首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the Galactic Cosmic Rays (GCRs) and plasma observations from ACE spacecraft, the relation between GCR counts and solar wind parameters during the two periods of solar minimums (the years of 2007.0-2009.0 and 2016.5-2019.0) was analyzed by means of the Superposed Epoch Analysis (SEA) method. The results indicate that GCRs are strongly modulated by Co-rotating Interaction Regions (CIRs) in solar wind, the Stream Interfaces (SIs) sandwiched between fast and slow solar wind are closely related with the depression of GCR counts. The mechanism of the GCR variation was investigated through the empirical diffusion coefficients. The so-called “snow-plough” effect of GCR variation prior to the SI crossing appears during the first period, then the GCR counts decrease after the crossing, which corresponds to the sudden drop of diffusion coefficient at the SI. However, this effect is not observed for the second period, the decrease of GCR counts may be caused by the enhancement of the diffusion coefficient after the SI crossing. Moreover, Heliospheric Current Sheet (HCS) correlates with GCR counts well, the GCRs drift along the current sheet, and then accumulate to a pileup structure. The interplay between drift and diffusion determines the GCR distribution and variation at a heliocentric distance of 1 AU.  相似文献   

2.
We study solar modulation of galactic cosmic rays (GCRs) during the deep solar minimum, including the declining phase, of solar cycle 23 and compare the results of this unusual period with the results obtained during similar phases of the previous solar cycles 20, 21, and 22. These periods consist of two epochs each of negative and positive polarities of the heliospheric magnetic field from the north polar region of the Sun. In addition to cosmic-ray data, we utilize simultaneous solar and interplanetary plasma/field data including the tilt angle of the heliospheric current sheet. We study the relation between simultaneous variations in cosmic ray intensity and solar/interplanetary parameters during the declining and the minimum phases of cycle 23. We compare these relations with those obtained for the same phases in the three previous solar cycles. We observe certain peculiar features in cosmic ray modulation during the minimum of solar cycle 23 including the record high GCR intensity. We find, during this unusual minimum, that the correlation of GCR intensity is poor with sunspot number (correlation coefficient R=?0.41), better with interplanetary magnetic field (R=?0.66), still better with solar wind velocity (R=?0.80) and much better with the tilt angle of the heliospheric current sheet (R=?0.92). In our view, it is not the diffusion or the drift alone, but the solar wind convection that is the most likely additional effect responsible for the record high GCR intensity observed during the deep minimum of solar cycle 23.  相似文献   

3.
Brandt  J. C.  Snow  M.  Yi  Y.  Larson  S. M.  Mikuz  H.  Petersen  C. C.  Liller  W. 《Earth, Moon, and Planets》2002,90(1-4):15-33
The plasma tails of comets clearly show the demarcation of the solar wind into distinct equatorial and polar regions (Brandt and Snow (2000), Icarus 148, 52–64).The boundary is determined by the maximum extent in latitude of the heliospheric current sheet (HCS). The observational record contains many well-observed equatorial comets, but observations of comets in the polar region are relatively rare. In addition to its size and brightness, comet Hale–Bopp had an orbital inclination of 89.4° and was well observed for months in the polar region. We document the comet's large-scale appearance throughout the apparition, including the polar region and its transition into the equatorial region. The bright dust tail hampered observations of the plasma tail, particularly near the head, but images taken with a CO+ filter show a very large disconnection event (DE) on May 7 and May 8, 1997. The time of disconnection is estimated at approximately May 4.0. This DE is associated with a crossing of the HCS. The model calculations of the HCS indicate that other crossings might have occurred in late April, but given the uncertainty in the calculation, the comet might have missed the HCS. Sparse observational coverage and the bright dust tail prevent further investigation of the potential earlier HCS crossings. The plasma tail shows anomalous orientations at the highest latitudes and possible explanations are discussed.  相似文献   

4.
K. Mursula  T. Hiltula 《Solar physics》2004,224(1-2):133-143
Recent studies of the heliospheric magnetic field (HMF) have detected interesting, systematic hemispherical and longitudinal asymmetries which have a profound significance for the understanding of solar magnetic fields. The in situ HMF measurements since the 1960s show that the heliospheric current sheet (HCS) is systematically shifted (coned) southward during solar minimum times, leading to the concept of a bashful ballerina. While temporary shifts can be considerably larger, the average HCS shift (coning) angle is a few degrees, less than the 7.2 tilt of the solar rotation axis. Recent solar observations during the last two solar cycles verify these results and show that the magnetic areas in the northern solar hemisphere are larger and their intensity weaker than in the south during long intervals in the late declining to minimum phase. The multipole expansion reveals a strong quadrupole term which is oppositely directed to the dipole term. These results imply that the Sun has a symmetric quadrupole S0 dynamo mode that oscillates in phase with the dominant dipole A0 mode. Moreover, the heliospheric magnetic field has a strong tendency to produce solar tilts that are roughly opposite in longitudinal phase. This implies is a systematic longitudinal asymmetry and leads to a “flip-flop” type behaviour in the dominant HMF sector whose period is about 3.2 years. This agrees very well with the similar flip-flop period found recently in sunspots, as well as with the observed ratio of three between the activity cycle period and the flip-flop period of sun-like stars. Accordingly, these results require that the solar dynamo includes three modes, A0, S0 and a non-axisymmetric mode. Obviously, these results have a great impact on solar modelling.  相似文献   

5.
Mavromichalaki  H.  Vassilaki  A.  Tsagouri  I. 《Solar physics》1999,189(1):199-216
An analysis of 373 well-defined high-speed solar-wind streams observed at 1 AU during the years 1985–1996 is outlined. The distribution of the occurrence of these streams as a function of Bartels rotation days using the dominant polarity of the interplanetary magnetic field (IMF) associated with the referred fast streams shows that a four-sector pattern for the positive IMF polarity and a two-sector pattern for the negative IMF polarity are the dominant features in the investigated period. The high-speed streams seem to occur at preferred Bartels days: positive polarity streams are most frequent near Bartels days 5 and 18, while negative polarity streams are most frequent in days 14 and 23. Moreover, the corotating streams with positive IMF polarity prefer to occur in days 5 and 18 of the Bartels rotation period, whereas flare-generated streams with negative IMF polarity occur in days 14 and 23. The observed distribution of Bartels days is probably related to the distribution of the solar sources of high-speed solar wind streams as the solar wind carries with it the photospheric magnetic polarity of the solar source region. In addition, the distribution of the streams reveals a similar behaviour during the ascending and the declining phase of the last solar cycle (22nd) in contrast to the previous one where it has an opposite appearance. Determined differences in the characteristics of the sector structured IMF associated with the fast streams of the last cycle with the previous one (21st) and some similarities with the alternate solar cycle (20th) seem to be attributed to the 22-year magnetic cycle and to the polarity reversals of the polar magnetic field of the Sun. As the magnetic sectors are due to multiple crossings of the solar equatorial plane by a large-scale, warped heliospheric current sheet, it is suggested that the two-sector pattern arises from a tilted solar magnetic dipole component and the more commonly observed four-sector pattern from a quadrupole component of the solar interplanetary magnetic field.  相似文献   

6.
The solar wind velocity near Earth shows systematic structure in and around the heliospheric current sheet. The solar wind velocity measurements at IMF sector boundary crossings at 1 AU during 1972–1977 have been used to infer the azimuthal structure of the solar wind velocity in the current sheet. We found that the solar wind velocity in the in-ecliptic portion of the current sheet varies from longitude to longitude, where it originates from the corona. Also, the yearly average value of solar wind velocity in the HCS is found to vary with the phase of the solar cycle; with a maximum value around 1974. TheK-corona brightness on the source surface corresponding to the IMF sector boundary crossings during the period of study also shows a similar but opposite pattern of variation when the data are averaged over a long period. However, this relation is not observed when we considered them individually. So, we conclude that there exists a longitudinal variation of solar wind velocity in the heliospheric current sheet.  相似文献   

7.
Data of hourly interplanetary plasma (field magnitude, solar wind speed, and ion density), solar (sunspot number, solar radio flux), and geomagnetic indices (Kp, Ap) over the period 1970-2010, have been used to examine the asymmetry between the solar field north and south of the heliospheric current sheet (HCS). A persistent yearly north-south asymmetry of the field magnitude is clear over the considered period, and there is no magnetic solar cycle dependence. There is a weak N-S asymmetry in the averaged solar wind speed, exhibited well at times of maximum solar activities. The solar plasma is more dense north of the current sheet than south of it during the second negative solar polarity epoch (qA < 0). Moreover, the N - S asymmetry in solar activity (Rz) can be statistically highly significant. The sign of the average N - S asymmetry depends upon the solar magnetic polarity. The annual magnitudes of N - S asymmetry depend positively on the solar magnetic cycle. Most of the solar radio flux asymmetries occurred during the period of positive IMF polarity.  相似文献   

8.
Intensity variation of cosmic rays near the heliospheric current sheet   总被引:1,自引:0,他引:1  
Cosmic ray intensity variations near the heliospheric current sheet—both above and below it—have been studied during 1964–1976. Superposed epoch analysis of the cosmic ray neutron monitor data with respect to sector boundaries (i.e., heliospheric current sheet crossings) has been performed. In this analysis we have used the data from neutron monitors well distributed in latitude over the Earth's surface. First, this study has been made during the two solar activity minimum periods 1964–1965 and 1975–1976, using the data from Thule (cut-off rigidity 0 GV), Deep River (cut-off rigidity 1.02 GV), Rome (cut-off rigidity 6.32 GV) and Huancayo (cut-off rigidity 13.45 GV) neutron monitors. We have also analyzed the data from Deep River, Rome and Huancayo neutron monitors, for whom we have the data for full period (1964–1976), by dividing the periods according to the changes in solar activity, interplanetary magnetic field polarity and coronal holes. All these studies have shown a negative gradient with respect to heliomagnetic latitude (current sheet). These results have been discussed in the light of theoretical and observational evidences. Suggestions have been given to overcome the discrepancy between the observational and theoretical results. Further, possible explanations for these observational results have been suggested.  相似文献   

9.
The skewness of the monthly distribution of GSE latitudinal angles of Interplanetary Magnetic Field (IMF) observed near the Earth (Sk) is found to show anti-correlation with sunspot activity during the solar cycles 20–24. Sk can be considered as a measure of the predominant polarity of north-south component of IMF (Bz component) in the GSE system near 1 AU. Sk variations follow the magnitude of solar polar magnetic fields in general and polarity of south polar fields in particular during the years 1967–2020. Predominant polarity of Sk is found to be independent of the heliographic latitude of Earth. Sk basically reflects the variations of the solar dipolar magnetic field during a sunspot cycle. It is also found that IMF sector polarity variation is not a good indicator of the magnitude changes in solar polar magnetic fields during a sunspot cycle. This is possibly due to the influence of non-dipolar components of the solar magnetic field and the associated north-south asymmetries in the heliospheric current sheet.  相似文献   

10.
The ability to predict times of greater galactic cosmic ray (GCR) fluxes is important for reducing the hazards caused by these particles to satellite communications, aviation, or astronauts. The 11-year solar-cycle variation in cosmic rays is highly correlated with the strength of the heliospheric magnetic field. Differences in GCR flux during alternate solar cycles yield a 22-year cycle, known as the Hale Cycle, which is thought to be due to different particle drift patterns when the northern solar pole has predominantly positive (denoted as qA>0 cycle) or negative (qA<0) polarities. This results in the onset of the peak cosmic-ray flux at Earth occurring earlier during qA>0 cycles than for qA<0 cycles, which in turn causes the peak to be more dome-shaped for qA>0 and more sharply peaked for qA<0. In this study, we demonstrate that properties of the large-scale heliospheric magnetic field are different during the declining phase of the qA<0 and qA>0 solar cycles, when the difference in GCR flux is most apparent. This suggests that particle drifts may not be the sole mechanism responsible for the Hale Cycle in GCR flux at Earth. However, we also demonstrate that these polarity-dependent heliospheric differences are evident during the space-age but are much less clear in earlier data: using geomagnetic reconstructions, we show that for the period of 1905?–?1965, alternate polarities do not give as significant a difference during the declining phase of the solar cycle. Thus we suggest that the 22-year cycle in cosmic-ray flux is at least partly the result of direct modulation by the heliospheric magnetic field and that this effect may be primarily limited to the grand solar maximum of the space-age.  相似文献   

11.
Unipolar streamers (also known as pseudo-streamers) are coronal structures that, at least in coronagraph images, and when viewed at the correct orientation, are often indistinguishable from dipolar (or “standard”) streamers. When interpreted with the aid of a coronal magnetic field model, however, they are shown to consist of a pair of loop arcades. Whereas dipolar streamers separate coronal holes of the opposite polarity and whose cusp is the origin of the heliospheric current sheet, unipolar streamers separate coronal holes of the same polarity and are therefore not associated with a current sheet. In this study, we investigate the interplanetary signatures of unipolar streamers. Using a global MHD model of the solar corona driven by the observed photospheric magnetic field for Carrington rotation 2060, we map the ACE trajectory back to the Sun. The results suggest that ACE fortuitously traversed through a large and well-defined unipolar streamer. We also compare heliospheric model results at 1 AU with ACE in-situ measurements for Carrington rotation 2060. The results strongly suggest that the solar wind associated with unipolar streamers is slow. We also compare predictions using the original Wang–Sheeley (WS) empirically determined inverse relationship between solar wind speed and expansion factor. Because of the very low expansion factors associated with unipolar streamers, the WS model predicts high speeds, in disagreement with the observations. We discuss the implications of these results in terms of theories for the origin of the slow solar wind. Specifically, premises relying on the expansion factor of coronal flux tubes to modulate the properties of the plasma (and speed, in particular) must address the issue that while the coronal expansion factors are significantly different at dipolar and unipolar streamers, the properties of the measured solar wind are, at least qualitatively, very similar.  相似文献   

12.
We study galactic cosmic ray (GCR) modulation during solar cycle 24. For this study we utilize neutron monitor data together with sunspot number (SSN) and 10.7 cm solar radio flux (SRF) data. We plot hysteresis curve between the GCR intensity and SSN, and GCR intensity and SRF. We performed time-lag correlation analysis to determine the time lag between GCR intensity and solar activity parameters. The time lag is determined not only for the whole solar cycle, but also during the two polarity states of the heliosphere (A<0 and A>0) in solar cycle 24. We notice differences in time lags during two polarity epochs of the solar cycle. We discuss these differences in the light of existing modulation models. We compare the results of this very weak solar activity cycle with the corresponding results reported for the previous comparatively more active solar cycles.  相似文献   

13.
14.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   

15.
The termination shock at the heliospheric boundary is simulated in terms of a two-layer turbulent medium for which the average radial component of solar wind velocity is nonzero inside the heliosphere and zero for external magnetic inhomogeneities. Galactic cosmic rays (GCRs) are scattered more strongly in the solar wind than in the interstellar medium. A boundary value problem for density is defined to describe GCR propagation in the given two-layer medium. The exact analytical solution of it is derived. The phase density and GCR fluxes in the whole range of the particle energies, as well as the degree of anisotropy of high-energy GCRs, are determined. The qualitative agreement of theoretical calculations and observed GCR distributions is obtained. In particular, in the region near the termination shock, an increase in the high-energy particle density and a decrease in the low-energy particle density are observed.  相似文献   

16.
Lepping  R.P.  Berdichevsky  D.B.  Burlaga  L.F.  Lazarus  A.J.  Kasper  J.  Desch  M.D.  Wu  C.-C.  Reames  D.V.  Singer  H.J.  Smith  C.W.  Ackerson  K.L. 《Solar physics》2001,204(1-2):285-303
The energetic charged particle, interplanetary magnetic field, and plasma characteristics of the `Bastille Day' shock and ejecta/magnetic cloud events at 1 AU occurring over the days 14–16 July 2000 are described. Profiles of MeV (WIND/LEMT) energetic ions help to organize the overall sequence of events from the solar source to 1 AU. Stressed are analyses of an outstanding magnetic cloud (MC2) starting late on 15 July and its upstream shock about 4 hours earlier in WIND magnetic field and plasma data. Also analyzed is a less certain, but likely, magnetic cloud (MC1) occurring early on 15 July; this was separated from MC2 by its upstream shock and many heliospheric current sheet (HCS) crossings. Other HCS crossings occurred throughout the 3-day period. Overall this dramatic series of interplanetary events caused a large multi-phase magnetic storm with min Dst lower than −300 nT. The very fast solar wind speed (≥ 1100 km s−1) in and around the front of MC2 (for near average densities) was responsible for a very high solar wind ram pressure driving in the front of the magnetosphere to geocentric distances estimated to be as low as ≈ 5 R E, much lower than the geosynchronous orbit radius. This was consistent with magnetic field observations from two GOES satellites which indicated they were in the magnetosheath for extended times. A static force-free field model is used to fit the two magnetic cloud profiles providing estimates of the clouds' physical and geometrical properties. MC2 was much larger than MC1, but their axes were nearly antiparallel, and their magnetic fields had the same left-handed helicity. MC2's axis and its upstream shock normal were very close to being perpendicular to each other, as might be expected if the cloud were driving the shock at the time of observation. The estimated axial magnetic flux carried by MC2 was 52×1020 Mx, which is about 5 times the typical magnetic flux estimated for other magnetic clouds in the WIND data over its first 4 years and is 17 times the flux of MC1. This large flux is due to both the strong axially-directed field of MC2 (46.8 nT on the axis) and the large radius (R 0=0.189 AU) of the flux tube. MC2's average speed is consistent with the expected transit time from a halo-CME to which it is apparently related.  相似文献   

17.
Foullon  C.  Lavraud  B.  Wardle  N. C.  Owen  C. J.  Kucharek  H.  Fazakerley  A. N.  Larson  D. E.  Lucek  E.  Luhmann  J. G.  Opitz  A.  Sauvaud  J.-A.  Skoug  R. M. 《Solar physics》2009,259(1-2):389-416
Solar Physics - Multiple current sheet crossings are ubiquitous features of the solar wind associated with high-beta plasma sheets, notably during the passage of the heliospheric current sheet...  相似文献   

18.
Photospheric and heliospheric magnetic fields   总被引:1,自引:0,他引:1  
Schrijver  Carolus J.  DeRosa  Marc L. 《Solar physics》2003,212(1):165-200

The magnetic field in the heliosphere evolves in response to the photospheric field at its base. This evolution, together with the rotation of the Sun, drives space weather through the continually changing conditions of the solar wind and the magnetic field embedded within it. We combine observations and simulations to investigate the sources of the heliospheric field from 1996 to 2001. Our algorithms assimilate SOHO/MDI magnetograms into a flux-dispersal model, showing the evolving field on the full sphere with an unprecedented duration of 5.5 yr and temporal resolution of 6 hr. We demonstrate that acoustic far-side imaging can be successfully used to estimate the location and magnitude of large active regions well before they become visible on the solar disk. The results from our assimilation model, complemented with a potential-field source-surface model for the coronal and inner-heliospheric magnetic fields, match Yohkoh/SXT and KPNO/He?10830 Å coronal hole boundaries quite well. Even subject to the simplification of a uniform, steady solar wind from the source surface outward, our model matches the polarity of the interplanetary magnetic field (IMF) at Earth ~3% of the time during the period 1997–2001 (independent of whether far-side acoustic data are incorporated into the simulation). We find that around cycle maximum, the IMF originates typically in a dozen disjoint regions. Whereas active regions are often ignored as a source for the IMF, the fraction of the IMF that connects to magnetic plage with absolute flux densities exceeding 50 Mx cm?2 increases from ?10% at cycle minimum up to 30–50% at cycle maximum, with even direct connections between sunspots and the heliosphere. For the overall heliospheric field, these fractions are ?1% to 20–30%, respectively. Two case studies based on high-resolution TRACE observations support the direct connection of the IMF to magnetic plage, and even to sunspots. Parallel to the data assimilation, we run a pure simulation in which active regions are injected based on random selection from parent distribution functions derived from solar data. The global properties inferred for the photospheric and heliospheric fields for these two models are in remarkable agreement, confirming earlier studies that no subtle flux-emergence patterns or field-dispersal properties are required of the solar dynamo beyond those that are included in the model in order to understand the large-scale solar and heliospheric fields.

  相似文献   

19.
We study empirical relations between the modulation of galactic cosmic rays quantified in terms of the modulation potential and the following global heliospheric parameters: the open solar magnetic flux, the tilt angle of the heliospheric current sheet, and the polarity of the heliospheric magnetic field. We show that a combination of these parameters explains the majority of the modulation potential variations during the neutron monitor era 1951 – 2005. Two empirical models are discussed: a quasi-linear model and a model assuming a power-law relation between the modulation potential and the magnetic flux. Both models describe the data fairly well. These empirical models provide a simple tool for evaluating various cosmic-ray related effects on different time scales. The models can be extended backwards in time or used for predictions, if the corresponding global heliospheric variables can be independently estimated.  相似文献   

20.
It is shown that in a heliomagnetic field the presence of a magnetic quadrupole in addition to a magnetic dipole introduces a north-south asymmetry in the heliospheric current sheet (HCS) about the heliographic equator. The dominant polarity of the interplanetary magnetic field (IMF) for the above type of current sheet reverses sign at a transition latitude T, which lies in a heliohemisphere opposite to the one in which the HCS has more heliolatitudinal extension. The position of T in the heliosphere and the north-south asymmetry introduced in the HCS change with the relative phase of the dipole and quadrupole components present in the solar magnetic field. The effect of the above type of asymmetric HCS in the IMF mean sector width is evaluated and the results are in agreement with the observations during the minima of solar cycle 21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号