首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
董嫦娇  翁富忠 《气象学报》2022,80(2):334-348
云液态水路径是气候和天气系统分析的重要参数,可以从卫星观测资料反演获得.目前,基于卫星微波探测仪器观测资料的云水算法可由23.8和31.4 GHz两个通道产生.本研究使用先进技术微波探测仪(ATMS)观测数据,对物理和经验两种算法反演出的云液态水路径进行验证评估.结果表明,经验算法和物理算法都可以描述云液态水在全球洋面...  相似文献   

2.
Analysis of ice water path retrieval errors over tropical ocean   总被引:1,自引:0,他引:1  
Retrieval of multi-layered cloud properties, especially ice water path (IWP), is one of the most perplexing problems in satellite cloud remote sensing. This paper develops a method for improving the IWP retrievals for ice-over-water overlapped cloud systems using Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) and Visible and Infrared Scanner (VIRS) data. A combined microwave, visible and infrared algorithm is used to identify overlapped clouds and estimate IWP separately from liquid water path. The retrieval error of IWP is then evaluated by comparing the IWP to that retrieved from single-layer ice clouds surrounding the observed overlapping systems. The major IWP retrieval errors of overlapped clouds are primarily controlled by the errors in estimating the visible optical depth. Optical depths are overestimated by about 10–40% due to the influence of the underlying cloud. For the ice-over-warm-water cloud systems (cloud water temperature Tw > 273 K), the globally averaged IWP retrieval error is about 10%. This cloud type accounts for about 15% of all high-cloud overlapping cases. Ice-over-super-cooled water clouds are the predominant overlapped cloud system, accounting for 55% of the cases. Their global averaged error is 17.2%. The largest IWP retrieval error results when ice clouds occur over extremely super-cooled water clouds (Tw 6 255 K). Overall, roughly 33% of the VIRS IWP retrievals are overestimated due to the effects of the liquid water clouds beneath the cirrus clouds. To improve the accuracy of the IWP retrievals, correction models are developed and applied to all three types of overlapped clouds. The preliminary results indicate that the correction models reduce part of the retrieval error.  相似文献   

3.
This paper describes a new quality control (QC) scheme for microwave humidity sounder (MHS) data assimilation. It consists of a cloud detection step and an O–B (i.e., differences of brightness temperatures between observations and model simulations) check. Over ocean, cloud detection can be carried out based on two MHS window channels and two Advanced Microwave Sounding Unit-A (AMSU-A) window channels, which can be used for obtaining cloud ice water path (IWP) and liquid water path (LWP), respectively. Over land, cloud detection of microwave data becomes much more challenging due to a much larger emission contribution from land surface than that from cloud. The current MHS cloud detection over land employs an O–B based method, which could fail to identify cloudy radiances when there is mismatch between actual clouds and model clouds. In this study, a new MHS observation based index is developed for identifying MHS cloudy radiances over land. The new land index for cloud detection exploits the large variability of brightness temperature observations among MHS channels over different clouds. It is shown that those MHS cloudy radiances that were otherwise missed by the current O–B based QC method can be successfully identified by the new land index. An O–B check can then be employed to the remaining data after cloud detection to remove additional outliers with model simulations deviated greatly from observations. It is shown that MHS channel correlations are significantly reduced by the newly proposed QC scheme.  相似文献   

4.
Microwave radiances from passive polar-orbiting radiometers have been, until recently, assimilated in the Met Office global numerical weather prediction system after the scenes significantly affected by atmospheric scattering are discarded.Recent system upgrades have seen the introduction of a scattering-permitting observation operator and the development of a variable observation error using both liquid and ice water paths as proxies of scattering-induced bias. Applied to the Fengyun 3 Microwave Temperature Sounder 2(MWTS-2) and the Microwave Humidity Sounder 2(MWHS-2), this methodology increases the data usage by up to 8% at 183 GHz. It also allows for the investigation into the assimilation of MWHS-2 118 GHz channels, sensitive to temperature and lower tropospheric humidity, but whose large sensitivity to ice cloud have prevented their use thus far. While the impact on the forecast is mostly neutral with small but significant shortrange improvements, 0.3% in terms of root mean square error, for southern winds and low-level temperature, balanced by 0.2% degradations of short-range northern and tropical low-level temperature, benefits are observed in the background fit of independent instruments used in the system. The lower tropospheric temperature sounding Infrared Atmospheric Sounding Interferometer(IASI) channels see a reduction of the standard deviation in the background departure of up to 1.2%. The Advanced Microwave Sounding Unit A(AMSU-A) stratospheric sounding channels improve by up to 0.5% and the Microwave Humidity Sounder(MHS) humidity sounding channels improve by up to 0.4%.  相似文献   

5.
The ECMWF has been assimilating Feng-Yun-3B(FY-3B) satellite microwave humidity sounder(MWHS) data over ocean in an operational forecasting system since 24 September 2014. It is more difficult, however, to assimilate microwave observations over land and sea ice than over the open ocean due to higher uncertainties in land surface temperature, surface emissivity and less effective cloud screening. We compare approaches in which the emissivity is retrieved dynamically from MWHS channel 1 [150 GHz(vertical polarization)] with the use of an evolving emissivity atlas from 89 GHz observations from the MWHS onboard NOAA and EUMETSAT satellites. The assimilation of the additional data over land improves the fit of short-range forecasts to other observations, notably ATMS(Advanced Technology Microwave Sounder) humidity channels, and the forecast impacts are mainly neutral to slightly positive over the first five days. The forecast impacts are better in boreal summer and the Southern Hemisphere. These results suggest that the techniques tested allow for effective assimilation of MWHS/FY-3B data over land.  相似文献   

6.
The second Advanced Technology Microwave Sounder(ATMS)was onboard the National Oceanic and Atmospheric Administration(NOAA)-20 satellite when launched on 18 November 2017.Using nearly six months of the earliest NOAA-20 observations,the biases of the ATMS instrument were compared between NOAA-20 and the Suomi National Polar-Orbiting Partnership(S-NPP)satellite.The biases of ATMS channels 8 to 13 were estimated from the differences between antenna temperature observations and model simulations generated from Meteorological Operational(MetOp)-A and MetOp-B satellites’Global Positioning System(GPS)radio occultation(RO)temperature and water vapor profiles.It was found that the ATMS onboard the NOAA-20 satellite has generally larger cold biases in the brightness temperature measurements at channels 8 to 13 and small standard deviations.The observations from ATMS on both S-NPP and NOAA-20 are shown to demonstrate an ability to capture a less than 1-h temporal evolution of Hurricane Florence(2018)due to the fact that the S-NPP orbits closely follow those of NOAA-20.  相似文献   

7.
The Microwave Radiation Imager(MWRI) on board Chinese Fengyun-3(FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path(LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65-and 18.7-GHz channels and between0.02 and 0.04 mm for 36.5-and 89.0-GHz channels. It is also shown that the brightness temperature observations at10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri(2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.  相似文献   

8.
The Microwave Radiation Imager (MWRI) on board Chinese Fengyun-3 (FY-3) satellites provides measurements at 10.65, 18.7, 23.8, 36.5, and 89.0 GHz with both horizontal and vertical polarization channels. Brightness temperature measurements of those channels with their central frequencies higher than 19 GHz from satellite-based microwave imager radiometers had traditionally been used to retrieve cloud liquid water path (LWP) over ocean. The results show that the lowest frequency channels are the most appropriate for retrieving LWP when its values are large. Therefore, a modified LWP retrieval algorithm is developed for retrieving LWP of different magnitudes involving not only the high frequency channels but also the lowest frequency channels of FY-3 MWRI. The theoretical estimates of the LWP retrieval errors are between 0.11 and 0.06 mm for 10.65- and 18.7-GHz channels and between 0.02 and 0.04 mm for 36.5- and 89.0-GHz channels. It is also shown that the brightness temperature observations at 10.65 GHz can be utilized to better retrieve the LWP greater than 3 mm in the eyewall region of Super Typhoon Neoguri (2014). The spiral structure of clouds within and around Typhoon Neoguri can be well captured by combining the LWP retrievals from different frequency channels.  相似文献   

9.
毕明明  邹晓蕾 《气象科学》2022,42(4):457-466
极轨气象卫星S-NPP、MetOp-A和FY-3B上搭载的微波湿度计观测资料可以反映出台风周围水汽和云雨结构。本文使用权重函数峰值在800 hPa附近的微波湿度计通道观测资料和ERA5再分析资料全天空模拟亮温,以飓风Sandy和Isaac为例,对用方位谱台风中心位置定位方法得到的观测和模拟中心位置进行了比较。利用下午星S-NPP搭载的先进技术微波探测仪(Advanced Technology Microwave Sounder, ATMS)和上午星MetOp-A搭载的微波湿度计(Microwave Humidity Sounder, MHS)观测亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差35.8 km(32.9 km),但用ERA5全天空模拟亮温得到的飓风Sandy(Isaac)中心位置与最佳路径平均相差73.3 km(82.1 km)。若按照热带风暴和台风等级来划分,ATMS和MHS观测和模拟亮温得到的台风中心位置与最佳路径的平均距离对热带风暴分别是36.5 km和105.9 km,对台风分别是25.8 km和56.4 km。若用FY-3B搭载的微波湿度计(以M...  相似文献   

10.
Existing satellite microwave algorithms for retrieving Sea Surface Temperature (SST) and Wind (SSW) are applicable primarily for non-raining cloudy conditions. With the launch of the Earth Observing System (EOS) Aqua satellite in 2002, the Advanced Microwave Scanning Radiometer (AMSRoE) onboard provides some unique measurements at lower frequencies which are sensitive to ocean surface parameters under adverse weather conditions. In this study, a new algorithm is developed to derive SST and SSW for hurricane predictions such as hurricane vortex analysis from the AMSRoE measurements at 6.925 and 10.65 GHz. In the algorithm, the effects of precipitation emission and scattering on the measurements are properly taken into account. The algorithm performances are evaluated with buoy measurements and aircraft dropsonde data. It is found that the root mean square (RMS) errors for SST and SSW are about 1.8 K and 1.9 m s^- 1, respectively, when the results are compared with the buoy data over open oceans under precipitating clouds (e.g., its liquid water path is larger than 0.5 mm), while they are 1.1 K for SST and 2.0 m s^-1 for SSW, respectively, when the retrievals are validated against the dropsonde measurements over warm oceans. These results indicate that our newly developed algorithm can provide some critical surface information for tropical cycle predictions. Currently, this newly developed algorithm has been implemented into the hybrid variational scheme for the hurricane vortex analysis to provide predictions of SST and SSW fields.  相似文献   

11.
Existing satellite microwave algorithms for retrieving Sea Surface Temperature(Sst)and wind(SSW)are applicable primarily for non-raining cloudy conditions.With the launch of the Earth Observing System (EOS)Aqua satellite in 2002,the Advanced Microwave Scanning Radiometer(AMSR-E)onboard provides some unique measurements at lower frequencies which are sensitive to ocean surface parameters under ad-verse weather conditions.In this study,a new algorithm is developed to derive SST and SSW for hurricane predictions such as hurricane vortex analysis from the AMSR-E measurements at 6.925 and 10.65 GHz.In the algorithm,the effects of precipitation emission and scattering on the measurements are properly taken into account.The algorithm performances are evaluated with buoy measurements and aircraft dropsonde data.It is found that the root mean square (RMS) errors for SST and SSW are about 1.8K and 1.9m s(-1),respectively,when the results are compared with the buoy data over open oceans under precipitating clouds (e.g.,its liquid water path is larger than 0.5 mm),while they are 1.1 K for SST and 2.0 ms(-1)for SSW,respectively,when the retrievals are validated against the dropsonde measurements over warm oceans.These results indicate that our newly developed algorithm catl provide some critical surface information for trop-ical cycle predictions.Currently,this newly developed algorithm has been implemented into the hybrid variational scheme for the hurricane vortex analysis to provide predictions of SST and SSW fields.  相似文献   

12.
A new scheme that separates convective-stratiform rainfall is developed using threshold values of liquid water path (LWP) and ice water path (IWP). These cloud contents can be predicted with radiances at the Advanced Microwave Sounding Unit (AMSU) channels (23.8, 31.4, 89, and 150 GHz) through linear regression models. The scheme is demonstrated by an analysis of a two-dimensional cloud resolving model simulation that is imposed by a forcing derived from the Tropical Ocean Global Atmosphere Coupled Ocean–Atmosphere Response Experiment (TOGA COARE). The rainfall is considered convective if associated LWP is larger than 1.91 mm or IWP is larger than 1.70 mm. Otherwise, the rainfall is stratiform. The analysis of surface rainfall budget demonstrates that this new scheme is physically meaningful.  相似文献   

13.
The Multivariate and Minimum Residual(MMR) cloud detection and retrieval algorithm, previously developed and tested on simulated observations and Advanced Infrared Sounder radiance, was explored and validated using various radiances from multiple sensors. For validation, the cloud retrievals were compared to independent cloud products from Cloud Sat, MODIS(Moderate Resolution Imaging Spectroradiometer), and GOES(Geostationary Operational Environmental Satellites). We found good spatial agreement within a single instrument, although the cloud fraction on each pixel was estimated independently. The retrieved cloud properties showed good agreement using radiances from multiple satellites, especially for the vertically integrated cloud mask. The accuracy of the MMR scheme in detecting mid-level clouds was found to be higher than for higher and lower clouds. The accuracy in retrieving cloud top pressures and cloud profiles increased with more channels from observations. For observations with fewer channels, the MMR solution was an "overly smoothed" estimation of the true vertical profile, starting from a uniform clear guess. Additionally, the retrieval algorithm showed some meaningful skill in simulating the cloudy radiance as a linear observation operator, discriminating between numerical weather prediction(NWP) error and cloud effects. The retrieval scheme was also found to be robust when different radiative transfer models were used. The potential application of the MMR algorithm in NWP with multiple radiances is also discussed.  相似文献   

14.
Presented is a review of the radiative properties of ice clouds from three perspectives: light scattering simulations, remote sensing applications, and broadband radiation parameterizations appropriate for numerical models. On the subject of light scattering simulations, several classical computational approaches are reviewed, including the conventional geometric-optics method and its improved forms, the finite-difference time domain technique, the pseudo-spectral time domain technique, the discrete dipole approximation method, and the T-matrix method, with specific applications to the computation of the singlescattering properties of individual ice crystals. The strengths and weaknesses associated with each approach are discussed.With reference to remote sensing, operational retrieval algorithms are reviewed for retrieving cloud optical depth and effective particle size based on solar or thermal infrared(IR) bands. To illustrate the performance of the current solar- and IR-based retrievals, two case studies are presented based on spaceborne observations. The need for a more realistic ice cloud optical model to obtain spectrally consistent retrievals is demonstrated. Furthermore, to complement ice cloud property studies based on passive radiometric measurements, the advantage of incorporating lidar and/or polarimetric measurements is discussed.The performance of ice cloud models based on the use of different ice habits to represent ice particles is illustrated by comparing model results with satellite observations. A summary is provided of a number of parameterization schemes for ice cloud radiative properties that were developed for application to broadband radiative transfer submodels within general circulation models(GCMs). The availability of the single-scattering properties of complex ice habits has led to more accurate radiation parameterizations. In conclusion, the importance of using nonspherical ice particle models in GCM simulations for climate studies is proven.  相似文献   

15.
官莉  韩静  薛秋蒙 《气象科学》2023,43(4):561-568
针对2020年第9号台风"美莎克"期间FY-4A 高光谱红外干涉式大气垂直探测仪GIIRS每15 min一次的目标区跟踪加密观测资料,用三维卷积神经网络算法反演的全天空大气温度、湿度廓线分析了台风处于生命史不同阶段时暖心结构和湿度场结构的演变特征。结果表明:卷积神经网络的深度机器学习算法可以用来反演全天空的三维大气温度和湿度垂直廓线,不光适用范围广(晴空和有云视场)、反演精度高,而且反演速度快。利用静止卫星平台高时间分辨率的特性,反演得到的温度、湿度廓线可以细致追踪台风处于发展、成熟和登陆等阶段时暖心结构和湿度场的时空演变特征。台风从发展阶段(热带风暴和强热带风暴)到成熟阶段至登陆消亡时,暖心首先出现在对流层中高层较薄的区域,随着台风强度的加强,深厚的暖心结构明显、强度增加,水平面积增大且垂直往下延伸。由于对流云中强上升气流的输送水汽正距平区逐渐上传至300 hPa,台风最强时密闭云区与四周下沉气流区比湿差高到8 K·kg-1。暖心结构和高湿度中心随着台风登陆而逐渐消失。  相似文献   

16.
Summary One of the recent campaigns devoted to precipitation studies using both active and passive microwave remote sensing systems was the Convection and Precipitation/Electrification Experiment (CaPE), which took place in central Florida during the summer of 1991. During CaPE, the airborne Advanced Microwave Precipitation Radiometer (AMPR), having four channels at 10.7, 19.35, 37.1 and 85.5 GHz and the National Center for Atmospheric Research CP-2 multiparameter radar at S-band (3 GHz) and X-band (10 GHz) were operated simultaneously. In this paper, we compare estimated hydrometeor liquid/ice water contents and surface rainrates, both retrieved from the AMPR radiometer and CP-2 radar measurements, for a case study consisting of a heavy precipitating storm over land near Cape Canaveral on August 12, 1991. The multi-frequency radiometer-based retrieval scheme uses a cloud-precipitation dataset generated from a cloud model and extended by a physically-constrained Monte Carlo procedure, along with a discrete-ordinate radiative transfer model and a principal component statistical technique to help formulate non-linear regression equations for the sought-after hydrometeor quantities. By applying linear discriminant analysis, the algorithm is used to estimate column integrated liquid/ice water contents, as well as the vertical profiles of these quantities to within a specified accuracy. Rainfall rates are estimated either by non-linear regression or by a suitable fallout model. The analysis has confined itself to along-track nadir-looking AMPR measuremets to avoid complications with variable polarization mixing and geometric distortion for off-nadir observations. Considering the different model assumptions used in the two types of retrieval algorithms and the diverse geophysical information content within the two types of measurements, substantial agreement between the radar- and radiometer-derived retrievals has been achieved for the columnar liquid/ice water contents and rainrates.With 19 FiguresThe National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation.  相似文献   

17.
The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.  相似文献   

18.
利用AMSU分析热带气旋结构特征   总被引:3,自引:0,他引:3       下载免费PDF全文
搭载在美国新一代极轨业务系列气象卫星上的先进的微波探测器 (Advanced Microwave Sounding Unit , AMSU) 提供了对于大气中温度、湿度以及云雨分布特征的探测能力。 研究选择 2003 年发生在西北太平洋上的多个热带气旋个例, 利用 NOAA16/17 卫星的 AMSU 数据分析热带气旋热力及云雨结构特征, 结果显示: 热带气旋中心的增暖在 AMSU-A 微波温度观测表现显著, 特别是在对流层上层通道尤其明显; AMSU 观测热带气旋中心增暖与强度相关性统计分析显示, 两者相关性达 0.778; AMSU-B 高频通道可以揭示热带气旋的云雨结构分布和对流发展旺盛情况, 分析显示热带气旋云雨结构变化与气旋强度密切相关, 气旋强度滞后于系统对流过程的发展 。  相似文献   

19.
在假设冰云粒子呈球形以及粒子谱服从对数正态分布的条件下,利用离散偶极子近似法(DDA),计算出太赫兹频段(220 GHz)冰云粒子的雷达反射率因子,及其与瑞利假设下雷达反射率因子的比值。忽略衰减和多次散射的影响,根据太赫兹波段冰云的雷达反射率因子,基于最优估计理论反演冰云的微物理参数,并验证该算法的可靠性。反演结果表明,当冰云粒子大小在设定的尺度范围内时,有效粒子半径(re)的反演误差小于4%,粒子谱宽(σ)的误差小于2.5%、粒子数密度(NT)的误差小于1%,冰水含量(IWC)的误差小于5%。还分析了当NT和σ为定值时,反演结果随粒子尺寸的变化情况,当冰云粒子尺寸在模拟计算设定的范围内时,re的反演误差小于0.04%,σ的反演误差小于0.02%,NT的反演误差小于0.50%,IWC的反演误差小于0.08%,如果冰云粒子大小超出模拟计算设置的范围,反演误差随着re增加而增大。该结果证明了基于最优估计理论反演得到的冰云微物理参数与模拟设定值有良好的一致性,说明该方法可应用于太赫兹频段云雷达的冰云观测及云微物理参数的反演和研究。   相似文献   

20.
Summary A new Statistical-Physical Retrieval Method (STPRM) has been developed for applications with TIROS Operational Vertical Sounder (TOVS) measurements. The method uses physical modeling combined with statistical regression to develop straightforward retrieval expressions for temperature, moisture content, and tropopause height based on brightness temperature measurements from both the HIRS and MSU instruments used in the TOVS system. The selection of HIRS and MSU channels used in the various retrievals is based on channel sensitivity coefficients which relate to the amplitude of the change of a given channel's brightness temperature to a given change in a retrieval parameter. The temperature retrieval procedure is designed for all-weather situations, and emphasizes the use of MSU microwave channels including linear combinations of these channels to improve vertical resolution. Cloud parameters are retrieved using radiances from HIRS channels to generate clear column radiances for the moisture and tropopause height retrievals, which depend almost exclusively on the HIRS channels. The STPRM scheme is then used to obtain and evaluate distributions of temperature, mixing ratio, and tropopause height. Distributions of ozone content are also retrieved from an independent iterative retrieval procedure using the cloud corrected radiances from the STPRM scheme as input. The retrievals are compared to in situ measurements obtained from radiosonde observations and ground-based Dobson spectrometer measurements situated throughout East Asia with generally good results. The temperature retrievals are also used in a synoptic analysis of a winter storm situation that developed over northern China in January 1989, giving a geopotential height distribution which is confirmed by aerological observations.With 16 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号