首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文系统总结了东北亚陆缘晚古生代和中生代增生杂岩的构成与形成时代,并结合同时代火成岩组合及其时空变异以及沉积建造组合,重塑了西太平洋板块俯冲带的演变历史.结果表明:①位于佳木斯地块东缘的跃进山杂岩代表了二叠纪俯冲带,它是古亚洲洋构造体制的产物;②侏罗纪增生杂岩代表了侏罗纪俯冲带,与陆缘同期钙碱性火成岩组合以及含煤建造一...  相似文献   

2.
Lower crustal xenoliths erupted from an intraplate diatreme reveal that a portion of the New Zealand Gondwana margin experienced high‐temperature (HT) to ultrahigh‐temperature (UHT) granulite facies metamorphism just after flat slab subduction ceased at c. 110–105 Ma. PT calculations for garnet–orthopyroxene‐bearing felsic granulite xenoliths indicate equilibration at ~815 to 910°C and 0.7 to 0.8 GPa, with garnet‐bearing mafic granulite xenoliths yielding at least 900°C. Supporting evidence for the attainment of HT and UHT conditions in felsic granulite comes from re‐integration of exsolution in feldspar (~900–950°C at 0.8 GPa), Ti‐in‐zircon thermometry on Y‐depleted overgrowths on detrital zircon grains (932°C ± 24°C at aTiO2 = 0.8 ± 0.2), and correlation of observed assemblages and mineral compositions with thermodynamic modelling results (≥850°C at 0.7 to 0.8 GPa). The thin zircon overgrowths, which were mainly targeted by drilling through the cores of grains, yield a U–Pb pooled age of 91.7 ± 2.0 Ma. The cause of Late Cretaceous HT‐UHT metamorphism on the Zealandia Gondwana margin is attributed to collision and partial subduction of the buoyant oceanic Hikurangi Plateau in the Early Cretaceous. The halt of subduction caused the fore‐running shallowly dipping slab to rollback towards the trench position and permitted the upper mantle to rapidly increase the geothermal gradient through the base of the extending (former) accretionary prism. This sequence of events provides a mechanism for achieving regional HT–UHT conditions in the lower crust with little or no sign of this event at the surface.  相似文献   

3.
《地学前缘(英文版)》2020,11(3):895-914
A section from the Linglong gold deposit on the northwestern Jiaodong Peninsula,East China,containing Late Mesozoic magmatic rocks from mafic and intermediate dikes and felsic intrusions,was chosen to investigate the lithospheric evolution of the eastern North China Craton(NCC).Zircon U-Pb data showed that low-Mg adakitic monzogranites and granodiorite intrusions were emplaced during the Late Jurassic(~145 Ma) and late Early Cretaceous(112-107 Ma),respectively;high-Mg adakitic diorite and mafic dikes were also emplaced during the Early Cretaceous at~139 Ma and ~118 Ma,and 125-145 Ma and 115-120 Ma,respectively.The geochemical data,including whole-rock major and trace element compositions and Sr-Nd-Pb isotopes,imply that the mafic dikes originated from the partial melting of a lithospheric mantle metasomatised through hydrous fluids from a subducted oceanic slab.Low-Mg adakitic monzogranites and granodiorite intrusions originated from the partial melting of the thickened lower crust of the NCC,while high-Mg adakitic diorite dikes originated from the mixing of mafic and felsic melts.Late Mesozoic magmatism showed that lithosphere-derived melts showed a similar source depth and that crust-derived felsic melts originated from the continuously thickened lower crust of the Jiaodong Peninsula from the Late Jurassic to Early Cretaceous.We infer that the lower crust of the eastern NCC was thickened through compression and subduction of the Palaeo-Pacific plate beneath the NCC during the Middle Jurassic.Slab rollback of the plate from ~160 Ma resulted in lithospheric thinning and accompanied Late Mesozoic magmatism.  相似文献   

4.
东亚大地构造发展的重要转折   总被引:198,自引:8,他引:198       下载免费PDF全文
赵越 《地质科学》1994,29(2):105-119
本文根据现实主义原则和现代地质学理论,分析综合了东亚构造地质、古地磁、古生物地理、地质年代学等方面的一些最新研究成果,提出东亚古亚洲洋构造系和古特堤斯构造系向环太平洋主动陆缘的转变最终出现在中侏罗世,著名的燕山运动正是这一重要构造转折的产物。  相似文献   

5.
By comparing detrital zircon U–Pb age spectra of coeval fore‐arc and back‐/intra‐arc basin sandstones, we identified the overall distributary pattern of terrigenous clastic material within the Cretaceous arc system of SW Japan. Abundant Proterozoic (c. 1500–2500 Ma) detrital grains from the interior of East Asia are present in the Cretaceous intra‐arc basin. However, after a barrier mountain range formed during batholith emplacement, Proterozoic clastics were rarely transported into the fore‐arc domain. Episodic batholith formation in Pacific‐type orogens likely played a major role in controlling terrigenous supply routes between coeval back‐arc and fore‐arc domains. The Cretaceous orogen in Japan thus provides a good template for analysing the tectono‐sedimentary development of other arc‐related basins.  相似文献   

6.
《Gondwana Research》2010,17(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

7.
Systematic K–Ar dating and geochemical analyses of Paleogene cauldrons in the Sanin Belt of SW Japan have been made to explore the relationship between the timing of their formation and the Paleogene subduction history of SW Japan documented in the Shimanto accretionary complex. We also examine the magma sources and tectonics beneath the backarc region of SW Japan at the eastern plate boundary of Eurasia.Fifty-eight new K–Ar ages and 19 previously reported radiometric age data show that the cauldrons formed during Middle Eocene to Early Oligocene time (43–30 Ma), following a period of magmatic hiatus from 52 to 43 Ma. The hiatus coincides with absence of an accretionary prism in the Shimanto Belt. Resumption of the magmatism that formed the cauldron cluster in the backarc was concurrent with voluminous influx of terrigenous detritus to the trench, as a common tectono-thermal event within a subduction system.The cauldrons are composed of medium-K calc-alkaline basalts to rhyolites and their plutonic equivalents. These rocks are characterized by lower concentrations of large ion lithophile elements (LILE) including K2O, Ba, Rb, Th, U and Li, lower (La/Yb)n ratios, lower initial Sr isotopic ratios (0.7037–0.7052) and higher εNd(T) values (?0.5 to +3.5) relative to Late Cretaceous to Early Paleogene equivalents. There are clear trends from enriched to depleted signatures with decreasing age, from the Late Cretaceous to the Paleogene. The same isotopic shift is also confirmed in lower crust-derived xenoliths, and is interpreted as mobilization of pre-existing enriched lithospheric mantle by upwelling depleted asthenosphere.Relatively elevated geothermal gradients are presumed to have prevailed over wide areas of the backarc and forearc of the SW Japan arc-trench system during the Eocene to Oligocene. Newly identified Late Eocene low silica adakites and high-Mg andesites in the Sanin Belt and Early Eocene A-type granites in the SW Korea Peninsula probably formed due to upwelling of hot asthenosphere and subduction of a young plate.The backarc region was an extensional tectonic setting, and some Paleogene rift basins and Sanin Belt cauldrons occur in linear arrays. The Eocene–Oligocene Sanin-SE Korea continental arc lies on the NE extension of the East China Sea Basin, the initial stage of which probably formed by continental arc rifting. This rifting may have been triggered by upwelling of hot asthenosphere into the wedge space created by rollback of the subducted slab, in response to decreased convergence rate between the Pacific and Eurasian plates.  相似文献   

8.
The early Cretaceous structure of NE China was a result of slab‐rollback‐driven extensional tectonics, characteristic of Western Pacific‐type continental margins. Oblique docking of a microcontinent along the Asian active margin in the early Late Cretaceous induced a compressional stress regime that brought about an Andean‐type continental margin development. Partitioning of contractional–transpressional strain across NE China produced a retroarc foreland basin system, comprising, from east to west, an orogenic wedge, a foredeep (Songliao basin), a forebulge (Great Xing'an Range) and a back‐bulge depozone (Hailar and Erlian basins). A sub‐circular lacustrine depozone in the pre‐existing Songliao basin evolved into a NNE‐trending depocentre near the forebulge and acquired a westward flowing fluvial–deltaic drainage system during the Campanian. Development of this retroarc foreland basin system signals a significant tectonic switch from a Western Pacific‐type to an Andean‐type continental margin evolution in the geological history of East Asia.  相似文献   

9.
This paper presents several types of new information including U–Pb radiometric dating of ophiolitic rocks and an intrusive granite, micropalaeontological dating of siliceous and calcareous sedimentary rocks, together with sedimentological, petrographic and structural data. The new information is synthesised with existing results from the study area and adjacent regions (Central Pontides and Lesser Caucasus) to produce a new tectonic model for the Mesozoic–Cenozoic tectonic development of this key Tethyan suture zone.

The Tethyan suture zone in NE Turkey (Ankara–Erzincan–Kars suture zone) exemplifies stages in the subduction, suturing and post-collisional deformation of a Mesozoic ocean basin that existed between the Eurasian (Pontide) and Gondwanan (Tauride) continents. Ophiolitic rocks, both as intact and as dismembered sequences, together with an intrusive granite (tonalite), formed during the Early Jurassic in a supra-subduction zone (SSZ) setting within the ?zmir–Ankara–Erzincan ocean. Basalts also occur as blocks and dismembered thrust sheets within Cretaceous accretionary melange. During the Early Jurassic, these basalts erupted in both a SSZ-type setting and in an intra-plate (seamount-type) setting. The volcanic-sedimentary melange accreted in an open-ocean setting in response to Cretaceous northward subduction beneath a backstop made up of Early Jurassic forearc ophiolitic crust. The Early Jurassic SSZ basalts in the melange were later detached from the overriding Early Jurassic ophiolitic crust.

Sedimentary melange (debris-flow deposits) locally includes ophiolitic extrusive rocks of boninitic composition that were metamorphosed under high-pressure low-temperature conditions. Slices of mainly Cretaceous clastic sedimentary rocks within the suture zone are interpreted as a deformed forearc basin that bordered the Eurasian active margin. The basin received a copious supply of sediments derived from Late Cretaceous arc volcanism together with input of ophiolitic detritus from accreted oceanic crust.

Accretionary melange was emplaced southwards onto the leading edge of the Tauride continent (Munzur Massif) during latest Cretaceous time. Accretionary melange was also emplaced northwards over the collapsed southern edge of the Eurasian continental margin (continental backstop) during the latest Cretaceous. Sedimentation persisted into the Early Eocene in more northerly areas of the Eurasian margin.

Collision of the Tauride and Eurasian continents took place progressively during latest Late Palaeocene–Early Eocene. The Jurassic SSZ ophiolites and the Cretaceous accretionary melange finally docked with the Eurasian margin. Coarse clastic sediments were shed from the uplifted Eurasian margin and infilled a narrow peripheral basin. Gravity flows accumulated in thrust-top piggyback basins above accretionary melange and dismembered ophiolites and also in a post-collisional peripheral basin above Eurasian crust. Thickening of the accretionary wedge triggered large-scale out-of-sequence thrusting and re-thrusting of continental margin and ophiolitic units. Collision culminated in detachment and northward thrusting on a regional scale.

Collisional deformation of the suture zone ended prior to the Mid-Eocene (~45?Ma) when the Eurasian margin was transgressed by non-marine and/or shallow-marine sediments. The foreland became volcanically active and subsided strongly during Mid-Eocene, possibly related to post-collisional slab rollback and/or delamination. The present structure and morphology of the suture zone was strongly influenced by several phases of mostly S-directed suture zone tightening (Late Eocene; pre-Pliocene), possible slab break-off and right-lateral strike-slip along the North Anatolian Transform Fault.

In the wider regional context, a double subduction zone model is preferred, in which northward subduction was active during the Jurassic and Cretaceous, both within the Tethyan ocean and bordering the Eurasian continental margin.  相似文献   

10.
《Earth》2006,77(3-4):191-233
A Cenozoic tectonic reconstruction is presented for the Southwest Pacific region located east of Australia. The reconstruction is constrained by large geological and geophysical datasets and recalculated rotation parameters for Pacific–Australia and Lord Howe Rise–Pacific relative plate motion. The reconstruction is based on a conceptual tectonic model in which the large-scale structures of the region are manifestations of slab rollback and backarc extension processes. The current paradigm proclaims that the southwestern Pacific plate boundary was a west-dipping subduction boundary only since the Middle Eocene. The new reconstruction provides kinematic evidence that this configuration was already established in the Late Cretaceous and Early Paleogene. From ∼ 82 to ∼ 52 Ma, subduction was primarily accomplished by east and northeast-directed rollback of the Pacific slab, accommodating opening of the New Caledonia, South Loyalty, Coral Sea and Pocklington backarc basins and partly accommodating spreading in the Tasman Sea. The total amount of east-directed rollback of the Pacific slab that took place from ∼ 82 Ma to ∼ 52 Ma is estimated to be at least 1200 km. A large percentage of this rollback accommodated opening of the South Loyalty Basin, a north–south trending backarc basin. It is estimated from kinematic and geological constraints that the east–west width of the basin was at least ∼ 750 km. The South Loyalty and Pocklington backarc basins were subducted in the Eocene to earliest Miocene along the newly formed New Caledonia and Pocklington subduction zones. This culminated in southwestward and southward obduction of ophiolites in New Caledonia, Northland and New Guinea in the latest Eocene to earliest Miocene. It is suggested that the formation of these new subduction zones was triggered by a change in Pacific–Australia relative motion at ∼ 50 Ma. Two additional phases of eastward rollback of the Pacific slab followed, one during opening of the South Fiji Basin and Norfolk Basin in the Oligocene to Early Miocene (up to ∼ 650 km of rollback), and one during opening of the Lau Basin in the latest Miocene to Present (up to ∼ 400 km of rollback). Two new subduction zones formed in the Miocene, the south-dipping Trobriand subduction zone along which the Solomon Sea backarc Basin subducted and the north-dipping New Britain–San Cristobal–New Hebrides subduction zone, along which the Solomon Sea backarc Basin subducted in the west and the North Loyalty–South Fiji backarc Basin and remnants of the South Loyalty–Santa Cruz backarc Basin subducted in the east. Clockwise rollback of the New Hebrides section resulted in formation of the North Fiji Basin. The reconstruction provides explanations for the formation of new subduction zones and for the initiation and termination of opening of the marginal basins by either initiation of subduction of buoyant lithosphere, a change in plate kinematics or slab–mantle interaction.  相似文献   

11.
Lawsonite pseudomorphs are used to identify and distinguish the kinematic records of subduction and exhumation in blueschist‐facies rocks from Syros (Cyclades; Greece). Lawsonite is a hydrous mineral that crystallizes at high‐pressure and low‐temperature conditions. During decompression, lawsonite is typically pseudomorphed by an aggregate dominated by epidote and paragonite. Such aggregates are easily deformable and if deformation occurs after the lawsonite breakdown, the pseudomorphs are difficult to distinguish from the matrix. The preservation of the lawsonite crystal shape, despite complete retrogression, indicates therefore that the host blueschist rock has not been affected by penetrative deformation during exhumation, thus providing indication of strain‐free conditions. Therefore, tracking the lawsonite growth and destabilization along the P–T path followed by the rocks during a subduction/exhumation cycle provides information about the subduction/exhumation‐related deformation. Using microstructural observations and P–T pseudosections calculated with thermocalc , it is inferred that top‐to‐the‐south sense of shear preserved in lawsonite pseudomorph‐bearing blueschists on Syros occurred during the prograde metamorphic path within the lawsonite stability field, and is therefore associated with subduction. On the contrary, the deformation with a top‐to‐the‐north sense of shear is observed in surrounding rocks, where lawsonite pseudomorphs are deformed or apparently lacking. This deformation occurred after the lawsonite breakdown during exhumation. At the regional scale, exhumation‐related deformation is heterogeneous, allowing the preservation of lawsonite pseudomorphs in significant volumes of blueschists of the central and southern Cyclades. It is argued that such successive shearing deformation events with opposite senses more likely correspond to an exhumation process driven by slab rollback, in which subduction and exhumation are not synchronous.  相似文献   

12.
Dapeng Zhao  Eiji Ohtani   《Gondwana Research》2009,16(3-4):401-413
We present new pieces of evidence from seismology and mineral physics for the existence of low-velocity zones in the deep part of the upper mantle wedge and the mantle transition zone that are caused by fluids from the deep subduction and deep dehydration of the Pacific and Philippine Sea slabs under western Pacific and East Asia. The Pacific slab is subducting beneath the Japan Islands and Japan Sea with intermediate-depth and deep earthquakes down to 600 km depth under the East Asia margin, and the slab becomes stagnant in the mantle transition zone under East China. The western edge of the stagnant Pacific slab is roughly coincident with the NE–SW Daxing'Anling-Taihangshan gravity lineament located west of Beijing, approximately 2000 km away from the Japan Trench. The upper mantle above the stagnant slab under East Asia forms a big mantle wedge (BMW). Corner flow in the BMW and deep slab dehydration may have caused asthenospheric upwelling, lithospheric thinning, continental rift systems, and intraplate volcanism in Northeast Asia. The Philippine Sea slab has subducted down to the mantle transition zone depth under Western Japan and Ryukyu back-arc, though the seismicity within the slab occurs only down to 200–300 km depths. Combining with the corner flow in the mantle wedge, deep dehydration of the subducting Pacific slab has affected the morphology of the subducting Philippine Sea slab and its seismicity under Southwest Japan. Slow anomalies are also found in the mantle under the subducting Pacific slab, which may represent small mantle plumes, or hot upwelling associated with the deep slab subduction. Slab dehydration may also take place after a continental plate subducts into the mantle.  相似文献   

13.
The Pyrenees at the Iberia–Europe collision zone contain sediments showing Albian–Cenomanian high-temperature metamorphism, and coeval alkaline magmatic rocks. Stemming from different views on Jurassic–Cretaceous Iberian microplate kinematics, two schools of thought exist on the trigger of this thermal pulse: one invoking hyperextension of the Iberian and Eurasian margins, the other suggesting slab break-off. Competing scenarios for Mesozoic Iberian motion compatible with Pyrenean geology, comprise (1) transtensional eastward motion of Iberia versus Eurasia, or (2) strike-slip motion followed by orthogonal extension, both favoring hyperextension-related heating, and (3) scissor-style opening of the Bay of Biscay coupled with subduction in the Pyrenean realm, favoring the slab break-off hypothesis. We test these kinematic scenarios for Iberia against a newly compiled paleomagnetic dataset and conclude that the scissor-type scenario is the only one consistent with a well-defined ~ 35° counterclockwise rotation of Iberia during the Early Aptian. We proceed to show that when taking absolute plate motions into account, Aptian oceanic subduction in the Pyrenees followed by Late Aptian–Early Albian slab break-off should leave a slab remnant in the present-day mid-mantle below NW Africa. Mantle tomography shows the Reggane anomaly that matches the predicted position and dimension of such a slab remnant between 1900 and 1500 km depth below southern Algeria. Mantle tomography is therefore consistent with the scissor-type opening of the Bay of Biscay coupled with subduction in the Pyrenean realm. Slab break-off may thus explain high-temperature metamorphism and alkaline magmatism during the Albian–Cenomanian in the Pyrenees, whereas hyperextension that exhumed Pyrenean mantle bodies occurred much earlier, in the Jurassic.  相似文献   

14.
The Mesozoic Xigaze ophiolite is a key to understanding the tectonic evolution of the Yarlung Zangbo suture zone. Although many studies have been reported, the formation age and petrogenesis of the Xigaze ophiolite remain controversial. In this paper, new geochronological and geochemical data for mafic dikes (diabase, dolerite), lavas, and gabbros of the Xigaze ophiolite are provided to constrain the origin of the Xigaze ophiolite. Combined with previous studies, three new zircon U–Pb ages of samples from two gabbro and one dolerite samples show that the Xigaze ophiolite was produced at two distinct stages of 174–149 Ma and 137–123 Ma. Whole-rock geochemical data indicate that these rocks exhibit N-MORB-like features, but the gabbros are more depleted in trace elements and belong to cumulates. Geochemical characters, combined with their positive εNd(t) values (+3.2 to +9.6), suggest that these samples originated from depleted mantle sources with minor influence of slab-derived fluids. Considering the previous studies on the Yarlung Zangbo suture zone, the Xigaze ophiolite was likely generated in an active continental margin fore-arc basin with a multistage model associated with the northward subduction of the Yarlung Zangbo Neo-Tethys Ocean beneath the Lhasa terrane. The Middle–Late Jurassic ophiolitic massifs (174–149 Ma) were produced as the result of slab rollback and were followed by subsequent slab break-off at ~ 150 Ma. The fore-arc lithosphere may be frozen at ~150–137 Ma, consistent with the termination of the Gangdese arc magmatism during this period. The Early Cretaceous ophiolitic massifs (137–123 Ma) were developed in relation to the reinitiation of the Neo-Tethyan oceanic lithosphere subduction, the retreat of the subduction zone, and the creation of a fore-arc basin with strong hyperextension in a new cycle.  相似文献   

15.
The eastern Himalayan syntaxis in southeastern Tibet consists of the Lhasa terrane, High Himalayan rocks and Indus‐Tsangpo suture zone. The Lhasa terrane constitutes the hangingwall of a subduction zone, whereas the High Himalayan rocks represent the subducted Indian continent. Our petrological and geochronological data reveal that the Lhasa terrane has undergone two stages of medium‐P metamorphism: an early granulite facies event at c. 90 Ma and a late amphibolite facies event at 36–33 Ma. However, the High Himalayan rocks experienced only a single high‐P granulite facies metamorphic event at 37–32 Ma. It is inferred that the Late Cretaceous (c. 90 Ma) medium‐P metamorphism of the southern Lhasa terrane resulted from a northward subduction of the Neo‐Tethyan ocean, and that the Oligocene (37–32 Ma) high‐P (1.8–1.4 GPa) rocks of the High Himalayan and coeval medium‐P (0.8–1.1 GPa) rocks of the Lhasa terrane represent paired metamorphic belts that resulted from the northward subduction of the Indian continent beneath Asia. Our results provide robust constraints on the Mesozoic and Cenozoic tectonic evolution of south Tibet.  相似文献   

16.
Analysing the provenance changes of synorogenic sediments in the Turpan‐Hami basin by detrital zircon geochronology is an efficient tool to examine the uplift and erosion history of the easternmost Tian Shan. We present detrital zircon U‐Pb analysis from nine samples that were collected within marginal lacustrine Middle‐Late Jurassic and aeolian‐fluvial Early Cretaceous strata in the basin. Middle‐Early Jurassic (159–172 Ma) zircons deriving from the southern Junggar dominated the Middle Jurassic sample from the western Turpan‐Hami basin, whereas Permian‐Carboniferous (270–330 Ma) zircons from the Bogda mountains were dominant in the Late Jurassic to Early Cretaceous samples. Devonian‐Silurian (400–420 Ma) and Triassic (235–259 Ma) zircons from the Jueluotage and Harlik mountains constituted the subordinate age groups in the Late Jurassic and Early Cretaceous samples from the eastern basin respectively. These provenance transitions provide evidence for uplift of the Bogda mountains in the Late Jurassic and the Harlik mountains since the Early Cretaceous.  相似文献   

17.
晚侏罗世东亚多向汇聚构造体系的形成与变形特征   总被引:47,自引:2,他引:47  
板块构造研究成果与同位素精确定年数据的积累,使我们对发生在中国东部的晚侏罗世-早白垩世东亚多向汇聚作用有了深刻的认识.全球三大洋在晚侏罗世(165±5)Ma近乎同时的开启,以及东亚周边占太平洋、新特提斯洋和蒙古-鄂霍茨克洋的俯冲消亡,在中国中东部和东亚地区形成了多向挤压汇聚的燕山期构造体系,即东业多向汇聚构造体系(简称东亚汇聚).东亚汇聚启动了经典的燕山运动,发育了独特的构造变形特征.东亚汇聚构造体系具有两个近乎稳定的刚性陆核,即鄂尔多斯地块和四川(盆地)地块,在它们的周缘形成了晚侏罗世-早白垩世陆内多向挤压变形和似前陆盆地,如大巴山晚侏罗世前陆.此外,东亚多向汇聚构造体系影响了东亚和中亚大部分地区的板内变形作用,在中国大陆及其周边形成了反映南北向挤压的蒙古弧共轭走滑断裂系统、燕山-阴山陆内造山带、大别山-大巴山侏罗纪陆内造山带等典型的燕山期构造带.东亚汇聚具有深刻的全球构造背景与动力来源,是重要的科学研究问题.  相似文献   

18.
The so‐called Plankogel detachment is an east‐west trending, south‐dipping low‐angle structure that juxtaposes the high‐P rocks of the eclogite type locality of the eastern European Alps against amphibolite facies rocks to the south. It occurs in both the Saualpe and Koralpe Complex in eastern Austria. During Cretaceous intracontinental subduction, the footwall and the hangingwall units of the Plankogel detachment were buried to different crustal levels as inferred by pseudosection modelling and conventional thermobarometry: ~23–24 kbar and 640–690 °C for the eclogite facies units in the footwall of the detachment and ~12–14 kbar and 550–580 °C for the amphibolite facies metapelites in the hangingwall. Despite the different peak metamorphic conditions, both sides of the detachment display a common overprint at conditions of ~10 kbar and 580–650 °C. From this, we infer a two‐stage exhumation process and suggest that this two‐stage process is best interpreted tectonically in terms of slab extraction during Eoalpine subduction. The first stage of exhumation occurred due to the downward (southward) extraction of a lithospheric slab that was localized in the trace of the Plankogel detachment. The later stage, however, is attributed to more regional erosion‐ or extension‐driven processes. Since the Plankogel detachment is geometrically related to a crustal‐scale shear zone further north (the Plattengneiss shear zone), we suggest that both structures are part of the same extraction fault system along which the syn‐collisional exhumation of the Eoalpine high‐P units of the Eastern Alps occurred. The suggested model is consistent with both the mylonitic texture of the Plattengneiss shear zone and the overall ambiguous shear sense indicators present in the entire region.  相似文献   

19.
LA-ICP-MS zircon U–Pb ages and geochemical data are presented for the Mesozoic volcanic rocks in northeast China, with the aim of determining the tectonic settings of the volcanism and constraining the timing of the overprinting and transformations between the Paleo-Asian Ocean, Mongol–Okhotsk, and circum-Pacific tectonic regimes. The new ages, together with other available age data from the literature, indicate that Mesozoic volcanism in NE China can be subdivided into six episodes: Late Triassic (228–201 Ma), Early–Middle Jurassic (190–173 Ma), Middle–Late Jurassic (166–155 Ma), early Early Cretaceous (145–138 Ma), late Early Cretaceous (133–106 Ma), and Late Cretaceous (97–88 Ma). The Late Triassic volcanic rocks occur in the Lesser Xing’an–Zhangguangcai Ranges, where the volcanic rocks are bimodal, and in the eastern Heilongjiang–Jilin provinces where the volcanics are A-type rhyolites, implying that they formed in an extensional environment after the final closure of the Paleo-Asian Ocean. The Early–Middle Jurassic (190–173 Ma) volcanic rocks, both in the Erguna Massif and the eastern Heilongjiang–Jilin provinces, belong chemically to the calc-alkaline series, implying an active continental margin setting. The volcanics in the Erguna Massif are related to the subduction of the Mongol–Okhotsk oceanic plate beneath the Massif, and those in the eastern Jilin–Heilongjiang provinces are related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent. The coeval bimodal volcanic rocks in the Lesser Xing’an–Zhangguangcai Ranges were probably formed under an extensional environment similar to a backarc setting of double-direction subduction. Volcanic rocks of Middle–Late Jurassic (155–166 Ma) and early Early Cretaceous (145–138 Ma) age only occur in the Great Xing’an Range and the northern Hebei and western Liaoning provinces (limited to the west of the Songliao Basin), and they belong chemically to high-K calc-alkaline series and A-type rhyolites, respectively. Combined with the regional unconformity and thrust structures in the northern Hebei and western Liaoning provinces, we conclude that these volcanics formed during a collapse or delamination of a thickened continental crust related to the evolution of the Mongol–Okhotsk suture belt. The late Early Cretaceous volcanic rocks, widely distributed in NE China, belong chemically to a low- to medium-K calc-alkaline series in the eastern Heilongjiang–Jilin provinces (i.e., the Eurasian continental margin), and to a bimodal volcanic rock association within both the Songliao Basin and the Great Xing’an Range. The volcanics in the eastern Heilongjiang–Jilin provinces formed in an active continental margin setting related to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent, and the bimodal volcanics formed under an extensional environment related either to a backarc setting or to delamination of a thickened crust, or both. Late Cretaceous volcanics, limited to the eastern Heilongjiang–Jilin provinces and the eastern North China Craton (NCC), consist of calc-alkaline rocks in the eastern Heilongjiang–Jilin provinces and alkaline basalts in the eastern NCC, suggesting that the former originated during subduction of the Paleo-Pacific Plate beneath the Eurasian continent, whereas the latter formed in an extensional environment similar to a backarc setting. Taking all this into account, we conclude that (1) the transformation from the Paleo-Asian Ocean regime to the circum-Pacific tectonic regime happened during the Late Triassic to Early Jurassic; (2) the effect of the Mongol–Okhotsk suture belt on NE China was mainly in the Early Jurassic, Middle–Late Jurassic, and early Early Cretaceous; and (3) the late Early Cretaceous and Late Cretaceous volcanics can be attributed to the subduction of the Paleo-Pacific Plate beneath the Eurasian continent.  相似文献   

20.
《International Geology Review》2012,54(13):1602-1629
Widespread Cretaceous volcanic basins are common in eastern South China and are crucial to understanding how the Circum-Pacific and Tethyan plate boundaries evolved and interacted with one another in controlling the tectonic evolution of South China. Lithostratigraphic units in these basins are grouped, in ascending order, into the Early Cretaceous volcanic suite (K1V), the Yongkang Group (K1-2), and the Jinqu Group (K2). SHRIMP U-Pb zircon geochronological results indicate that (1) the Early Cretaceous volcanic suite (K1V) erupted at 136–129 Ma, (2) the Yongkang Group (K1-2) was deposited from 129 Ma to 91 Ma, and (3) the deposition of the Jinqu Group (K2) post-dated 91 Ma. Structural analyses of fault-slip data from these rock units delineate a four-stage tectonic evolution of the basins during Cretaceous to Palaeogene time. The first stage (Early to middle Cretaceous time, 136–91 Ma) was dominated by NW–SE extension, as manifested by voluminous volcanism, initial opening of NE-trending basins, and deposition of the Yongkang Group. This extension was followed during Late Cretaceous time by NW–SE compression that inverted previous rift basins. During the third stage in Late Cretaceous time, possibly since 78.5 Ma, the tectonic stress changed to N–S extension, which led to basin opening and deposition of the Jinqu Group along E-trending faults. This extension probably lasted until early Palaeogene time and was terminated by the latest NE–SW compressional deformation that caused basin inversion again. Geodynamically, the NW–SE-oriented stress fields were associated with plate kinematics along the Circum-Pacific plate boundary, and the extension–compression alternation is interpreted as resulting from variations of the subducted slab dynamics. A drastic change in the tectonic stress field from NW–SE to N–S implies that the Pacific subduction-dominated back-arc extension and shortening were completed in the Late Cretaceous, and simultaneously, that Neo-Tethyan subduction became dominant and exerted a new force on South China. The ongoing Neo-Tethyan subduction might provide plausible geodynamic interpretations for the Late Cretaceous N–S extension-dominated basin rifting, and the subsequent Cenozoic India–Asia collision might explain the early Palaeogene NE–SW compression-dominated basin inversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号