone that represents the last major north‐eastward directed marine transgression into the basin prior to the onset of exclusively non‐marine sedimentation of the overlying Cedar Mesa Sandstone. Styles of interaction between aeolian, fluvial and marine facies associations occur on two distinct scales and represent the preserved expression of both small‐scale autocyclic behaviour of competing, coeval depositional systems and larger‐scale allocyclic changes that record system response to longer‐term interdependent variations in climatic and eustatic controlling mechanisms. The architectural relationships and system interactions observed in the lower Cutler beds demonstrate that the succession was generated by several cyclical changes in both climate and relative sea‐level, and that these two external controls probably underwent cyclical change in harmony with each other in the Paradox Basin during late Pennsylvanian and Permian times. This observation supports the hypothesis that both climate and eustasy were interdependent at this time and were probably responding to a glacio‐eustatic driving mechanism.  相似文献   

10.
Aggradation and fluvial incision controlled by downstream base-level changes at timescales of 10 to 500 kyr is incorporated in classic sequence stratigraphic models. However, upstream climate control on sediment supply and discharge variability causes fluvial incision and aggradation as well. Orbital forcing often regulates climate change at 10 to 500 kyr timescales while tectonic processes such as flexural (un)loading exert a dominant control at timescales longer than 500 kyr. It remains challenging to attribute fluvial incision and aggradation to upstream or downstream processes or disentangle allogenic from autogenic forcing, because time control is mostly limited in fluvial successions. The Palaeocene outcrops of the fluvial Lebo Shale Member in north-eastern Montana (Williston Basin, USA) constitute an exception. This study uses a distinctive tephra layer and two geomagnetic polarity reversals to create a 15 km long chronostratigraphic framework based on the correlation of twelve sections. Three aggradation–incision sequences are identified with durations of approximately 400 kyr, suggesting a relation with long-eccentricity. This age control further reveals that incision occurred during the approach of – or during – a 405 kyr long-eccentricity minimum. A long-term relaxation of the hydrological cycle related to such an orbital phasing potentially exerts an upstream climate control on river incision. Upstream, an expanding vegetation cover is expected because of an increasingly constant moisture supply to source areas. Entrapping by vegetation led to a significantly reduced sediment supply relative to discharge, especially at times of low evapotranspiration. Hence, high discharges resulted in incision. This study assesses the long-eccentricity regulated climate control on fluvial aggradation and incision in a new aggradation–incision sequence model.  相似文献   

11.
An outcrop dataset from the early Eocene Sunnyside Delta Interval of the Green River Formation in the Uinta Basin, Utah, USA, documents alluvial channel lithosomes. The abundance of Froude supercritical-flow sedimentary structures, together with an abundance of high-deposition-rate sedimentary structures, in-channel bioturbation and pedogenic modification, in-channel muds and thick soft-clast conglomerates, identify these lithosomes as deposits of variable-discharge rivers. These recognition criteria are part of an emerging facies model for variable-discharge rivers. This facies model, however, yet lacks robust recognition criteria for macro-scale or bar-scale stratal patterns of variable-discharge rivers. This study presents a dataset that corroborates some known stratal patterns and provides examples of hitherto unknown bar-scale stratal patterns of variable-discharge rivers, including: (i) low-angle downstream-accretion sets that may form as washed-out sheets in high sediment supply conditions or downstream of hydraulic jumps; (ii) high-angle upstream-accretion sets that imply deposition from systematically upstream-migrating channel-scale hydraulic jumps (cyclic steps); (iii) concave-up, upward-flattening high-angle downstream-accretion sets that are consistent with aggradation in channel-scale hydraulic-jump scours; (iv) upstream-accretion and lateral-accretion sets that may be linked to high-magnitude flood reworking of point bars; and (v) aggradation or vertical-accretion sets of ambiguous origin. These unconventional stratal patterns are compared to the established bar strata, such as those formed by point bars and braid bars and a discussion is provided on formative conditions for the here documented unconventional strata. This work highlights a need for further studies on the effect of discharge variability on bar formation and on the link between river morphology and bar types.  相似文献   

12.
《Sedimentology》2018,65(2):597-619
Fluvial channel‐belt clustering has recently been documented using quantitative metrics for systems dominated by autogenic controls. It has long been recognized that allogenic forcing (tectonic and eustatic controls) can lead to confinement of fluvial systems, resulting in clustering of channel belts. To date, no study has quantitatively documented the differences in channel‐belt clustering, compensational stacking of channel belts and interchannel‐belt connectivity in unconfined and confined systems. This study quantitatively compares world‐class outcrops of an unconfined fluvial system (Palaeocene lower Wasatch Formation) with outcrops of a confined fluvial system (Cretaceous Dakota Sandstone). Two new methods have been developed to quantitatively document channel‐belt clustering and intrachannel‐belt connectivity. These new methods, and other previously developed methods, are used to document an increase in channel‐belt clustering and intrachannel‐belt connectivity downdip in both systems. Additionally, it was found that channel belts within the unconfined system stack more compensationally than those in the confined system. These new methods and empirical relationships can be used for predicting intrachannel‐belt connectivity, and accurately modelling unconfined and confined fluvial systems in the subsurface.  相似文献   

13.
Fluvial ribbon sandstone bodies are ubiquitous in the Ebro Basin in North‐eastern Spain; their internal organization and the mechanics of deposition are as yet insufficiently known. A quarrying operation in an Oligocene fluvial ribbon sandstone body in the southern Ebro Basin allowed for a three‐dimensional reconstruction of the sedimentary architecture of the deposit. The sandstone is largely a medium‐grained to coarse‐grained, moderately sorted lithic arenite. In cross‐section, the sandstone body is 7 m thick, occupies a 5 m deep incision and wedges out laterally, forming a ‘wing’ that intercalates with horizontal floodplain deposits in the overbank region. Three architectural units were distinguished. The lowest and highest units (Units A and C) mostly consist of medium‐grained to coarse‐grained sandstone with medium‐scale trough cross‐bedding and large‐scale inclined stratasets. Each of Units A and C comprises a fining‐up stratal sequence reflecting deposition during one flood event. The middle unit (Unit B) consists of thinly bedded, fine‐grained sandstone/mudstone couplets and represents a time period when the channel was occupied by low‐discharge flows. The adjoining ‘wing’ consists of fine‐grained sandstone beds, with mudstone interlayers, correlative to strata in Units A and C in the main body of the ribbon sandstone. In plan view, the ribbon sandstone comprises an upstream bend and a downstream straight reach. In the upstream bend, large‐scale inclined stratasets up to 3 m in thickness represent four bank‐attached lateral channel bars, two in each of Units A and C. The lateral bars migrated downflow and did not develop into point bars. In the straight downstream reach, a tabular cross‐set in Unit A represents a mid‐channel transverse bar. In Unit C, a very coarse‐grained, unstratified interval is interpreted as deposited in a riffle zone, and gives way downstream to a large mid‐channel bar. The relatively simple architecture of these bars suggests that they developed as unit bars. Channel margin‐derived slump blocks cover the upper bar. The youngest deposit is fine‐grained sandstone and mudstone that accumulated immediately before avulsion and channel abandonment. Deposition of the studied sandstone body reflects transport‐limited sediment discharges, possibly attaining transient hyperconcentrated conditions.  相似文献   

14.
Sandstone bodies in the Sunnyside Delta Interval of the Eocene Green River Formation, Uinta Basin, previously considered as point bars formed in meandering rivers and other types of fluvial bars, are herein interpreted as delta mouth‐bar deposits. The sandstone bodies have been examined in a 2300 m long cliff section along the Argyle and Nine Mile Canyons at the southern margin of the Uinta lake basin. The sandstone bodies occur in three stratigraphic intervals, separated by lacustrine mudstone and limestone. Together these stratigraphic intervals form a regressive‐transgressive sequence. Individual sandstone bodies are texturally sharp‐based towards mudstone substratum. In proximal parts, the mouth‐bar deposits only contain sandstone, whereas in frontal and lateral positions mudstone drapes separate mouth‐bar clinothems. The clinothems pass gradually into greenish‐grey lacustrine mudstone at their toes. Horizontally bedded or laminated lacustrine mudstone onlaps the convex‐upward sandstone bars. The mouth‐bar deposits are connected to terminal distributary channel deposits. Together, these mouth‐bar/channel sandstone bodies accumulated from unidirectional jet flow during three stages of delta advance, separated by lacustrine flooding intervals. Key criteria to distinguish the mouth‐bar deposits from fluvial point bar deposits are: (i) geometry; (ii) bounding contacts; (iii) internal structure; (iv) palaeocurrent orientations; and (v) the genetic association of the deposits with lacustrine mudstone and limestone.  相似文献   

15.
Continental ‘overfilled’ conditions during rift initiation are conventionally explained as due to low creation of accommodation compared with sediment supply. Alternatively, sediment supply can be relatively high from the onset of rifting due to an antecedent drainage system. The alluvial Lower Group of the western Plio–Pleistocene Corinth rift is used to investigate the interaction of fluvial sedimentation with early rifting. This rift was obliquely superimposed on the Hellenide mountain belt from which it inherited a significant palaeorelief. Detailed sedimentary logging and mapping of the well‐exposed syn‐rift succession document the facies distributions, palaeocurrents and stratigraphic architecture. Magnetostratigraphy and biostratigraphy are used to date and correlate the alluvial succession across and between fault blocks. From 3·2 to 1·8 Ma, a transverse low sinuosity braided river system flowed north/north‐east to east across east–west‐striking active fault blocks (4 to 7 km in width). Deposits evolved downstream from coarse alluvial conglomerates to fine‐grained lacustrine deposits over 15 to 30 km. The length scale of facies belts is much greater than, and thus not directly controlled by, the width of the fault blocks. At its termination, the distributive river system built small, stacked deltas into a shallow lake margin. The presence of a major antecedent drainage system is supported by: (i) a single major sediment entry point; (ii) persistence of a main channel belt axis; (iii) downstream fining at the scale of the rift basin. The zones of maximum subsidence on individual faults are aligned with the persistent fluvial axis, suggesting that sediment supply influenced normal fault growth. Instead of low accommodation rate during the early rift phase, this study proposes that facies progradation can be controlled by continuous and high sediment supply from antecedent rivers.  相似文献   

16.
The Pliocene–Early Pleistocene Mangas Basin in SW New Mexico, USA, was a N–NW-trending full graben that changed southward to an eastward-tilted half graben. Unlike the facies distribution predicted in existing models, the half-graben part of the Mangas Basin was characterized by broad alluvial fans derived from the footwall scarp, smaller hangingwall-derived alluvial fans, and a shallow, closed lake (Lake Buckhorn) that locally lapped onto the hangingwall hills. The distribution of facies within the full-graben part of the Mangas Basin was also unlike that predicted in current models, primarily because of a broad belt of alluvial-fan sediment derived from the eastern footwall scarp and a narrow belt of axial-fluvial sediment adjacent to the western footwall scarp. The distribution of facies in the Mangas Basin does not appear to have been controlled by the eastward tilt of the floor of the half graben or ‘see-saw’ motion of the floor of the full graben, as predicted by existing models, but rather by the large size of the alluvial fans on the eastern side of the basin. These fans were derived from large, high-relief catchments on the footwall scarp of the Mogollon Mountains, the uplift of which began during Early Miocene. This example illustrates how earlier uplift and drainage development in a mountain range may influence facies distribution in a younger extensional basin.  相似文献   

17.
Un‐fragmented stratigraphic records of late Quaternary multiple incised valley systems are rarely preserved in the subsurface of alluvial‐delta plains due to older valley reoccupation. The identification of a well‐preserved incised valley fill succession beneath the southern interfluve of the Last Glacial Maximum Arno palaeovalley (northern Italy) represents an exceptional opportunity to examine in detail evolutionary trends of a Mediterranean system over multiple glacial–interglacial cycles. Through sedimentological and quantitative meiofauna (benthic foraminifera and ostracods) analyses of two reference cores (80 m and 100 m long) and stratigraphic correlations, a mid‐Pleistocene palaeovalley, 5 km wide and 50 m deep, was reconstructed. Whereas valley filling is chronologically constrained to the penultimate interglacial (Marine Isotope Stage 7) by four electron spin resonance ages on bivalve shells (Cerastoderma glaucum), its incision is tentatively correlated with the Marine Isotope Stage 8 sea‐level fall. Above basal fluvial‐channel gravels, the incised valley fill is formed by a mud‐prone succession, up to 44 m thick, formed by a lower floodplain unit and an upper unit with brackish meiofauna that reflects the development of a wave‐dominated estuary. Subtle meiofauna changes towards less confined conditions record two marine flooding episodes, chronologically linked to the internal Marine Isotope Stage 7 climate‐eustatic variability. After the maximum transgressive phase, recorded by coastal sands, the interfluves were flooded around 200 ka (latest Marine Isotope Stage 7). The subsequent shift in river incision patterns, possibly driven by neotectonic activity, prevented valley reoccupation guiding the northward formation of the Last Glacial Maximum palaeovalley. The applied multivariate approach allowed the sedimentological characterization of the Marine Isotope Stage 7 and Marine Isotope Stage 1 palaeovalley fills, including shape, size and facies architecture, which revealed a consistent river‐coastal system response over two non‐consecutive glacial–interglacial cycles (Marine Isotope Stages 8 to 7 and Marine Isotope Stages 2 to 1). The recurring stacking pattern of facies documents a predominant control exerted on stratigraphy by Milankovitch and sub‐Milankovitch glacio‐eustatic oscillations across the late Quaternary period.  相似文献   

18.
The Westphalian C and D fluvial sandstones in the Campine Basin (north‐east Belgium) are potential reservoirs for the sequestration of CO2 and interesting analogues of the hydrocarbon reservoirs in the Southern North Sea. Although these sandstones were deposited in a relatively short period of time, their reservoir properties and mineralogical compositions are very different. A petrographic study complemented with stable isotope analyses, fluid inclusion microthermometry and X‐ray diffraction analyses of the clay fractions of the sandstones, which were sampled from deep boreholes (>1000 m) in the Campine Basin, revealed that these differences are related mainly to the climate at the time of deposition. The most important eogenetic processes affecting the Westphalian sandstones were the generation of a pseudomatrix by physical compaction of Al‐silicates and lithic fragments that were strongly altered by extensive meteoric leaching, kaolinitization of unstable silicates and precipitation of siderite. These processes had a detrimental influence on the reservoir properties of Westphalian C sandstones, but their impact on the Westphalian D sandstones was minimal. The difference is assumed to be related to the climate at the time of deposition, which changed from tropical humid in the Westphalian C to semi‐arid/arid during the Late Westphalian D. Both the Westphalian C and D sandstones were affected by similar mesogenetic processes. Mesogenetic quartz cementation resulted from chemical compaction and illitization of kaolinite, K‐feldspar and smectitic clays. Illitization of kaolinite was controlled by the available quantities of co‐existing kaolinite and K‐feldspar and mainly affected the Westphalian D sandstones. Illitization of K‐feldspar was controlled by the K‐feldspar content. It had a much larger impact on the reservoir properties of the Westphalian D as, in these sandstones, K‐feldspar was less affected by eogenetic alteration. The illitization of smectitic clays resulted in illite, quartz and ankerite cementation in both reservoirs. This process had a more important impact on the Westphalian C reservoir, since cementation here also resulted from smectite to illite conversion in the interbedded and underlying shales. The effect of mesogenetic alterations on the reservoir properties was much less drastic than the impact of eodiagenesis. Mesogenetic alterations do exert a significant control on the properties of the Westphalian D. The vast impact of eodiagenesis on the Westphalian C sandstones made them less susceptible to mesogenetic alteration. The effect of telogenetic processes on the porosity and permeability of the Westphalian sandstones was small and restricted to the top reservoir intervals that directly underlie the Cimmerian Unconformity. No significant telogenetic alterations related to the Variscan Unconformity were observed.  相似文献   

19.
20.
Late Quaternary landscape development along the Rancho Marino coastal range front in the central‐southern Pacific Coast Ranges of California has been documented using field mapping, surveying, sedimentary facies analysis and a luminescence age determination. Late Quaternary sediments along the base of the range front form a single composite marine terrace buried by alluvial fans. Marine terrace sediments overlie two palaeoshore platforms at 5 m and 0 m altitude. Correlation with the nearby Cayucos and San Simeon sites links platform and marine terrace development to the 125 ka and 105 ka sea‐level highstands. Uplift rate estimates based on the 125 ka shoreline angle are 0.01–0.09 m ka?1 (mean 0.04 m ka?1), and suggest an increase in regional uplift along the coast towards the NW where the San Simeon fault zone intersects the coastline. Furthermore, such low rates suggest that pre‐125 ka uplift was responsible for most of the relief generation at Rancho Marino. The coastal range front landscape development is, thus, primarily controlled by post 125 ka climatic and sea‐level changes. Post 125 ka sea‐level lowering expanded the range front piedmont area to a width of 7.5 km by the 18 ka Last Glacial Maximum lowstand. This sea‐level lowering created space for alluvial fan building along the range front. A 45 ± 3 ka optically stimulated luminescence (OSL) age provides a basal age for alluvial fan building or marks the time by which distal alluvial fan sedimentation has reached 300 m from the range front slope. Fan sedimentation is related to climatic change, with increased sediment supply to the range front occurring during (1) glacial period cold stage maxima and/or (2) the Late Pleistocene–Holocene transition, when respective increases in precipitation and/or storminess resulted in hillslope erosion. Sea‐level rise after the 18 ka lowstand resulted in range front erosion, with elevated localised erosion linked to the higher relief and steeper slopes in the SE. This study demonstrates that late Quaternary coastal range front landscape development is driven by interplay of tectonics, climatic and sea‐level change. In areas of low tectonic activity, climatic and sea‐level changes dominate coastal landscape development. When the sea‐level controlled shoreline is in close proximity to the coastal range front, localised patterns of sedimentation and erosion are passively influenced by the pre‐125 ka topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号