首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Caribbean reefs have been unevenly surveyed, with many areas lacking baseline data. In this study, the current status of Orbicella reefs, a structurally complex forereef habitat, was quantified in an understudied region, the Eastern Caribbean. During 2011 the same observers surveyed benthic assemblages, coral juvenile density, herbivorous fishes, and invertebrates at 30 Orbicella reefs in four Eastern Caribbean areas: Antigua, Barbados, St Lucia, and St Vincent and the Grenadines (hereafter St Vincent). Not all Orbicella forereefs were functionally the same in the Eastern Caribbean. Benthic communities and herbivorous fishes varied greatly among islands. Hard coral had the highest overall percent cover on most reefs in this study, with an average cover of 22%, and was greater than fleshy macroalgal cover at 83% of the sites. Overall, coral juvenile density was low but was positively associated with higher densities of Diadema antillarum, highlighting the importance of herbivory on the reefs. Nearshore coral reefs in Barbados were in a better state than other areas, exhibiting higher coral cover dominated by spawning corals, higher densities of coral juveniles exhibiting higher coral cover dominated by spawning corals, higher densities of coral juveniles and D. antillarum. Low biomass of herbivorous fishes at a majority of the coral reef sites is of major concern for the functioning of these reefs. Conservation of parrotfishes and other herbivores is necessary given the abundance of algae on most of these reefs and the beneficial effect of their presence on coral juveniles. This is the first comprehensive study that compares the state of Orbicella reefs in the Eastern Caribbean, providing valuable information that will be useful in creating realistic targets for future management and conservation.  相似文献   

2.
Much of coral reef ecology has focused on how human impacts change coral reefs to macroalgal reefs. However, macroalgae may not always be a good indicator of reef decline, especially on reefs with significant sea urchin populations, as found in Kenya and Hawaii. This study tests the effects of trophic interactions (i.e. herbivory by fishes and sea urchins) and spatial competition (between algae and coral) on algal community structure of reefs surrounding two Hawaiian Islands that vary in their level of human impacts. Reef‐building organisms (corals and crustose coralline algae) were less abundant and turf algae were more abundant on Maui as compared to Lanai, where human impacts are lower. In contrast to previous studies, we found no evidence that macroalgae increased with human impacts. Instead, low turf and macroalgal abundance were best explained by the interactive effects of coral cover and sea urchin abundance. Fishing sea urchin predators appeared to have cascading effects on the benthic community. The absence of sea urchin predators and high sea urchin densities correspond to a disproportionately high abundance of turf and crustose coralline algae. We propose that high turf algal abundance is a better indicator of reef decline in Hawaii than high macroalgal abundance because turf abundance was highest on reefs with low coral cover and few fish. The results of this study emphasize that understanding changes in community composition are context‐dependent and that not all degraded reefs look the same.  相似文献   

3.
4.
By the consumption of algae, parrotfishes open space for young coral settlement and growth, thus playing a central role on the maintenance of coral reefs. However, juvenile parrotfish ecology is often overlooked due to the difficulty discerning species during this phase. Herein, we present the first attempt to investigate changes in habitat use and diet that happen to juveniles of the Redeye parrotfish Sparisoma axillare, focusing on four zones within an algal‐dominated reef: the macroalgal beds, back reef, reef flat, and fore reef. Smaller S. axillare juveniles (<5 cm) preferred to inhabit the macroalgal beds and the reef flat, whereas juveniles larger than 5 cm were more abundant in the back and fore reefs due to distinct post‐settlement habitat conditions. Aggressive interactions with the territorial damselfish Stegastes fuscus were the primary driving factor of juvenile distribution and feeding rates. Attack rates increased with juvenile size and the lowest bite rates were observed in zones with higher densities of territorial damselfish. In previous studies, the persistence of parrotfish recruits in habitats dominated by damselfish was reduced, but newly settled parrotfish occurred more densely within the damselfish domain by behaving as a cryptic reef fish. As these juveniles grew, their bite rates increased, a change associated with a shift from cryptic to roving behavior. Feeding preferences were determined by substrate cover, where juveniles fed on available food sources in each habitat. Juveniles relied on jointed calcareous algae in habitats dominated by these algae, a pattern not observed for thick leathery algae. Filamentous algae were the preferred food for smaller fish; for individuals greater than 10 cm, a higher ingestion of sand was observed. Most studies evaluating the functional role of parrotfish do not consider species feeding preferences. However, the potential for a species to turn an impacted reef back to a coral‐dominated phase is influenced by their food selection, which is dependent on the algal species composition.  相似文献   

5.
Surgeonfish and parrotfish play an important role in structuring the benthic communities of coral reefs. However, despite their importance, little is known about their distribution patterns in the north sector of the Mesoamerican Reef System. This study evaluated the distribution of these fish in 34 sites in four habitats (lagoon, front, slopes and terrace) along a depth gradient (c 0.5–20 m). These herbivorous fish were assessed by visual censuses. Species dominance was evaluated for each habitat using SIMPER analysis. Habitat characteristics data were collected to determine the relationship between habitat conditions and spatial variations in herbivorous fish (using abundance and biomass as a proxy) via redundancy analysis. The herbivorous fish assemblage had a low density (fish per 100 m2) and biomass (g·100 m?2) in comparison with assemblages in similar studies. In contrast, species richness was high compared with other studies in the Caribbean. Spatial variation of the abundance, biomass and size of herbivorous fish was strongly related to coral and seagrass cover, as well as to depth and rugosity. These four variables were critical in controlling the distribution patterns of the herbivorous fish assemblages. No associations were found between fish and macroalgae or any other benthic group. The present study indicates that the species richness of surgeonfish and parrotfish was not regionally affected by the dominance of macroalgae in the habitats studied. Seagrass beds and the coral reef matrix need to be preserved for the herbivorous fish assemblages to remain healthy and capable of controlling excess macroalgae growth.  相似文献   

6.
Feeding behavior of coral reef fishes often determines their species‐specific ecological roles. We studied the two most common Caribbean surgeonfishes (Acanthurus coeruleus and Acanthurus tractus) to examine their species‐specific grazing rates and feeding preferences and how these differed with environmental context. We quantified the feeding activity of both surgeonfishes at four spur and groove reefs in the Florida Keys, USA, that varied in fish abundance, rugosity, algal community composition, and sediment loading. Overall, A. tractus fed twice as fast as A. coeruleus. Both species selected for turf algae but avoided feeding on turf algae that had become laden with sediment. Selectivity for upright macroalgae was more complex with A. tractus targeting Dictyota spp., while A. coeruleus avoided Dictyota spp. relative to the alga's abundance. Both species selected for epiphytes growing on other organisms such as macroalgae and sponges. However, several of these feeding patterns changed with ontogeny. For example, larger individuals of both species fed more frequently on long, sediment‐laden algal turf and less frequently on Dictyota spp. compared to smaller sized individuals. In addition, A. tractus also increased its preference for upright calcareous algae as they attained larger sizes. Overall, the disparity in feeding preferences of surgeonfishes likely indicates subtle differences in species‐specific ecological roles. Both A. coeruleus and A. tractus likely prevent development of turf algae and thus maintain algal communities in the early stages of succession. Additionally, A. tractus may also help reduce macroalgal abundance by targeting common macroalgal species.  相似文献   

7.
Many Caribbean reefs have shifted from coral dominance to macroalgal dominance, often by brown algae such as Dictyota and Lobophora. However, the north side of Cayman Brac in the Cayman Islands is dominated seasonally by the green macroalga Microdictyon (percent cover of Microdictyon is 4% in the winter and ~40% of the reef in the summer), although it is absent from the south side of the island and the remainder of the country. Indeed, Microdictyon is rare in much of the Caribbean, so this situation on Cayman Brac provides an opportunity to investigate the conditions that facilitate its distribution and dominance. The impact of herbivory, competition, nutrient input and other abiotic conditions were examined as factors that could influence the distribution and dominance of Microdictyon. While herbivory or nutrient input are frequently found to be key drivers of benthic community composition on coral reefs, here consumption of Microdictyon by herbivores was low, and thus, the alga was not subject to strong top-down control by herbivory. So, in this case, neither herbivore abundance nor feeding preference appeared to influence the distribution of Microdictyon. Nutrient input was also similar to both sides of the island suggesting nutrients played little role in differential distribution. But, in a controlled transplant experiment where Microdictyon was protected from herbivory and competition, it experienced almost complete mortality (93.3%) when transplanted to the south side, compared to only 11.8% mortality on the north. The south side was exposed to the strongest wave action 92% of the days in our study and was on average a slight, but significant 0.2°C warmer. Thus, these data suggest physical forcing (i.e. wave exposure) is the most likely factor dictating Microdictyon distribution. Conversely, a combination of reduced herbivory and increased competitive strength may explain the seasonal dominance of Microdictyon on the north side of Cayman Brac. Microdictyon was a competitive inferior to the other common algae in winter but increased in competitive strength to equal other species in summer. These results add to the literature on Microdictyon and on the forces impacting benthic community structure of coral reefs.  相似文献   

8.
Spongivory by Parrotfish in Florida Mangrove and Reef Habitats   总被引:7,自引:0,他引:7  
Abstract. Although parrotfish are generally reported to be herbivorous, increasing evidence suggests that some Caribbean species feed on sponges. After observing grazing scars on the barrel sponge, Xestospongia muta , 40 sponges were videotaped on three reefs for >0.5 h to determine the frequency of parrotfish bites on this species. A total of 10 h of video recording captured 45 bites on normally coloured X. muta and 527 bites on four bleached X. muta by the parrotfish Sparisoma aurofrenarum, Scarus croicensis and Scarus taeniopterus. The viscera gut and liver of 55 parrotfish collected from mangrove and reef habitats were digested in nitric acid and analysed for spicule content. The parrotfish collected in the mangroves mostly Scarus guacamaia and Sparisoma chrysopterum had significantly higher masses of spicules in their viscera than did parrotfish collected on the reef Sparisoma aurofrenatum, Sparisoma viride, Sparisoma chrysopterum, Scarus vetula, Scarus coelestinus and Scarus taeniopterus . The spicules of Geodia gibhrrosa, a chemically undefended sponge that is common in the mangroves but rare in exposed locations on the reef, were abundant in the viscera of parrotfish collected in the mangroves. These results provide further evidence that fish predation has an important effect on the distribution and abundance of Caribbean sponges.  相似文献   

9.
The distribution and biomass of macroalgae, principally Enteromorpha spp., have been estimated in Langstone Harbour, a 19 km2 tidal basin in southenrn England. Comprehensive mapping was carried out annually at the time of maximum biomass and monthly mapping of selected areas allowed seasonal changes to be studied. Aerial false-colour photography and ground-level mapping were used for assessing the area and density of cover of macroalgae, but have identified no continuous trends between 1973 and 1982. In nine years, some 48% of the intertidal mudflat has supported >75% macroalgal cover at some stage, but generally only one-third of this potential has been achieved annually. The average peak biomass was determined by a stratified sampling method and varied about a mean of 38.5 g dry weight per square metre and showed significant annual differences. The processes controlling macroalgal growth and distribution reviewed, but, in general, factors other than nutrient availability are effective in determining areas supporting high macroalgal cover in any particular year.  相似文献   

10.
Marine macrophytes sustain valuable epiphytic biodiversity. Nonindigenous macroalgae may induce changes in composition and structure of epifaunal assemblages and therefore support different assemblages from those associated with native species. In this study, differences in faunal community structure between the introduced fucoid Sargassum muticum and the native seagrass Cymodocea nodosa were tested over a year on an intertidal shallow sandy bottom at the southern introduction front, the El Jadida coastline (NW Morocco). Epifaunal community structure consistently differed between macrophytes through seasons, with more species‐rich assemblages associated with S. muticum than C. nodosa despite comparable abundances. The significantly greater epifauna diversity on S. muticum may be related to its structural complexity. However, the species contributing most to differences in assemblages between both macrophytes, such as Steromphala umbilicalis and S. pennanti, were found on both habitats with temporally varying abundances. Some species‐specific affinities were detected (Stenosoma cf. acuminatum, Elasmopus vachoni, Chauvetia brunnea). Nitrogen, dissolved oxygen, suspended matter and temperature were identified as the best explanatory variables contributing to the observed macroepifaunal patterns. This study provides evidence that S. muticum acts as a favourable and additional habitat for epifaunal species and supports a more diverse epifaunal assemblage in this Moroccan seagrass meadow.  相似文献   

11.
Intertidal benthic macroalgae are a biological quality indicator in estuaries and coasts. While remote sensing has been applied to quantify the spatial distribution of such macroalgae, it is generally not used for their monitoring. We examined the day-to-day and seasonal dynamics of macroalgal cover on a sandy intertidal flat using visible and near-infrared images from a time-lapse camera mounted on a tower. Benthic algae were identified using supervised, semi-supervised and unsupervised classification techniques, validated with monthly ground-truthing over one year. A supervised classification (based on maximum likelihood, using training areas identified in the field) performed best in discriminating between sediment, benthic diatom films and macroalgae, with highest spectral separability between macroalgae and diatoms in spring/summer. An automated unsupervised classification (based on the Normalised Differential Vegetation Index NDVI) allowed detection of daily changes in macroalgal coverage without the need for calibration. This method showed a bloom of macroalgae (filamentous green algae, Ulva sp.) in summer with > 60% cover, but with pronounced superimposed day-to-day variation in cover. Waves were a major factor in regulating macroalgal cover, but regrowth of the thalli after a summer storm was fast (2 weeks). Images and in situ data demonstrated that the protruding tubes of the polychaete Lanice conchilega facilitated both settlement (anchorage) and survival (resistance to waves) of the macroalgae. Thus, high-frequency, high resolution images revealed the mechanisms for regulating the dynamics in cover of the macroalgae and for their spatial structuring. Ramifications for the mode, timing, frequency and evaluation of monitoring macroalgae by field and remote sensing surveys are discussed.  相似文献   

12.
The aim of this study was to establish the effect of temporal variation of the alga Caulerpa prolifera cover on the composition and stability of the associated crustacean community. Forty‐five crustacean species were found, amphipods and tanaidaceans being the most abundant groups. The stations were grouped mainly based on the gradient of algal cover, independently of location or sampling period (MDS analyses). Considering separately epifaunal and infaunal species, the epifauna occurred mainly at high cover (HC) and medium–low cover (MLC) stations, while the infauna occurred at MLC and unvegetated (UV) stations. Infaunal species were predominant in all stations and sampling periods, and the abundance and numbers of epifaunal species showed a clear dependence of algal cover. To quantify the loss of biodiversity due to the plant cover variations, we applied the average and variation in taxonomic distinctness (Δ+ and Λ+, respectively). The HC stations, especially those with fewer algal cover variations along the study period, showed few fluctuations of Δ+,and Λ+ was usually located near mean; however, UV stations tended to fall in the area where the statistical power of the test is reduced and showed more oscillations of Λ+. The ability of these indices to test the fauna composition in function of the alga presence is discussed.  相似文献   

13.
大型底上动物参与海洋生态系统中的物理、化学和生物过程,具有极高的研究价值。浙江三门湾是天然的半封闭海湾,也是海洋生物重要的栖息、觅食和育幼的场所。为探究三门湾海域物种间的资源利用情况及生态关系,在该海域进行了底拖网生物调查。根据2017年和2018年夏季在三门湾海域进行的大型底上生物研究结果,运用优势度(Y)、生态位宽度、生态位重叠、方差比率法(VR)、χ2检验、联结系数(AC)、共同出现百分率(PC)对生态位和种间联结性进行了研究。结果表明: 2017~2018年间三门湾海域共捕获大型底上动物53种,包括两年共有种,即主要底上动物22种。其中优势种3种,包括哈氏仿对虾(Mierspenaeopsis hardwickii)、中华栉孔虾虎鱼(Ctenotrypauchen chinensis)和棒锥螺(Turritella terebra),这三个物种属中生态位种;三门湾主要底上动物依据生态位宽度值划分为3组,即广生态位种、中生态位种和窄生态位种;种对间生态位重叠值总体差异性较大,其与种对的食性、栖息环境密切相关;根据总体联结性分析得主要底上动物总体呈显著正关联,群落结构较为稳定; χ2检验、联结系数(AC)和共同出现百分率(PC)表明种对间联结性较弱,趋近于相互独立。三门湾大型底上动物的群落结构比较稳定,但种对间的关联性在逐渐下降。  相似文献   

14.
苏北浅滩是研究浒苔绿潮早期形成机制的重要区域,该区域紫菜养殖筏架上附生绿藻的群落结构变化对浒苔绿潮的发生具有重要影响,环境因素在其中发挥了重要作用.为了探明导致苏北浅滩绿藻群落结构变化的主要环境因素,本文通过分子生物学和种群生态学方法对筏架附生绿藻群落结构进行了研究,结果表明:(1)苏北浅滩筏架附生绿藻群落主要由浒苔(...  相似文献   

15.
To elucidate which environmental factors affect lagoonal‐scale sea cucumber distributions in Ishigaki Island, Okinawa, Japan, intertidal and subtidal areas of three coral reef lagoons were classified into several ground divisions by bottom characteristics, and sea cucumber densities therein were compared with the composition of sediment cover, grain size and organic content, and coverage of macroalgae, seagrass, and massive corals. Holothuria atra, Holothuria leucospilota, Stichopus chloronotus, and Synapta maculata had highest densities in the nearshore areas but were rare in reef flats, probably because of wave disturbance and low areal cover of sand sediment as potential feeding environments. No relationship was observed between sea cucumber densities and sediment organic content or grain size. Thus, even if these sea cucumbers have selectivity for habitats with a high sediment organic content, the effect of such selectivity on the distribution seems to be limited to relatively small areas. The sea cucumber distributions can be classified by bottom sediment/biota composition into bedrock (H. leucospilota), sand (H. atra), and lagoonal types (St. chloronotus and Sy. maculata). These habitat selections were possibly related to various aspects of sea cucumber ecology such as refuge from predators or turbulence, or settlement and nursery place, which have implications for importance of the complexity of lagoonal‐scale topography and sediment/biota conditions for the coexistence of various holothurian species.  相似文献   

16.
Artificial reefs have been suggested as a tool for conservation and restoration of marine habitats. However, the relationships between coral reef habitats and man-made structures are poorly understood. We experimentally tested whether artificial reefs change grazing patterns in their surrounding environment. We exposed heaps of the macroalgae, Ulva lactuca, to natural grazing, at various distances from three artificial reefs. Results suggest that artificial reefs change grazing patterns in the neighboring area. In all the locations examined grazing was 2-3 times higher near the artificial reefs than in control sites (p < 0.05). We suggest that herbivorous fishes are attracted to the artificial reefs, creating a zone of increased grazing. Therefore, while planning deployment of such artificial reefs it is necessary to consider their overall influence on their natural surroundings, in order to maintain the natural community trophic dynamics.  相似文献   

17.
Caribbean spiny lobster (Panulirus argus) settle preferentially in macroalgal‐covered hard‐bottom habitat, but seagrass is more prevalent in Florida (United States) and the Caribbean, so even low settlement of lobsters within seagrass could contribute substantially to recruitment if post‐settlement survival and growth were high. We tested the role of seagrass and hard‐bottom habitats for P. argus recruitment in three ways. We first explored possible density‐dependent regulation of early benthic juvenile lobster survival within cages deployed in seagrass and hard‐bottom habitats. Second, we compared settlement and survival of P. argus in both habitats, by comparing the recovery of microwire‐tagged early benthic juveniles from patches of seagrass and hard‐bottom. Finally, we assessed the relative abundance of juvenile lobsters in each habitat by deploying artificial structures in seagrass sites and compared these data with data from similar deployments of artificial structures in hard‐bottom habitat in other years. More early benthic juvenile lobsters were recovered from cages placed in hard‐bottom than in seagrass, but mortality of the early benthic life stage was high in both habitats. In regional surveys, the mean number of lobsters recovered from artificial shelters deployed within seagrass was lower than in any year that we sampled hard‐bottom, indicating that fewer lobsters reside naturally in seagrass, particularly large juveniles >40 mm carapace length. The greater abundance (and likely survival) of juvenile P. argus that we observed in hard‐bottom habitat as opposed to seagrass, combined with previous studies demonstrating that postlarval P. argus are attracted to, settle in, and metamorphose more quickly in red macroalgae, confirm that macroalgae‐dominated hard‐bottom habitat appears to be the preferred and more optimal nursery for Caribbean spiny lobster.  相似文献   

18.
There is at present a ‘coral reef crisis’; one of the more drastic consequences of this is a phase shift, in which reef‐building corals are replaced by non‐reef building benthos such as macroalgae and soft corals. Previous studies have principally focused on the shift to macroalgae. Our goal was to investigate whether the dominance of the zoanthid Epizoanthus gabrieli on some reefs of Todos os Santos Bay, Brazil, represented a non‐algal phase shift. In 2003, we identified a high cover of this species on two reefs (52% and 70%), but only in 2007 was it possible to confirm a reduction in coral cover. This dominance has persisted for over 9 years, characterizing a true phase shift. This loss of coral cover may be a result of anthropogenic disturbances within the bay; however, given the large number of human impacts, further studies are needed to identify specific causes of this shift. Although there are some reports of phase shift involving species pertaining to the Class Anthozoa, this is the first report of this phenomenon involving the order Zoanthidea.  相似文献   

19.
Bioerosion is a natural process in coral reefs. It is fundamental to the health of these ecosystems. In the Eastern Tropical Pacific (ETP) coral reefs, the most important bioeroders are sponges, bivalves, sea urchins and the fish Arothron meleagris. In the 1980s, El Niño caused high coral mortality and an increase in macroalgal growth. As a result, greater sea urchin bioerosion occurred. This weakened the reef framework. Considering the high vulnerability of the ETP coral reefs, the goal of this study was to determine the current bioerosion impact of the sea urchin Diadema mexicanum along the western coasts of Mexico, El Salvador, Costa Rica and Panamá. The balance between coral bioaccretion and sea urchin bioerosion was also calculated. Between 2009 and 2010, in 12 coral reefs localities, D. mexicanum density, bottom cover and rugosity were quantified along band transects. The daily bioerosion rate was obtained from the amount of carbonates evacuated by sea urchins per unit time. The rate of coral accretion was calculated by multiplying the coral growth rate of the dominant genus by the density of their skeleton and by their specific coral cover. The localities were dissimilar (R = 0.765, P < 0.001) in terms of live coral cover, crustose calcareous algae, turf cover, rugosity index, and density and size of D. mexicanum. At all sites, with the exception of Bahía Culebra (Costa Rica), coral bioerosion was less than coral bioaccretion. Diadema mexicanum plays a dominant role in the balance of carbonates in the ETP, but this depends on reef condition (protection, overfishing, eutrophication) and so the impacts can be either positive or negative.  相似文献   

20.
Although bioerosion is among the most destructive forces on coral reefs, indirect effects influencing the bioerosion dynamics are understudied. Here, I assess the hypothesis that coral reef grazers indirectly facilitate proliferation of bioeroding sponges by removing epibiotic fleshy seaweeds from the Great Barrier Reef. This study quantifies the degree of spatial correlation between the distribution of bioeroding sponges and the distribution of grazing pressure, as evidenced by the abundance of seaweed and parrotfish bite marks. While the sponge tissue area was negatively correlated with seaweed coverage, the number of parrotfish bite marks was associated with less algae and more sponge tissue. Several factors derived from grazing on seaweeds may facilitate sponge growth: increases in the availability of light may favor primary production by symbiotic zooxanthellae and thereby increase growth of bioeroding sponges; on the other hand, sponge settlement may be facilitated on grazed substrates. All these factors are likely related, and contribute to an increasing erosion of coral reefs. Similar processes have recently been described in Mediterranean ecosystems, suggesting that the interactions I document here, could be widespread.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号