首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Pliocene–Pleistocene peripheral marine basins of the Mediterranean Sea in southern Italy, from Basilicata and western Calabria to northern and eastern Sicily, represent tectonically formed coastal embayments and narrow straits. Here, units of cross‐stratified, mixed silici–bioclastic sand, 25 to 80 m thick, record strong tidal currents. The Central Mediterranean Sea has had a microtidal range of ca 35 cm, and the local amplification of the tidal wave is attributed to tides enhanced in some of the bays and to the out‐of‐phase reversal of the tidal prism in narrow straits linking the Tyrrhenian and Ionian basins. The siliciclastic sediment was generated by local bedrock erosion, whereas the bioclastic sediment was derived from the contemporaneous, foramol‐type cool‐water carbonate factories. The cross‐strata sets represent small to medium‐sized (10 to 60 cm thick) two‐dimensional dunes with mainly unidirectional foreset dip directions. These tidalites differ from the classical tidal rhythmites deposited in mud‐bearing siliciclastic environments. Firstly, the foreset strata lack mud drapes and, instead, show segregation of siliciclastic and bioclastic sand into alternating strata. Secondly, the thickness variation of the successive silici–bioclastic strata couplets, measured over accretion intervals of 2 to 3 m and analysed statistically, reveal only the shortest‐term, diurnal and semi‐diurnal tidal cycles. Thirdly, the record of diurnal and semi‐diurnal tidal cycles is included within the pattern of neap‐spring cycles. Differences between these sediments and classical tidal rhythmites are attributed to the specific palaeogeographic setting of a microtidal sea, with the tidal currents locally enhanced in peripheral basins. It is suggested that this particular facies of mud‐free, silici–bioclastic arenite rhythmites in the stratigraphic record might indicate a specific type of depositional sub‐tidal environment of straits and embayments and the shortest‐term tidal cycles.  相似文献   

2.
Sandstone tidal cross‐strata are the predominant sedimentary feature of strait‐fill stratigraphic successions. However, although widely described in numerous studies, tidal strait‐fill two‐dimensional and three‐dimensional cross‐strata have rarely been reported to occur in discrete intervals which are laterally adjacent or vertically stacked, and the meaning of this stratigraphic architecture has not yet been fully investigated. Understanding of the processes responsible for changes in the internal features of modern and ancient tidal bedforms is essential in order to predict lateral and vertical heterogeneities in analogous reservoir strata. This facies‐based study aims to interpret the three‐dimensional to two‐dimensional cross‐strata transition observed in the lower Pleistocene mixed siliciclastic/bioclastic sandstone filling the Catanzaro Strait, in southern Italy, during a continuous phase of tectonically driven marine transgression. Tidal cross‐strata disappear in the uppermost interval of the studied succession, where mudstone strata prevail. This stratigraphic trend is interpreted as the evidence of an important change in the tidal strait hydrodynamics due to a phase of relative sea‐level rise. At the beginning of the transgression, three‐dimensional tidal dunes migrated throughout the ca 3 to 4 km wide and ca 30 km long, WNW–ESE‐oriented Catanzaro Strait, due to strong tidal currents amplified through the seaway and flowing in semi‐diurnal phase opposition. As the intermediate phase of transgression enlarged the seaway width, the tidal current strength decreased as tidal water exchange occurred over a larger cross‐sectional area. The progressive reduction of the bed shear stress modified three‐dimensional tidal dunes into an extensive two‐dimensional bedform field. At the end of the transgression, the further widening of the Catanzaro Strait into a ca 10 to 12 km wide marine passageway changed the tidally dominated strait into a non‐tidal open shelf. The results of this research suggest the presence of a ‘critical cross‐sectional area’ in the narrowest strait‐centre zone which controls the activation and deactivation of tidal current amplification along a marine seaway.  相似文献   

3.
On the south‐west coast of Vancouver Island, Canada, sedimentological and ichnological analysis of three beach–shoreface complexes developed along a strait margin was undertaken to quantify process–response relations in straits and to develop a model for strait‐margin beaches. For all three beaches, evidence of tidal processes are expressed best in the lower shoreface and offshore and, to a lesser extent, in the middle shoreface. Tidal currents are dominant offshore, below 18 m water depth (relative to the mean spring high tide), whereas wave processes dominate sediment deposition in the nearshore (intertidal zone to 5 m water depth). From 18 to 5 m water depth, tidal processes decrease in importance relative to wave processes. The relatively high tidal energy in the offshore and lower shoreface is manifest sedimentologically by the dominance of sand, of a similar grain size to the upper shoreface/intertidal zone and, by the prevalence of current‐generated structures (current ripples) oriented parallel to the shoreline. In addition, the offshore and lower shoreface of strait‐bound beach–shoreface complexes are recognized ichnologically by traces typical of the Skolithos Ichnofacies. This situation contrasts to the dominantly horizontal feeding traces characteristic of the Cruziana Ichnofacies that are prevalent in the lower shoreface and offshore of open‐coast (wave‐dominated) beach–shorefaces. These sedimentological and ichnological characteristics reflect tidal influence on sediment deposition; consequently, the term ‘tide‐influenced shoreface’ most accurately describes these depositional environments.  相似文献   

4.
The sediment distribution in three narrow, linear basins, two modern and one ancient, in Greece and Italy, was studied and related to changes in basin configuration. The basins are the Plio‐Quaternary Patras–Corinth graben, the Pliocene–Quaternary Reggio–Scilla graben and the middle Tertiary Mesohellenic piggy‐back basin. These basins were formed at different times and under different geodynamic conditions, but in each case, the tectonic evolution produced a narrow area in the basin where the water depth decreased dramatically, forming a strait with a sill. This strait divided the basin into major and minor sub‐basins, and the strait has a similar impact on sedimentary environments in all three basins, even though different depositional environments were formed along the initial basin axis. Predictions for the development of depositional environments in the two modern basins, especially in their straits, are based on the studied ancient basin. In the straits, powerful tidal flows will transport finer sediments to sub‐basins and trapezoidal‐type fan‐deltas will gradually fill up and choke the strait through time. In sub‐basins, according to basin depth, either deltaic (in the shallow minor sub‐basin) or turbiditic (in the deep major sub‐basin) deposits may accumulate. Moreover, an extensive shelf is likely to develop between the strait and major sub‐basin. This shelf will be cross‐cut by canyons and characterized by thin fine‐ to coarse‐grained deposits. These sediment models could be applied to analogous basin geometries around the world. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
The stratigraphic record of many cratonic carbonate sequences includes thick successions of stacked peritidal deposits. Representing accumulation at or near sea‐level, these deposits have provided insights into past palaeoenvironments, sea‐level and climate change. To expand understanding of carbonate peritidal systems, this study describes the geomorphology, sedimentology and stratigraphy of the tidal flats on the Crooked‐Acklins Platform, south‐east Bahamas. The Crooked Island tidal flats extend continuously for ca 18 km on the platformward flank of Crooked Island, reaching up to 2 km across. Tidal flats include four environmental zones with specific faunal and floral associations and depositional characteristics: (i) supratidal (continuous supratidal crust and pavement); (ii) upper intertidal, with the mangrove Avicennia germinans and the cyanobacteria Scytonema; (iii) lower intertidal (with the mangrove Rhizophora mangal) and (iv) non‐vegetated, heavily burrowed subtidal (submarine). These zones have gradational boundaries but follow shore‐parallel belts. Coring reveals that the thickness of this mud‐dominated sediment package generally is <2 m, with depth to Pleistocene bedrock gradually shallowing landward. The facies succession under much of the tidal flat includes a basal compacted, organic‐rich skeletal‐lithoclast lag above the bedrock contact (suggesting initial flooding). This unit grades upward into rhizoturbated skeletal sandy mud (subtidal) overlain by coarsening‐upward peloid‐foraminifera‐gastropod muddy sand (reflecting shallowing to intertidal elevations). Cores from landward positions include stacked thin indurated layers with autoclastic breccia, root tubules and fenestrae (interpreted as supratidal conditions). Collectively, the data reveal an offlapping pattern on this prograding low‐energy shoreline, and these Holocene tidal flats may represent an actualistic analogue for ancient humid progradational tidal flats. Nonetheless, their vertical facies succession is akin to that present beneath channelled belt examples, suggesting that facies successions alone may not provide unambiguous criteria for prediction of the palaeogeomorphology, lateral facies changes and heterogeneity in stratigraphic analogues.  相似文献   

6.
Thin‐bedded delta‐front and prodelta facies of the Upper Cretaceous Ferron Notom Delta Complex near Hanksville in southern Utah, USA, show significant along‐strike facies variability. Primary initiation processes that form these thin beds include surge‐type turbidity currents, hyperpycnal flows and storm surges. The relative proportion of sedimentary structures generated by each of these depositional processes/events has been calculated from a series of measured sedimentological sections within a single parasequence (PS6–1) which is exposed continuously along depositional strike. For each measured section, sedimentological data including grain size, lithology, bedding thickness, sedimentary structures and ichnological suites have been documented. Parasequence 6–1 shows a strong along‐strike variation with a wave‐dominated environment in the north, passing abruptly into a fluvial‐dominated area, then to an environment with varying degrees of fluvial and wave influence southward, and back to a wave‐dominated environment further to the south‐east. The lateral facies variations integrated with palaeocurrent data indicate that parasequence 6–1 is deposited as a storm‐dominated symmetrical delta with a large river‐dominated bayhead system linked to an updip fluvial feeder valley. This article indicates that it is practical to quantify the relative importance of depositional processes and determine the along‐strike variation within an ancient delta system using thin‐bedded facies analysis. The wide range of vertical stratification and grading sequences present in these event beds also allows construction of conceptual models of deposition from turbidity currents (i.e. surge‐type turbidity currents and hyperpycnal flows) and storm surges, and shows that there are significant interactions and linkages of these often paired processes.  相似文献   

7.
Ellis Fjord is a small, fjord‐like marine embayment in the Vestfold Hills, eastern Antarctica. Modern sediment input is dominated by a biogenic diatom rain, although aeolian, fluvial, ice‐rafted, slumped and tidal sediments also make a minor contribution. In areas where bioturbation is significant relict glaciogenic sediments are reworked into the fine‐grained diatomaceous sediments to produce poorly sorted fine sands and silts. Where the bottom waters are anoxic, sediments remain unbioturbated and have a high biogenic silica component. Three depositional and non‐depositional facies can be recognised in the fjord: an area of non‐deposition around the shoreline; a relict morainal facies in areas of low sedimentation and high bioturbation; and a basinal facies in the deeper areas of the fjord.  相似文献   

8.
9.
Cool‐water carbonate sedimentation has dominated Mediterranean shelves since the Early Pliocene. Skeletal sand and gravel herein consist of remains of heterozoan organisms, which are susceptible to reworking due to weak early cementation in non‐tropical waters. This study documents the Lower Pleistocene carbonate wedge of Favignana Island (Italy), which prograded from a 5   km wide passage between two palaeo‐islands into a perpendicular, 10 to 15   km wide strait between the palaeo‐islands at one side and Sicily at the other during the Emilian highstand (1·6   Ma to 1·1   Ma). The clinoformed carbonate wedge, which is 50   m thick and 6   km long, formed by east/south‐east progradation of a platform on the submarine sill by currents that were funnelled between the two palaeo‐islands. Platform‐slope clinoforms evolved from initial aggradation (thin and low‐angle) into a progradation phase (thick and high‐angle). Both clinoform types are characterized by a bimodal facies stacking pattern defined by sedimentary structures created by: (i) subaqueous dunes associated with dilute subcritical currents; and (ii) upper‐flow‐regime bedforms associated with sediment‐laden supercritical turbidity currents. Focusing of episodic currents on the platform by funnelling between the islands controlled the downstream formation of a sediment body, here named carbonate delta. The carbonate delta interfingers with subaqueous dune deposits formed in the perpendicular strait. This study uses a reconstruction of bedform dynamics to unravel the evolution of this gateway‐related carbonate accumulation.  相似文献   

10.
Miocene siliciclastic sediments of the Marañón Foreland Sub‐basin in Peru record the sedimentary response to regional marine incursions into Amazonia. Contrary to previous interpretations, the Late Miocene Nauta Formation provides evidence of the last known marine incursion before the current Amazonia river basin became established. Sedimentological, ichnological and palynological data from well‐exposed outcrops along a ca 100 km road transect suggest that the Nauta Formation represents a shallow, marginal‐marine channel complex dominated by tidal channels developed in the inactive, brackish‐water portions of a delta plain. The main facies associations are: FA1 – slightly bioturbated mud‐draped trough cross‐stratified sand; FA2 – locally, pervasively bioturbated inclined heterolithic stratification (IHS); and FA3 – moderately bioturbated horizontally bedded sand–mud couplets. These identify subtidal compound dunes, tidal point bars and shallow subtidal to intertidal flats, respectively. Bi‐seasonal depositional cycles are ascribed to the abundant metre‐ to decimetre‐scale sand–mud couplets that are found mainly in the IHS association: semi‐monthly to daily tidal rhythmicity is inferred from centimetre‐ and millimetre‐scale couplets in the mud‐dominated parts of the decimetre‐scale couplets. The ichnology of the deposits is consistent with brackish depositional conditions; the presence of Laminites, a variant of Scolicia, attests to episodic normal marine conditions. Trace fossil suites are assigned to the Skolithos, Cruziana and mixed Skolithos–Cruziana ichnofacies. Pollen assemblages related to mangrove environments (e.g. Retitricolporites sp., Zonocostites sp., Psilatricolporites maculosus, Retitricolpites simplex) support a brackish‐water setting. Uplift of the Mérida Andes to the North and the consequent closure of the Proto‐Caribbean connection, and the onset of the transcontinental Amazon drainage, constrain the deposition of the Nauta sediments with around 10 to 8 Ma, probably contemporaneous to similar marine incursions identified in the Cuenca (Ecuador), Acre (Brazil) and Madre de Dios (Southern Peru) (sub)basins, and along the Chaco‐Paranan corridor across Bolivia, Paraguay and Argentina.  相似文献   

11.
Shallow marine sediments of the Broughton Formation are dominated by immature volcanic debris of intermediate to basic composition, generated in an adjacent subaerial environment by volcanism responsible for the nine shoshonite units intercalated within sediments of the Kiama region. Sediment was supplied to the offshore environment via periodic storm‐generated, expanded high density turbidity currents. Initial deposition, represented by the Westley Park Sandstone Member, was below storm wave base, during which time the depositional surface was subjected to post‐depositional tractional reworking by northerly directed, tidally influenced bottom currents. The resulting positive‐relief sand bodies on the seafloor contain tractional sedimentary structures (the ‘tractional facies association'). Areas of the substrate between these sand bodies retained their turbidite bedding structure (the ‘rhythmically bedded facies association') but were extensively bioturbated by a diverse deposit‐feeding biomass.

Upon emplacement of the lowest of the nine shoshonite units as a tri‐composite, locally intrusive lava flow, the depositional surface was elevated, transgressing storm wave base. The body of the shoshonite flow also shielded the substrate from the northerly directed tractional currents, allowing the development and preservation of the hummocky cross‐stratified sandstone facies in the Kiama Sandstone Member. Following burial of the shoshonite flow by continued deposition, this local shielding effect was overcome and tractional currents again reworked the entire depositional surface.  相似文献   

12.
Spit systems are seldom recognized in the pre‐Quaternary sedimentary record compared to their common occurrence along present‐day coasts and in Quaternary successions. This lack of recognition may partly be due to the lack of widely accepted depositional models describing the facies characteristics of spit systems and their subaqueous platforms in particular. The Skagen spit system is a large active system that began to form 7150 yr bp and from 5500 bp to Recent times it has prograded 4 m year?1 and accumulated 3·5 × 109 m3 of sand. The spit system provides a unique opportunity for establishing a well‐constrained depositional model because uplift and erosion have made large windows into the preserved facies, while active spit‐forming processes can be examined at the young prograding end of the same system. The depositional model presented here thus builds on excellent outcrops, surface morphology, a well‐defined palaeogeography and detailed C14 age control supplemented with observations from continuous well cores and profiles obtained by ground‐penetrating radar and transient electromagnetic surveys. The factors that have governed the development of the spit system, such as relative sea‐level change, wave and current climate, tidal range, sediment transport and depositional rates are also well‐understood. The sedimentary facies of the spit system are grouped into four principal units consisting from below of thick storm sand beds, dune and bar‐trough deposits, beach deposits and peat beds. These four units form a coarsening and shallowing upward sand‐dominated succession, up to 32 m thick, which overlies offshore silt with a transition zone and is topped by a diastem overlain by young aeolian dune sand. The sedimentary structures and depositional processes are described in detail and integrated into a depositional model, which is compared to other spit systems and linear shoreface models.  相似文献   

13.
ABSTRACT
Stacked cross-sets, up to 2.5 m thick, produced by sand wave migration and meniscate trace fossils produced by Echinocardium cordatum , both considered in the literature as typical of shallow-water marine depositional settings, commonly occur in the bathyal Plio-Pleistocene deposits of Monte Torre (Calabria, southern Italy).
The Plio-Pleistocene sediments form two coarsening-upward depositional sequences, separated by an unconformity and by a palaeobathymetric gap of at least 300 m. The lower sequence passes upwards from hemipelagic marls and thin-bedded turbidites to thick-bedded sandy turbidites, then to sand wave deposits alternated with sandy turbidites, and finally to base-of-slope megabreccias. Facies characteristics and relationships, and the occurrence of deep-sea faunal associations, indicate deposition in the bathyal zone. The facies of the upper sequence reflect a fan-delta environment, no deeper than a few tens of metres.
The depositional setting of the lower sequence, where the sand wave deposits and meniscate trace fossils occur, appears to have been a tectonically controlled seaway, connecting the Tyrrhenian and Ionian Seas. This seaway became progressively narrower with time, evolving into a strait. The overall coarsening-upward trend reflects the upward transition from a low to a high-energy environment, possibly caused by the tectonic narrowing of the seaway. Deposition and erosion from high-concentration turbidity currents and from tidal bottom currents were important processes. Periods of tectonic activity, producing first the uplift of the seaway margins and culminating with the uplift of the strait sequence itself, are marked by-scattered rockfall deposits.
The strait setting, causing the development of powerful, oxygenated bottom currents, produced optimal conditions in the bathyal zone for the colonization of sandy bottoms by a single infaunal r -selected species, Echinocardium sp.  相似文献   

14.
The Feos Formation of the Nijar Basin comprises sediments deposited during the final stage of the Messinian salinity crisis when the Mediterranean was almost totally isolated. Levels of soft‐sediment deformation structures occur in both conglomeratic alluvial sediments deposited close to faults and the hyposaline Lago Mare facies, a laminated and thin‐bedded succession of whitish chalky marls and intercalated sands alternating with non‐marine coastal plain deposits. Deformation structures in the coarse clastics include funnel‐shaped depressions filled with conglomerate, liquefaction dykes terminating downwards in gravel pockets, soft‐sediment mixing bodies, chaotic intervals and flame structures. Evidence for soft‐sediment deformation in the fine‐grained Lago Mare facies comprises syndepositional faulting and fault‐grading, sandstone dykes, mixed layers, slumping and sliding of sandstone beds, convolute bedding, and pillar and flame structures. The soft‐sediment deformed intervals resemble those ascribed elsewhere to seismic shaking. Moreover, the study area provides the appropriate conditions for the preservation of deformation structures induced by seismicity; such as location in a tectonically active area, variable sediment input to produce heterolithic deposits and an absence of bioturbation. The vertical distribution of soft‐sediment deformation implies frequent seismic shocks, underlining the importance of seismicity in the Betic region during the Late Messinian when the Nijar Basin became separated from the Sorbas Basin to the north. The presence of liquefied gravel injections in the marginal facies indicates strong earthquakes (M ≥ 7). The identification of at least four separate fissured levels within a single Lago Mare interval suggests a recurrence interval for large magnitude earthquakes of the order of millennia, assuming that the cyclicity of the alternating Lago Mare and continental intervals was precession‐controlled. This suggestion is consistent with the present‐day seismic activity in SE Spain.  相似文献   

15.
Akimiski Strait is a wide (17–20 km), shallow, emergent (0.70 cm per century) waterway in James Bay. It is localized in a saddle of a Paleozoic reef track, which has been enhanced and molded by Pleistocene glaciers. Drumlinoid ridges form the till cores of shoals and islets of the strait. The boundary conditions of the strait change throughout the year, as it is covered by ice for six months. During spring break-up the strait remains clogged with ice at its northern approach for several weeks, and acts as a large tidal inlet. It is during this period that most of the fluvial sediments are carried to sea. Other sediments are obtained by erosion of the Pleistocene tills and Holocene subtidal clays and silts exposed in nearshore areas. Resuspension of nearshore material is achieved through the action of wind-driven, short choppy waves and ice scour. Tides are the most important process for the redistribution of sediments along the coast, both flooding onshore and flooding and ebbing into and out from the strait generating locally powerful (2 m s?1) reversing currents. Ice rafting and ice pushing are important processes in this frigid environment, particularly in upwind sides of shaols, and at/or near river mouths.Different intertidal sedimentary sequences develop as functions of sediment supply and exposure of the environments to ice, currents and waves. The eastern shores and the southern shoals of the strait develop pebble lags over till, covered by thin (5–20 cm) drapes of silty sand trapped and protected from erosion by algae. In these shores and in emerging small islands significant sedimentation (1–1.5 m thick) occurs in the marshes where the suspended load of tidal waters is trapped by vegetation. The western shores of the strait receive considerable amounts of sediment from large rivers and are affected by strong tidal longshore currents. Thick (3–4 m) and narrow tidal flats and marshes develop on the maincoast. The shoals of the northern part of the strait have characteristic sediments. Those near the western shore have thin (up to 80 cm) tidal silty sand deposits, locally heavily burrowed by Macoma balthica. Those strung across the northern approach to the strait have well-developed, thin, coarse sand dune fields, indicating a prevalent ebb flow out of the strait.  相似文献   

16.
Sediments exposed at low tide on the transgressive, hypertidal (>6 m tidal range) Waterside Beach, New Brunswick, Canada permit the scrutiny of sedimentary structures and textures that develop at water depths equivalent to the upper and lower shoreface. Waterside Beach sediments are grouped into eleven sedimentologically distinct deposits that represent three depositional environments: (1) sandy foreshore and shoreface; (2) tidal‐creek braid‐plain and delta; and, (3) wave‐formed gravel and sand bars, and associated deposits. The sandy foreshore and shoreface depositional environment encompasses the backshore; moderately dipping beachface; and a shallowly seaward‐dipping terrace of sandy middle and lower intertidal, and muddy sub‐tidal sediments. Intertidal sediments reworked and deposited by tidal creeks comprise the tidal‐creek braid plain and delta. Wave‐formed sand and gravel bars and associated deposits include: sediment sourced from low‐amplitude, unstable sand bars; gravel deposited from large (up to 5·5 m high, 800 m long), landward‐migrating gravel bars; and zones of mud deposition developed on the landward side of the gravel bars. The relationship between the gravel bars and mud deposits, and between mud‐laden sea water and beach gravels provides mechanisms for the deposition of mud beds, and muddy clast‐ and matrix‐supported conglomerates in ancient conglomeratic successions. Idealized sections are presented as analogues for ancient conglomerates deposited in transgressive systems. Where tidal creeks do not influence sedimentation on the beach, the preserved sequence consists of a gravel lag overlain by increasingly finer‐grained shoreface sediments. Conversely, where tidal creeks debouch onto the beach, erosion of the underlying salt marsh results in deposition of a thicker, more complex beach succession. The thickness of this package is controlled by tidal range, sedimentation rate, and rate of transgression. The tidal‐creek influenced succession comprises repeated sequences of: a thin mud bed overlain by muddy conglomerate, sandy conglomerate, a coarse lag, and capped by trough cross‐bedded sand and gravel.  相似文献   

17.
Dunes and bars are common elements in tide‐dominated shelf settings. However, there is no consensus on a unifying terminology or a systematic classification for thick sets of cross‐stratified sandstones. In addition, their ichnological attributes have hardly been explored. To address these issues, the properties, architecture and ichnology of compound cross‐stratified sandstone bodies contained in the Lower Cambrian Gog Group of the southern Canadian Rocky Mountains are described here. In these transgressive sandstones, five types of compound cross‐stratified sandstone are distinguished based on foreset geometry, sedimentary structures and internal heterogeneity. These represent four broad categories of subtidal sandbodies: (i) compound‐dune fields; (ii) sand sheets; (iii) sand ridges; and (iv) isolated dune patches; tidal bars comprise a fifth category but are not present in the Gog Group. Compound‐dune fields are characterized by sigmoidal and planar cross‐stratified sandstone in coarsening‐upward and thickening‐upward packages (Type 1); these are mostly unburrowed, or locally contain representatives of the Skolithos ichnofacies, but are intercalated with intensely bioturbated sandstone containing the archetypal Cruziana ichnofacies. Sand‐sheet complexes, also composed of compound dunes, cover more extensive subtidal areas, and comprise three adjacent subenvironments: core, front and margin. The core is characterized by thick‐bedded sets of cross‐stratified sandstone (Type 2). A decrease of bedform size at the front is recorded by wedges of thinner‐bedded, low‐angle and planar cross‐stratified sandstone (Type 3) exhibiting dense Skolithos pipe‐rock ichnofabric. The margin is characterized by interbedded sandstone and mudstone, and hummocky cross‐stratified sandstone. Sand‐sheet deposits exhibit clear trends in trace‐fossil distribution along the sediment transport path, from non‐bioturbated beds in the core to Skolithos ichnofacies at the front, and a depauperate Cruziana ichnofacies at the margin. Tidal sand ridges are large elongate sandbodies characterized by large sigmoid‐shaped reactivation surfaces (Type 4). Sand ridges display clear ichnological trends perpendicular to the axis of the ridge, with no bioturbation or a poorly developed Skolithos ichnofacies in the core, a depauperate Cruziana ichnofacies in lee‐side deposits, and Cruziana ichnofacies at the margin. While both tidal ridges and tidal bars migrate by means of lateral accretion, the latter occur in association with channels while the former do not. Because tidal bars tend to occur in brackish‐water marginal‐marine settings, their ichnofauna are typically of low diversity, representing a depauperate Cruziana ichnofacies. Isolated dune patches developed on sand‐starved areas of the shelf, and are represented by lenticular sandbodies with sigmoidal reactivation surfaces (Type 5); they typically lack trace fossils, but the interfingering muddy deposits are intensely bioturbated by a high‐diversity fauna recording the Cruziana ichnofacies. The variety of sandbody types in the Gog Group reflects varying sediment supply and location on the inner continental shelf. These, in turn, governed substrate mobility, grain size, turbidity, water‐column productivity and sediment organic matter which controlled trace fossil distribution.  相似文献   

18.
《Sedimentology》2018,65(5):1558-1589
Most of the present knowledge of shallow‐marine, mixed carbonate–siliciclastic systems relies on examples from the carbonate‐dominated end of the carbonate–siliciclastic spectrum. This contribution provides a detailed reconstruction of a siliciclastic‐dominated mixed system (Pilmatué Member of the Agrio Formation, Neuquén Basin, Argentina) that explores the variability of depositional models and resulting stratigraphic units within these systems. The Pilmatué Member regressive system comprises a storm‐dominated, shoreface to basinal setting with three subparallel zones: a distal mixed zone, a middle siliciclastic zone and a proximal mixed zone. In the latter, a significant proportion of ooids and bioclasts were mixed with terrigenous sediment, supplied mostly via along‐shore currents. Storm‐generated flows were the primary processes exporting fine sand and mud to the middle zone, but were ineffective to remove coarser sediment. The distal zone received low volumes of siliciclastic mud, which mixed with planktonic‐derived carbonate material. Successive events of shoreline progradation and retrogradation of the Pilmatué system generated up to 17 parasequences, which are bounded by shell beds associated with transgressive surfaces. The facies distribution and resulting genetic units of this siliciclastic‐dominated mixed system are markedly different to the ones observed in present and ancient carbonate‐dominated mixed systems, but they show strong similarities with the products of storm‐dominated, pure siliciclastic shoreface–shelf systems. Basin‐scale depositional controls, such as arid climatic conditions and shallow epeiric seas might aid in the development of mixed systems across the full spectrum (i.e. from carbonate‐dominated to siliciclastic‐dominated end members), but the interplay of processes supplying sand to the system, as well as processes transporting sediment across the marine environment, are key controls in shaping the tridimensional facies distribution and the genetic units of siliciclastic‐dominated mixed systems. Thus, the identification of different combinations of basin‐scale factors and depositional processes is key for a better prediction of conventional and unconventional reservoirs within mixed, carbonate–siliciclastic successions worldwide.  相似文献   

19.
Tide‐dominated deltas have an inherently complex distribution of heterogeneities on several different scales and are less well‐understood than their wave‐dominated and river‐dominated counterparts. Depositional models of these environments are based on a small set of ancient examples and are, therefore, immature. The Early Jurassic Gule Horn Formation is particularly well‐exposed in extensive sea cliffs from which a 32 km long, 250 m high virtual outcrop model has been acquired using helicopter‐mounted light detection and ranging (LiDAR). This dataset, combined with a set of sedimentological logs, facilitates interpretation and measurement of depositional elements and tracing of stratigraphic surfaces over seismic‐scale distances. The aim of this article is to use this dataset to increase the understanding of depositional elements and lithologies in proximal, unconfined, tide‐dominated deltas from the delta plain to prodelta. Deposition occurred in a structurally controlled embayment, and immature sediments indicate proximity to the sediment source. The succession is tide dominated but contains evidence for strong fluvial influence and minor wave influence. Wave influence is more pronounced in transgressive intervals. Nine architectural elements have been identified, and their internal architecture and stratigraphical distribution has been investigated. The distal parts comprise prodelta, delta front and unconfined tidal bar deposits. The medial part is characterized by relatively narrow, amalgamated channel fills with fluid mud‐rich bases and sandier deposits upward, interpreted as distributary channels filled by tidal bars deposited near the turbidity maximum. The proximal parts of the studied system are dominated by sandy distributary channel and heterolithic tidal‐flat deposits. The sandbodies of the proximal tidal channels are several kilometres wide and wider than exposures in all cases. Parasequence boundaries are easily defined in the prodelta to delta‐front environments, but are difficult to trace into the more proximal deposits. This article illustrates the proximal to distal organization of facies in unconfined tide‐dominated deltas and shows how such environments react to relative sea‐level rise.  相似文献   

20.
Lithofacies characteristics and depositional geometry of a sandy, prograding delta deposited as part of the Holocene valley‐fill stratigraphy in the Målselv valley, northern Norway, were examined using morpho‐sedimentary mapping, facies analysis of sediments in exposed sections, auger drilling and ground penetrating radar survey. Various lithofacies types record a broad range of depositional processes within an overall coarsening‐upward succession comprising a lowermost prodelta/bottomset unit, an intermediate delta slope/foreset unit containing steeply dipping clinoforms and an uppermost delta plain/topset unit. Bottomset lithofacies typically comprise sand‐silt couplets (tidal rhythmites), bioturbated sands and silts, and flaser and lenticular bedding. These sediments were deposited from suspension fall‐out, partly controlled by tidal currents and fluvial effluent processes. Delta foreset lithofacies comprise massive, inverse graded and normal graded beds deposited by gravity‐driven processes (mainly cohesionless debris flows and turbidity currents) and suspension fall‐out. In places, delta foreset beds show tidal rhythmicity and individual beds can be followed downslope into bottomset beds. Delta plain facies show an upward‐fining succession with trough cross‐beds at the base, followed by planar, laminated and massive beds indicative of a bedload dominated river/distributary system. This study presents a model of deltaic development that can be described with reference to three styles within a continuum related primarily to water depth within a basin of variable geometry: (i) bypass; (ii) shoal‐water; and (iii) deep‐water deltas. Bypass and deep‐water deltas can be considered as end members, whereas shoal‐water deltas are an intermediate type. The bypass delta is characterized by rapid progradation and an absence of delta slope sediments and low basin floor aggradation due to low accommodation space. The shoal‐water delta is characterized by rapid progradation, a short delta slope dominated by gravity‐flow processes and a prodelta area characterized by rapid sea‐floor aggradation due to intense suspension fallout of sandy material. Using tidal rhythmites as time‐markers, a progradation rate of up to 11 m year?1 has been recorded. The deep‐water delta is characterized by a relatively long delta slope dominated by gravity flows, moderate suspension fall‐out and slow sea‐floor aggradation in the prodelta area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号