共查询到20条相似文献,搜索用时 62 毫秒
1.
The Maule, Chile, (Mw 8.8) earthquake on 27 February 2010 triggered deformation events over a broad area, allowing investigation of stress redistribution within the upper crust following a mega-thrust subduction event. We explore the role that the Maule earthquake may have played in triggering shallow earthquakes in northwestern Argentina and Chile. We investigate observed ground deformation associated with the Mw 6.2 (GCMT) Salta (1450 km from the Maule hypocenter, 9 h after the Maule earthquake), Mw 5.8 Catamarca (1400 km; nine days), Mw 5.1 Mendoza (350 km; between one to five days) earthquakes, as well as eight additional earthquakes without an observed geodetic signal. We use seismic and Interferometric Synthetic Aperture Radar (InSAR) observations to characterize earthquake location, magnitude and focal mechanism, and characterize how the non-stationary, spatially correlated noise present in the geodetic imagery affects the accuracy of our parameter estimates. The focal mechanisms for the far-field Salta and Catamarca earthquakes are broadly consistent with regional late Cenozoic fault kinematics. We infer that dynamic stresses due to the passage of seismic waves associated with the Maule earthquake likely brought the Salta and Catamarca regions closer to failure but that the involved faults may have already been at a relatively advanced stage of their seismic cycle. The near-field Mendoza earthquake geometry is consistent with triggering related to positive static Coulomb stress changes due to the Maule earthquake but is also aligned with the South America-Nazca shortening direction. None of the earthquakes considered in this study require that the Maule earthquake reactivated faults in a sense that is inconsistent with their long-term behavior. 相似文献
2.
3.
水位下降卸荷诱发库岸边坡快速失稳机理分析 总被引:6,自引:0,他引:6
本文以某工程现场岩质边坡为例,采用与传统裂隙水压力分布不同的水压力分布方式和边坡裂隙中可能发生的水锤效应相耦合,分析研究了岩质边坡发生滑动的机理及稳定性。研究表明,本文所采用的水压力分布方式较为符合边坡中的水压力分布实际情况,可以给出一个较为合理的稳定系数。当考虑水锤效应时,岩质边坡的稳定系数大大降低,说明水锤效应加剧了边坡破坏失稳的过程。本文所采用的水压力分布方式与边坡裂隙中的水锤效应相耦合的计算方法,在边坡稳定性分析中具有参考意义。 相似文献
4.
A large number of deep cuts are formed during the construction of expressways in mountainous areas. Inadequate interpretation of ground conditions is a major contributing factor to the failure of cut slopes. This study focuses on the Hongyan landslide along the S26 expressway. Due to lack of an adequate pre-construction investigation, a landslide was triggered by small-scale excavation at the toe part of the slope. The potential slip surface was incorrectly located; consequently, two rows of stabilizing piles were not long enough to reach stable rocks. To overcome the mistake, two additional rows of piles were installed. During construction, both slope deformation and the stress of reinforced bars in piles were monitored for safety considerations. A Verhulst model-based failure forecast was also utilized to insure the stability of the slope during remedial works. Reviewing this landslide reveals a number of lessons. First, sufficient geological investigation and careful interpretation of ground conditions are mandatory prior to the design of a cut slope. Second, systematic field monitoring is strongly recommended, especially when the geology of the slope is complex and it is difficult to determine failure patterns. Third, the failure forecast can serve as a supplementary measure to insure the safety of workers and slopes. Last, it always takes some time for stabilizing piles to mobilize. 相似文献
5.
Audrey Recouvreur Natacha Fabregas Thierry Mulder Vincent Hanquiez Kelly Fauquembergue Elsa Tournadour Herv Gillet Jean Borgomano Emmanuelle Poli Jean‐Baptiste Kucharski Stanislas Wilk 《Sedimentology》2021,68(1):266-293
The large acoustic data set acquired during the Carambar cruises is composed of high resolution bathymetry, backscatter data and very‐high resolution seismic lines which allow for an overview of the morphology and sediment transfer processes from the shallow upper slope to the abyssal plain of a modern carbonate system: the north‐eastern slope of the Little Bahama Bank. Surficial distribution of the acoustic facies and echofacies reflects a wide variety of sedimentary processes along and across the slope. The western sector of the Little Bahama Bank is dominated by depositional processes whereas its eastern sector, which is incised in the lower slope by giant canyons, is affected by erosion and bypass processes. Datasets suggest that currents play an important role both in along‐slope sedimentary processes and in the abyssal plain. The Antilles Current appears to affect a large part of the middle and lower slopes. The absence of sizeable present‐day channel/levée complexes or lobes at the mouth of the canyon – revealed by the bathymetric map – indicates that the southward flowing Deep Western Boundary Current influences modern abyssal sediment deposition. Based on depositional processes and indicators of canyon maturity observed in facies distribution, the current study proposes that differential subsidence affects the eastern versus western part of the bank. The morphology of the Great Abaco Canyon and Little Abaco Canyon, which extend parallel to the platform, and the Little Bahama Bank slope appears to be related to the Great Abaco Fracture Zone. 相似文献
6.
7.
Eduardo Contreras‐Reyes David Vlker Jrg Bialas Eduardo Moscoso Ingo Grevemeyer 《地学学报》2016,28(4):257-264
Reloca Slide is the relict of an ~24‐km3 submarine slope collapse at the base of the convergent continental margin of central Chile. Bathymetric and seismic data show that directly to the north and south of the slide the lower continental slope is steep (~10°), the deformation front is shifted landwards by 10–15 km, and the frontal accretionary prism is uplifted. In contrast, ~80 km to the north the lower continental margin presents a lower slope angle of about 4° and a wide frontal accretionary prism. We propose that high effective basal friction conditions at the base of the accretionary prism favoured basal accretion of sediment and over‐steepening of the continental slope, producing massive submarine mass wasting in the Reloca region. This area also spatially correlates with a zone of low coseismic slip of the 2010 Maule megathrust earthquake, which is consistent with high basal frictional coefficients. 相似文献
8.
库岸边坡的变形破坏及稳定性研究是目前国内外研究的热点之一。基于水电站库区一大型堆积体边坡,通过现场原位直剪试验获取岩土体的力学参数,利用岩土数值分析FLAC3D软件,考虑了堆积体与基岩基覆接触带介质的应变软化特性,对水库蓄水和下降过程中边坡的变形破坏特征进行了分析预测。结果表明,在库水升降作用下变形主要发生在堆积体内部;根据堆积体的变形特征可分为3个区:前缘牵引变形区,变形量最大;中间过渡区,变形量最小;后缘被牵引变形区,变形量介于前缘和中间之间。模拟过程中,在坡体的不同位置设置位移监测点,得到了蓄水和水位下降过程中各监测点的位移时程曲线,监测结果显示,水位下降时堆积体前缘易形成局部失稳。通过剪应变增量判断堆积体边坡在库水作用下可形成2个潜在的滑动破坏面 相似文献
9.
Analysis of carbon and oxygen isotopic compositions of large benthic foraminifera tests (Marginopora vertebralis) that lived in the Great Australian Bight during the late Pleistocene, reveal that the tests are enriched by 1 to 3‰ in both 18O and 13C relative to modern specimens from the same region. The intolerance of M. vertebralis for cool waters negates lower ocean water temperature as an explanation for such high δ18O values. The oxygen isotopic compositions are thus interpreted to reflect tests secreted in hypersaline waters of up to 56 ppt salinity, concentrated from seawater by evaporation. M. vertebralis thrives today in waters of similar salinity at Shark Bay, Western Australia. The Pleistocene sedimentary assemblage supports an interpretation that environments broadly similar to those in outer modern-day Shark Bay were wide spread across the Great Australian Bight during portions of marine isotope stages 2, 3 and 4. The high δ13C values of the Pleistocene M. vertebralis are interpreted to reflect enhanced photosynthetic activity that depletes dissolved carbonate in 12C in such shallow, saline settings. These hypersaline environments formed during periods of lower sea-level when shallow-waters (< 20 m depth) extended from the shoreline over ~ 100 km across what is currently a relatively deep shelf. This study indicates that shelf bathymetry was a critical determinant of past environments of deposition across the Great Australian Bight. 相似文献
10.
An air‐gun survey, conducted over a total distance of 4356 km in the western end of the Kurile Arc offshore, has revealed the architecture and evolution of the Kushiro submarine canyon and Tokachi submarine channels of the Tokachi‐oki forearc basin. The Kushiro submarine canyon, which runs along the eastern margin of the forearc basin, is characterized by an entrenchment of up to several hundred metres in depth. The Tokachi submarine channels, by contrast, occupy the centre of the basin and consist of small, branching and levéed channels. The Kushiro submarine canyon is not connected to the Tokachi River, which has the largest drainage area in eastern Hokkaido, with a catchment area of approximately 9010 km2 that includes high mountains and a volcanic region. Instead, the Kushiro submarine canyon exhibits an offset connection/quasi‐connection (probably having been connected during a prior sea‐level lowstand) with the Kushiro River (drainage area of 2500 km2) which contains the Kushiro Swamp at its mouth. To understand this unusual arrangement of rivers and submarine channels, acoustic facies analysis was undertaken to establish the seismic stratigraphy of the area. Subsurface strata can be divided into six seismic units of Miocene to Recent age. Analyses of seismic facies and isopach maps indicate that: (i) the palaeo‐Kushiro submarine canyon, which was ancestral to the Kushiro submarine canyon, was an aggradational levéed channel; and (ii) the palaeo‐Tokachi submarine channel was much larger than the present‐day channel and changed its course several times. Both the palaeo‐Kushiro submarine canyon and palaeo‐Tokachi submarine channel were fed predominantly by the ancestral Tokachi River, whereas the present‐day channels are no longer connected or quasi‐connected to the Tokachi River. Entrenchment of the Kushiro submarine canyon began in its distal reaches during the Early Pleistocene and propagated landward over time, which was possibly caused by base‐level fall (i.e. subsidence of the trench floor) or uplift of the forearc basin. Entrenchment of the upper part of the Kushiro submarine canyon began during the Middle Pleistocene, which may have been related to: (i) depositional progradation; (ii) uplift of the coastal area; or (iii) a change in source area from the ancestral Tokachi River to the Kushiro River. 相似文献
11.
12.
A middle Pleistocene coarse‐grained canyon fill succession (the Serra Mulara Formation) crops out in the northern sector of the Crotone Basin, a forearc basin located on the Ionian side of the Calabrian Arc and active from the Serravallian to middle Pleistocene. This succession is an example of coarse‐grained submarine canyon fill, which consists of a north‐west to south‐east elongated body (4·25 km long and up to 1·5 km wide) laterally confined by a deep‐water clayey and silty succession and located behind the modern Neto delta (north of Crotone). The thickness of the unit reaches 178 m. The lower part of the canyon fill is dominated by gravelly to sandy density‐flow deposits containing abundant bivalve and gastropod fragments, passing upward into a succession composed of metre‐scale to decimetre‐scale density‐flow deposits forming sandstone–mudstone couplets. Sandstone deposits are mostly structureless and planar‐laminated, whereas the clayey layers record hemipelagic deposition during quieter phases. This succession is overlain by another composed of thicker structureless sandstones alternating with layers of interlaminated mudstones and sandstones, which contain leaf remnants and fresh water ostracods, and are linked directly to river floods. The canyon fill is overlain by gravelly to sandy continental deposits recording a later stage of emergence. Facies analysis, together with micropalaeontological data from the hemipelagic units, suggests that the studied canyon fill records, firstly, a progressive gravel material cut‐off during deposition due to an overall relative sea‐level rise, leading to a progressive increase in the entrapment of sediment in fluvial to shallow‐marine systems, and secondly, a generalized relative sea‐level lowering. This trend probably reflects high‐magnitude glacio‐eustatic changes combined with the regional uplift of the region, ultimately leading to emergence. 相似文献
13.
A comparison of the sedimentary records of the 1960 and 2010 great Chilean earthquakes in 17 lakes: Implications for quantitative lacustrine palaeoseismology 下载免费PDF全文
Maarten Van Daele Jasper Moernaut Lindsey Doom Evelien Boes Karen Fontijn Katrien Heirman Willem Vandoorne Dierk Hebbeln Mario Pino Roberto Urrutia Robert Brümmer Marc De Batist 《Sedimentology》2015,62(5):1466-1496
Seismically‐induced event deposits embedded in the sedimentary infill of lacustrine basins are highly useful for palaeoseismic reconstructions. Recent, well‐documented, great megathrust earthquakes provide an ideal opportunity to calibrate seismically‐induced event deposits for lakes with different characteristics and located in different settings. This study used 107 short sediment cores to investigate the sedimentary impact of the 1960 Mw 9·5 Valdivia and the 2010 Mw 8·8 Maule earthquakes in 17 lakes in South‐Central Chile (i.e. lakes Negra, Lo Encañado, Aculeo, Vichuquén, Laja, Villarrica, Calafquén, Pullinque, Pellaifa, Panguipulli, Neltume, Riñihue, Ranco, Maihue, Puyehue, Rupanco and Llanquihue). A combination of image analysis, magnetic susceptibility and grain‐size analysis allows identification of five types of seismically‐induced event deposits: (i) mass‐transport deposits; (ii) in situ deformations; (iii) lacustrine turbidites with a composition similar to the hemipelagic background sediments (lacustrine turbidites type 1); (iv) lacustrine turbidites with a composition different from the background sediments (lacustrine turbidites type 2) and (v) megaturbidites. These seismically‐induced event deposits were compared to local seismic intensities of the causative earthquakes, eyewitness reports, post‐earthquake observations, and vegetation and geomorphology of the catchment and the lake. Megaturbidites occur where lake seiches took place. Lacustrine turbidites type 2 can be the result of: (i) local near‐shore mass wasting; (ii) delta collapse; (iii) onshore landslides; (iv) debris flows or mudflows; or (v) fluvial reworking of landslide debris. On the contrary, lacustrine turbidites type 1 are the result of shallow mass wasting on sublacustrine slopes covered by hemipelagic sediments. Due to their more constrained origin, lacustrine turbidites type 1 are the most reliable type of seismically‐induced event deposits in quantitative palaeoseismology, because they are almost exclusively triggered by earthquake shaking. Moreover, they most sensitively record varying seismic shaking intensities. The number of lacustrine turbidites type 1 linearly increases with increasing seismic intensity, starting with no lacustrine turbidites type 1 at intensities between V½ and VI and reaching 100% when intensities are higher than VII½. Combining different types of seismically‐induced event deposits allows the reconstruction of the complete impact of an earthquake. 相似文献
14.
15.
The early Pleistocene clastic succession of the Peri‐Adriatic basin, eastern central Italy, records the filling of a series of piggyback sub‐basins that formed in response to the development of the eastward‐verging Apennine fold‐thrust belt. During the Gelasian (2·588 to 1·806 Ma), large volumes of Apennine‐derived sediments were routed to these basins through a number of slope turbidite systems. Using a comprehensive outcrop‐based dataset, the current study documents the depositional processes, stratigraphic organization, foraminiferal age and palaeodepth, and stratigraphic evolution of one of these systems exposed in the surroundings of the Castignano village. Analysis of foraminiferal assemblages consistently indicates Gelasian deposition in upper bathyal water depths. Sediments exposed in the study area can be broken into seven main lithofacies, reflecting specific gravity‐induced depositional elements and slope background deposition: (i) clast‐supported conglomerates (conglomerate channel‐fill); (ii) amalgamated sandstones (late stage sandstone channel‐fill); (iii) medium to thick‐bedded tabular sandstones (frontal splay sandstones); (iv) thin to thick‐bedded channelized sandstones (sandy channel‐fill); (v) medium to very thin‐bedded sandstones and mudstones (levée‐overbank deposits); (vi) pebbly mudstones and chaotic beds (mudstone‐rich mass‐transport deposits); and (vii) massive mudstones (hemipelagic deposits). Individual lithofacies combine vertically and laterally to form decametre‐scale, disconformably bounded, fining‐upward lithofacies successions that, in turn, stack to form slope valley fills bounded by deeply incised erosion surfaces. A hierarchical approach to the physical stratigraphy of the slope system indicates that it has evolved through multiple cycles of waxing then waning flow energy at multiple scales and that its packaging can be described in terms of a six‐fold hierarchy of architectural elements and bounding surfaces. In this scheme, the whole system (sixth‐order element) is comprised of three distinct fifth‐order stratigraphic cycles (valley fills), which define sixth‐order initiation, growth and retreat phases of slope deposition, respectively; they are separated by discrete periods of entrenchment that generated erosional valleys interpreted to record fifth‐order initiation phases. Backfilling of individual valleys progressed through deposition of two vertically stacked lithofacies successions (fourth‐order elements), which record fifth‐order growth and retreat phases. Fourth‐order initiation phases are represented by erosional surfaces bounding lithofacies successions. The component lithofacies (third‐order element) record fourth‐order growth and retreat phases. Map trends of erosional valleys and palaeocurrent indicators converge to indicate that the sea floor bathymetric expression of a developing thrust‐related anticline markedly influenced the downslope transport direction of gravity currents and was sufficient to cause a major diversion of the turbidite system around the growing structure. This field‐based study permits the development of a sedimentological model that predicts the evolutionary style of mixed coarse‐grained and fine‐grained turbidite slope systems, the internal distribution of reservoir and non‐reservoir lithofacies within them, and has the potential to serve as an analogue for seismic or outcrop‐based studies of slope valley fills developed in actively deforming structural settings and under severe icehouse regimes. 相似文献
16.
Qi Changqing Li Liuyang Li Ruoqi Gan Feifei Zhang Wentao Han Hui 《Natural Hazards》2021,108(2):1569-1584
Natural Hazards - The studied slope is located in the middle reach of the Yalong River in the eastern margin of Qinghai-Tibet Plateau in Southwest China. A large hydropower station is planning to... 相似文献
17.
The influence of heterogeneity of undrained shear strength on the performance of a long slope cut in clay is investigated. Random field theory is used to model the heterogeneity and finite elements are used to compute the slope response. These have been used within a Monte Carlo simulation to compute reliability as a function of global factor of safety. It is shown that three failure modes are possible, depending on the ratio of the horizontal scale of fluctuation to the slope size, as characterised by its height and length. For very small values of this ratio, the slope fails along its entire length and the result is similar to a conventional 2D analysis based on the mean strength. For intermediate values, discrete failures are likely and reliability is a function of slope length. For large values of the ratio, the variability takes on a layered appearance and the result is equivalent to a 2D stochastic analysis. The validity of the boundary conditions is examined by analysing slopes of different length. It is shown that simple probability theory may be linked with stochastic analysis and finite elements to give efficient solutions for some large 3D problems. 相似文献
18.
Analysis of earthquake focal mechanisms allows division of the India‐Asia collision into kinematic domains that strongly correlate with topography. These kinematic domains indicate strain partitioning dominated by oblique slip deformation. The Kunlun and south Tibetan fault systems mark discontinuities in the strain field and bound the high, flat topography of the plateau which deforms by transtension. The northern and southern margins of Tibet deform by transpression or contraction and are topographically steep. Correlations between seismicity and topography are due to Mohr–Coulomb wedge mechanics at the northern and southern plateau margins which produce naturally steep surface slopes, whereas the flat interior and eastern margin of the Tibetan Plateau is underlain by viscous crust which supports subdued topography further muted by Cenozoic basin fill. These data indicate that the long wavelength topography of the India‐Asia collision is controlled by seismically caused surface displacements which are linked to deep crustal deformation mechanics. 相似文献
19.
In order to study the dynamic response characteristics of a rock slope with discontinuities under the combined action of earthquakes and rapid water drawdown, a large-scale shaking table test was performed on a rock slope with discontinuous joints. Wenchuan earthquake (WE) seismic records were performed to investigate the horizontal and vertical acceleration response and displacement response. In particular, three-dimensional optical measurement techniques was used to obtain the slope surface displacements. A comparison was made on the seismic response according to the analysis of PGD (peak ground displacement) and M PGA (acceleration amplification coefficient) of the modeled slope. The results show that the experimental slope mainly underwent settlement and horizontal deformation when the WE records were applied in the z and x directions, respectively. The slope was first shaken by the P wave, which caused the differential settlement to occur at the surface slope; then, the slope was shaken more severely by the S wave, which led to a greater horizontal deformation. Moreover, analysis of the ΔPGD (increment of PGD) and ΔM PGA (increment of M PGA) under rapid drawdown suggests that the rapid water drawdown mainly impacts the deformation of the surface slope, particularly between the high and low water levels. The water infiltration through the cracks softened the material of the surface slope, and the rapid drawdown also enhanced the slope deformation. In addition, the damage evolution process of the slope can be identified, mainly including three stages: an elastic stage (<?0.168 g), a plastic stage (0.168–0.336 g), and a failure stage (>?0.336 g). 相似文献
20.
《Boreas: An International Journal of Quaternary Research》2018,47(1):137-149
A continuous pollen record from Lake El'gygytgyn (northeastern Russian Arctic) provides detailed information concerning the regional vegetation and climate history during the Mid‐Pleistocene Transition (MPT), between 1091 ka (end of Marine Isotope Stage (MIS) 32) and 715 ka (end of MIS 18). Pollen‐based qualitative vegetation reconstruction along with biome reconstruction indicate that the interglacial regional vegetation history during the MPT is characterized by a gradual replacement of forest and shrub vegetation by open herbaceous communities (i.e. tundra/cold steppe). The pollen spectra reveal seven vegetation successions that have clearly distinguishable glacial‐interglacial cycles. These successions are represented by the intervals of cold deciduous forest (CLDE) biome scores changing from high to low, which are basically in phase with the variations of obliquity from maxima to minima. The dominating influence of obliquity forcing on vegetation successions contradicts with the stronger power of eccentricity, as demonstrated by the result of wavelet analysis based on landscape openness reconstruction. This discrepancy shows that a single index is insufficient for catching signals of all the impacting factors. Comparisons with vegetation and environmental changes in the Asian interior suggest that global cooling during the MPT was probably the key force driving long‐term aridification in the Arctic region. The accelerated aridification after MIS 24–22 was probably caused by the additional effect of the Tibetan Plateau uplift, which played an important role on intensification of the Siberian High and westerly jet systems. 相似文献