首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast photometric observations of target stars in the ecliptic are a powerful tool to detect small objects in the Kuiper Belt. The various parameters involved in such observations are described. Meter-sized telescopes are able to detect sub-kilometer KBO (Kuiper Belt Objects). A campaign of research of KBO by stellar occultations, organized at the Pic du Midi Observatory is presented. These observations bring the first constraint on the small end of the size distribution of the KBOs.  相似文献   

2.
We have developed a set of methods to detect meteor light traces captured by all-sky CCD cameras. Operating at small automatic observatories (stations), these cameras create a network spread over a large territory. Image data coming from these stations are merged in one central node. Since a vast amount of data is collected by the stations in a single night, robotic storage and analysis are essential to processing. The proposed methodology is adapted to data from a network of automatic stations equipped with digital fish-eye cameras and includes data capturing, preparation, pre-processing, analysis, and finally recognition of objects in time sequences. In our experiments we utilized real observed data from two stations.  相似文献   

3.
Kuiper带是指太阳系内位于离太阳 30~ 50AU一个区域。 1 992年该区域陆续发现了一群半径在几十到几百公里的小天体。这些小天体在Kuiper带的分布是极其不均匀的。Kuiper带小天体的发现对人们认识太阳系的形成与演化有重要的意义。本文回顾了近年来国际上在Kuiper带小天体动力演化方面的研究 ,着重分析了目前国际上几种用以解释其非均匀分布的动力学机制 ,并提出目前该领域的一些尚未解决的问题。  相似文献   

4.
Kuiper带天体的轨道动力学   总被引:1,自引:0,他引:1  
主要评述太阳系动力学研究的一个新方向——Kuiper带的轨道动力学。早期的研究是为了探讨短周期彗星的起源。在发现第一颗Kuiper带小天体之后,人们开始将注意力转到Kuiper带共振区的相空间结构上,Morbidelli和Malhotra分别采用不同的模型研究了这些共振区的大小。其中主要研究对象是3:2共振区。冥王星也处在这一共振区中。从冥王星的轨道特性来看,冥王星应是一颗较大的Kuiper带天体,它还拥有另外两种共振——Kozai共振和1:1超级共振。正是由于这些共振的存在,冥王星的运动才得以长期保持稳定。观测表明许多Kuiper带天体也处的海王星的平运动共振中。早期的理论认为这些平运动共振起源于灾难性事件,如碰撞。然而这都是一些小概率事件,无法对共振的形成进行合理的解释。Malhotra通过行星迁移成功地解释了冥王星被共振俘获的机制。这一机制的概率非常大,同样可以用来解释Kuiper带天体共振的形成。  相似文献   

5.
Kuiper带天体的轨道分布特性   总被引:3,自引:1,他引:2  
聂清香 《天文学报》2002,43(4):375-378
1992年9月,夏威夷大学的D.Jewitt和加利福尼亚大学的J.Lun发现了海王星外绕太阳运行的第一个小天体1992QB1[1],开创了人类对于海王星外天体的实际观测的研究.近10年的接连不断发现,已经证实了海王星轨道外面存在着一个由大量的环绕太阳运动的小天体组成的环带[2].由于G.P.Kuiper曾在1951年的文章中提出过在冥王星的外边可能存在小天体的问题,因此人们一般把这个环带称为Kuiper带,你这些天体为“KuiperBelt Objects”(KBOs),或从逻辑上称它们为“Trans-NeptunianObjects”(TNOs)[3]  相似文献   

6.
We present models of the spectral reflectances of groups of outer Solar System objects defined primarily by their colors in the spectral region 0.4–1.2 mu;m, and which have geometric albedo ~0.04 at wavelength 0.55 μm. Our models of the groups with the strongest reflectance gradients (reddest colors) use combinations of organic tholins. We test the hypothesis that metal-reddened igneous rock-forming minerals contribute to the red colors of Centaurs and KBOs by using the space-weathered lunar soil as one of the components of our models. We find that our models can admit the presence of moderate amounts of space-weathered (metal-reddened) minerals, but that they do not require this material to achieve the red colors of the reddest outer Solar System bodies. Our models with organic tholins are consistent with the results of other investigators.  相似文献   

7.
Objects in 3:2 mean motion resonance with Neptune are protected from close encounters with Neptune by the resonance. Bodies in orbits with semi-major axis between 39.5 and about 42 AU are not protected by the resonance; indeed due to overlapping secular resonances, the eccentricities of orbits in this region are driven up so that a close encounter with Neptune becomes inevitable. It is thus expected that such orbits are unstable. The list of known Trans-Neptunian objects shows a deficiency in the number of objects in this gap compared to the 43–50 AU region, but the gap is not empty. We numerically integrate models for the initial population in the gap, and also all known objects over the age of the Solar System to determine what fraction can survive. We find that this fraction is significantly less than the ratio of the population in the gap to that in the main belt, suggesting that some mechanism must exist to introduce new members into the gap. By looking at the evolution of the test body orbits, we also determine the manner in which they are lost. Though all have close encounters with Neptune, in most cases this does not lead to ejection from the Solar System, but rather to a reduced perihelion distance causing close encounters with some or all of the other giant planets before being eventually lost from the system, with Saturn appearing to be the cause of the ejection of most of the objects.  相似文献   

8.
Information on the surface structure of the Kuiper Belt objectscan be obtained from studies of their opposition brightening.Although KBOs are observed at a very limited phase angle rangethey represent a unique opportunity to study the backscatteringphenomenon down almost to zero phase angle. Preliminaryestimations of the opposition effect amplitude and width based oncomposite phase curves of four KBOs and two Centaurs showed theexistence of a very narrow opposition surge of about 0.1–0.2 mag at phase angles less than 0.1–0.2 deg. It may indicate a highporosity of the KBOs regoliths. Further observations are needed toconfirm this phenomenon.  相似文献   

9.
Amajor objective of the Infrared Space Observatory (ISO) is the determination of the sized and albedoes of several objects in the "Kuiper disc".The method by which this will be achieved is described.It is shown that the unknown shapes and surface thermal properties proviede additional complications to the interpretation of ISO data.The requirement for ground-based measurements of the visual light curves of these objects is demonstrated and the implications of the results of the ISO observ Vations is discussed.  相似文献   

10.
Stellar occultations are a powerful method for exploring the outer solar system, where faintness and small angular diameters prevent us from exploring in details objects like satellites, rings, or Kuiper Belt Objects. Unique kilometric spatial resolutions or better can be reached through that method. Occultations usually observe identified objects whose trajectory is known, though the occultation events might be difficult to predict. It is also possible to explore populations of small objects populations whose density in the sky plane is large enough to search for serendipitous occultations. Various instrumental methods exist for both predicted and serendipitous occultation, both needing fast photometric recordings of target stars.  相似文献   

11.
The deviation from the power-law decline of the optical flux observed in GRB 970228 and GRB 980326 has been used recently to argue in favor of the connection between gamma-ray bursts and supernovae. We consider an alternative explanation for this phenomenon, based on the scattering of a prompt optical burst by 0.1 M middle dot in circle dust located beyond its sublimation radius 0.1-1 pc from the burst. In both cases, the optical energy observed at the time of the first detection of the afterglow suffices to produce an echo after approximately 20-30 days, as observed. Prompt optical monitoring of future bursts and multiband photometry of the afterglows will enable us to test simple models of dust reprocessing quantitatively and to predict source redshift.  相似文献   

12.
The Kuiper Belt zone is unique insofar as the major heat sources of objects a few tens of kilometers in size—solar radiation on the one hand and radioactive decay on the other—have comparable power. This leads to unique evolutionary patterns, with heat waves propagating inward from the irradiated surface and outward from the radioactively heated interior. A major radioactive source that is considered in this study is 26Al. The long-term evolution of several models with characteristics typical of Kuiper Belt objects is followed by means of a 1-D numerical code that solves the heat and mass balance equations on a spherically symmetric grid. The free parameters considered are radius (10-500 km), heliocentric distance (30-120 AU), and initial 26Al content (0-5×10−8 by mass). The initial composition assumed is a porous mixture of ices (H2O, CO, and CO2) and dust. Gases released in the interior are allowed to escape to the surface. It is shown that, depending on parameters, the interior may reach quite high temperatures (up to 180 K). The models suggest that Kuiper Belt objects are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in a surface layer, about 1 km thick. The models indicate that the amorphous ice crystallizes in the interior, and hence some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. These changes in structure and composition should have significant consequences for the short-period comets, which are believed to be descendants of Kuiper Belt objects.  相似文献   

13.
We study how the internal structure of dark halos is affected if cold dark matter particles are assumed to have a large cross section for elastic collisions. We identify a cluster halo in a large cosmological N-body simulation and resimulate its formation with progressively increasing resolution. We compare the structure found in the two cases in which dark matter is treated as collisionless or as a fluid. For the collisionless case, the overall ellipticity of the cluster, the central density cusp, and the amount of surviving substructure are all similar to those found in earlier high-resolution simulations. Collisional dark matter results in a cluster that is more nearly spherical at all radii, has a steeper central density cusp, and has less-but still substantial-surviving substructure. As in the collisionless case, these results for a "fluid" cluster halo are expected to carry over approximately to smaller mass systems. The observed rotation curves of dwarf galaxies then argue that self-interacting dark matter can only be viable if intermediate cross sections produce structure that does not lie between the extremes we have simulated.  相似文献   

14.
Due to the distance, faintness, and very recent discovery ofKuiper Belt Objects (KBOs) and Centaurs, very little is knownabout the physical characteristics of these basic buildingblocks of the solar system. New intermediate-band photometryobservations of KBOs and Centaurs suggest that absorption bandsexist in the visible portion of their spectra, which could offerinsights into the surface composition of these objects.  相似文献   

15.
We study the orbital evolutions of various systems of planetary embryos in the transneptunian region, undergoing mutual scattering and perturbations from the giant planets. We show that about 15-20% of the original embryos should survive in the transneptunian region at the current epoch. The orbital dispersion of the surviving embryos depends on their individual mass, so that only lunar mass embryos could survive with semimajor axis smaller than 50 AU. In all cases, we show by a Monte Carlo model that at least one of the surviving embryos should have already been discovered by one of the most effective Kuiper-belt surveys. This implies that planetary embryos did not form in the transneptunian region (or have been removed by some external and unknown mechanism). Therefore, we conclude that the Kuiper belt was not excited by resident planetary embryos, unlike the asteroid belt. We also compute with the Monte Carlo model that a significant number (order 10) of Pluto-size bodies could exist only on very eccentric and long-periodic orbits, typical of the scattered disk, while the existence of about 30 bodies brighter than absolute magnitude 4 in the classical belt is compatible with the discovery of Varuna by the Spacewatch survey.  相似文献   

16.
柯伊伯带结构形成动力学   总被引:1,自引:0,他引:1  
柯伊伯带是指位于海王星轨道外的小天体构成的盘状区域.一般认为柯伊伯带小天体是早期太阳系物质凝聚成各大行星后的残留物,因此这些小天体能够为研究外太阳系的形成与演化提供很多重要的线索.该文首先介绍了柯伊伯带的发现历史及它的主要观测特征,然后回顾了近年来提出的形成这些特征的机制,最后讨论了柯伊伯带中有待解释的主要问题.  相似文献   

17.
Rodney S Gomes 《Icarus》2003,161(2):404-418
I simulate the orbital evolution of the four major planets and a massive primordial planetesimal disk composed of 104 objects, which perturb the planets but not themselves. As Neptune migrates by energy and angular momentum exchange with the planetesimals, a large number of primordial Neptune-scattered objects are formed. These objects may experience secular, Kozai, and mean motion resonances that induce temporary decrease of their eccentricities. Because planets are migrating, some planetesimals can escape those resonances while in a low-eccentricity incursion, thus avoiding the return path to Neptune close encounter dynamics. In the end, this mechanism produces stable orbits with high inclination and moderate eccentricities. The population so formed together with the objects coming from the classical resonance sweeping process, originates a bimodal distribution for the Kuiper Belt orbits. The inclinations obtained by the simulations can attain values above 30° and their distribution resembles a debiased distribution for the high-inclination population coming from the real classical Kuiper Belt.  相似文献   

18.
19.
We review ongoing efforts to identify occupants of mean-motion resonances(MMRs) and collisional families in the Edgeworth–Kuiper belt. Directintegrations of trajectories of Kuiper belt objects (KBOs) reveal the 1:1(Trojan), 5:4, 4:3, 3:2 (Plutino), 5:3, 7:4, 9:5, 2:1 (Twotino), and 5:2 MMRsto be inhabited. Apart from the Trojan, resonant KBOs typically have largeorbital eccentricities and inclinations. The observed pattern of resonanceoccupation is consistent with resonant capture and adiabatic excitation bya migratory Neptune; however, the dynamically cold initial conditions priorto resonance sweeping that are typically assumed by migration simulationsare probably inadequate. Given the dynamically hot residents of the 5:2 MMRand the substantial inclinations observed in all exterior MMRs, a fraction ofthe primordial belt was likely dynamically pre-heated prior to resonancesweeping. A pre-heated population may have arisen as Neptune gravitationallyscattered objects into trans-Neptunian space. The spatial distribution of Twotinosoffers a unique diagnostic of Neptune's migration history. The Neptunian Trojanpopulation may rival the Jovian Trojan population, and the former's existence isargued to rule out violent orbital histories for Neptune. Finally, lowest-order seculartheory is applied to several hundred non-resonant KBOs with well-measured orbitsto update proposals of collisional families. No convincing family is detected.  相似文献   

20.
Data from lunar samples (Apollo, Luna, and lunar meteorites) indicate that the Moon was subjected to an intense period of bombardment around 3.85 billion year ago (Ga). Here a short review of this topic is given. Different interpretations exist, which either take this as the tail end of an intense but declining accretion period, or which consider a spike in the accretion rate at that time. The latter is the so-called Late Heavy Bombardment. Considering the enormous amount of matter that is required to accrete in the inner solar system at that time, and problems with deriving this mass from the asteroid belt, it is suggested that the Kuiper Belt objects could be a source for this bombardment spike, possibly linked to the late migration of Neptune outwards in the solar system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号