首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic data from the Apollo Passive Seismic Network stations are analyzed to determine the velocity structure and to infer the composition and physical properties of the lunar interior. Data from artificial impacts (S-IVB booster and LM ascent stage) cover a distance range of 70–1100 km. Travel times and amplitudes, as well as theoretical seismograms, are used to derive a velocity model for the outer 150 km of the Moon. TheP wave velocity model confirms our earlier report of a lunar crust in the eastern part of Oceanus Procellarum.The crust is about 60 km thick and may consist of two layers in the mare regions. Possible values for theP-wave velocity in the uppermost mantle are between 7.7 km s–1 and 9.0 km s–1. The 9 km s–1 velocity cannot extend below a depth of about 100 km and must decrease below this depth. The elastic properties of the deep interior as inferred from the seismograms of natural events (meteoroid impacts and moonquakes) occurring at great distance indicate that there is an increase in attenuation and a possible decrease of velocity at depths below about 1000 km. This verifies the high temperatures calculated for the deep lunar interior by thermal history models.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

2.
Using data from the present gravitational potential and surface topography of the Moon, it is possible to determine a lower limit of about 5 b.y. for the relaxation time of the mascons. Assuming that the Moon has behaved as a Maxwellian viscoelastic body since the formation of the mascons, this relaxation time indicates a value of about 1027 poise for the viscosity of the lunar interior. Such a high viscosity implies that there has been no convection current inside the upper 800 km of the Moon since the formation of the mascons. Lunar Science Institute Contribution No. 99. The research in this paper was done while the author was a Visiting Scientist at the Lunar Science Institute, which is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

3.
Assuming that the lateral variations of density in the lunar crust, the crustal density anomalies, are responsible for the lateral undulations of the lunar gravitational potential, we compute these anomalies for four different lunar models, which include an entirely solid Moon and three different solid lunar models with partially molten layers located within 600 km depth. The stress differences created by the density anomalies are determined for these models. It is found that, since the formation of the mascons, the entirely solid lunar model should have supported stress differences of the order of 70 bars while in the case of the other models, the solid layer overlying the partially molten one should have supported stress differences of more than 100 bars. The high stress differences associated with the partially molten models lead us to conclude that these models are not proper ones, and thus the Moon has always been solid since the formation of the mascons. Lunar Science Institute Contribution No. 97. The research in this paper was done while the author was a Visiting Scientist at the Lunar Science Institute, which is operated by the Universities Space Research Association under Contract No. NSR 09-051-001 with the National Aeronautics and Space Administration.  相似文献   

4.
Suitable observations from various locations in the predicted path of a total solar eclipse can provide information about the relative positions and shapes of the Sun and Moon to about ±0.02. The total solar eclipse of 1972, July 10 was observed from locations near the edges of its predicted path. The durations of the limb phenomena were greatly enhanced. Preliminary analysis of the observations shows that the eclipse shadow passed 3 km northeast of its predicted path.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

5.
Analysis of lunar laser ranging data is underway at several institutions. We describe here our efforts at improving the numerical ephemeris of Moon, based on over three years' span of data. Orbit generation and correction procedures are discussed briefly. Comparisons of the new ephemeris with observations and with a widely available ephemeris are illustrated. The standard deviation of the observation residuals is 7 m.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

6.
Differential very-long-baseline interferometric observations of signals from Apollo Lunar Surface Experiment Package telemetry transmitters will yield the relative projected positions of the transmitters with uncertainty of only 1-3 m, set mainly by uncertainty of the lunar ephemeris. Noise and systematic instrumental errors which in the past affected similar observations have been reduced to the equivalent of a few centimeters on the lunar surface by the development of a new type of differential receiver. Continued observations should yield a determination of the motion of the Moon about its center of mass with uncertainty less than 1 s of selenocentric arc. Improvements (by other means) in our knowledge of the Moon's orbital motion would allow a further order-of-magnitude refinement in the libration and relative position results obtainable by differential VLBI.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex. U.S.A.  相似文献   

7.
Seismic refraction data, obtained at the Apollo 14 and 16 sites, when combined with other lunar seismic data, allow a compressional wave velocity profile of the lunar near-surface and crust to be derived. The regolith, although variable in thickness over the lunar surface, possesses surprisingly similar seismic properties. Underlying the regolith at both the Apollo 14 Fra Mauro site and the Apollo 16 Descartes site is low-velocity brecciated material or impact derived debris. Key features of the lunar seismic velocity profile are: (i) velocity increases from 100–300 m s–1 in the upper 100 m to 4 km s–1 at 5 km depth, (ii) a more gradual increase from 4 km s–1 to 6 km s–1 at 25 km depth, (iii) a discontinuity at a depth of 25 km and (iv) a constant value of 7 km s–1 at depths from 25 km to about 60 km. The exact details of the velocity variation in the upper 5 to 10 km of the Moon cannot yet be resolved but self-compression of rock powders cannot duplicate the observed magnitude of the velocity change and the steep velocity-depth gradient. Other textural or compositional changes must be important in the upper 5 km of the Moon. The only serious candidates for the lower lunar crust are anorthositic or gabbroic rocks.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973.  相似文献   

8.
An empirically derived lunar gravity field   总被引:1,自引:0,他引:1  
The heat-flow experiment is one of the Apollo Lunar Surface Experiment Package (ALSEP) instruments that was emplaced on the lunar surface on Apollo 15. This experiment is designed to make temperature and thermal property measurements in the lunar subsurface so as to determine the rate of heat loss from the lunar interior through the surface. About 45 days (1 1/2 lunations) of data has been analyzed in a preliminary way. This analysis indicates that the vertical heat flow through the regolith at one probe site is 3.3 × 10–6 W/cm2 (±15%). This value is approximately one-half the Earth's average heat flow. Further analysis of data over several lunations is required to demonstrate that this value is representative of the heat flow at the Hadley Rille site. The mean subsurface temperature at a depth of 1 m is approximately 252.4K at one probe site and 250.7K at the other. These temperatures are approximately 35K above the mean surface temperature and indicate that conductivity in the surficial layer of the Moon is highly temperature dependent. Between 1 and 1.5m, the rate of temperature increase as a function of depth is 1.75K/m (±2%) at the probe 1 site. In situ measurements indicate that the thermal conductivity of the regolith increases with depth. Thermal-conductivity values between 1.4 × 10–4 and 2.5 × 10–4 W/cm K were determined; these values are a factor of 7 to 10 greater than the values of the surface conductivity. If the observed heat flow at Hadley Base is representative of the moonwide rate of heat loss (an assumption which is not fully justified at this time), it would imply that overall radioactive heat production in the Moon is greater than in classes of meteorites that have formed the basis of Earth and Moon bulk composition models in the past.Lamont-Doherty Geological Observatory Contribution Number 1800.  相似文献   

9.
The principal chemical element composition and inferred mineralogy of the powdered lunar surface material at seven mare and one terra sites on the Moon are compared. The mare compositions are all similar to one another and comparable to those of terrestrial ocean ridge basalts except in having higher titanium and much lower sodium contents than the latter. These analyses suggest that most, if not all, lunar maria have this chemical composition and are derived from rocks with an average density of 3.19 g cm–3. Mare Tranquillitatis differs from the other maria in having twice the titanium content of the others.The chemical composition of the single highland site studied (Surveyor 7) is distinctly different from that of any of the maria in having much lower amounts of titanium and iron and larger amounts of aluminium and calcium. Confirmation of these general characteristics of lunar highland material has come from recent observations by the Apollo 15 Orbiter. The inferred mineralogy is 45 mole percent high anorthite plagioclase and the parent rocks have an estimated density of 2.94 g cm–3. The Surveyor 7 chemical composition is the principal contributor to present estimates of the overall chemical composition of the lunar surface.Presented at the NATO Advanced Study Institute on Lunar Studies, Patras, Greece, September 14–25, 1971. This paper is an expanded and updated version of a paper presented at the Apollo 12 Lunar Science Conference, Houston, Texas, January 11–14, 1971, and published in the Proceedings of this Conference (Turkevich, 1971).  相似文献   

10.
Future missions to the Moon should include a detailed high-resolution global gravity survey from a low (15–30 km) polar orbiting spacecraft. The use of gravity gradiometer instruments on board the spacecraft will give higher-resolution data at lower total mission cost that the present Doppler tracking technique. Simulations show that although a three axis gradiometer system is preferred, and can even be used to estimate spacecraft attitude and altitude variation, a properly oriented single rotating gravity gradiometer can be used to resolve closely spaced mascons in both the along-track and cross-track directions.Paper presented at theFuture Lunar Exploration session of the Tenth Lunar and Planetary Science. Conference, Johnson Space Center, Houston, Texas, 19–23 March 1979.  相似文献   

11.
Lunar physical librations and laser ranging   总被引:1,自引:0,他引:1  
The analysis of lunar laser ranging data requires very accurate calculations of the lunar physical librations. Libration terms are given which arise from the additive and planetary terms in the lunar theory. The large size of the recently discovered terms due to third degree gravitational harmonics will allow some of these harmonics to be measured, in addition to and, by laser ranging to the Moon. Combining the laser ranging determinations of = 630.6 ± 0.5 × 10–6 and = 226.4 ± 3.0 × 10–6 with lunar orbiter measurements ofC 20 andC 22 givesC/MR 2=0.395 -0.010 +0.006 . Numerical integration promises to be an effective method of calculating librations. Comparison of numerical integrations with analytic series indicates that the calculation of the series due to third and fourth degree harmonics is not yet as accurate as the more extensively developed second degree terms.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

12.
Evaluation of selenographic data obtained with use of different observational means require the formulation of rigorous algorithms connecting the systems of coordinates, which the various methods have been referred to. The lunar principal axes of inertia are suggested as most appropriate for reference in lunar mapping and selenographic coordinate catalogues. The connection between the instantaneous axis of lunar rotation (involved in laser ranging, radar studies, astronomical observations from the surface of the Moon and VLBI observations of ALSEPs), the ecliptic system of coordinates (which in reductions of observations was considered as fixed in space), the Cassini mean selenographic coordinates (to which physical libration measures were referred), the lunar principal axes of inertia and the invariable plane of the solar system is discussed.On leave from the University of Manchester, England.Lunar Science Institute Contribution No. 138.Communication presented at the Conference on Lunar Dynamics and Observational Coordinate Systems, Held January 15–17, 1973, at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

13.
The existence of fossil lunar magnetism has caused speculation that the Moon had, at one time, an internally produced dynamo magnetic field. Quantitative analysis of this idea, constrained by the largest iron lunar core compatible with observations, implies that the Moon would have had to rotate faster than its breakup angular velocity in order to support a dynamo magnetic field.A paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.  相似文献   

14.
A study has been performed in an effort to detect a lunar signature in geomagnetic data. Ap-indices available for the period 1932–1972 have been used for this purpose. The data have been divided into some 500 lunar months which were superimposed in synchronism with the phase of the Moon. At or shortly after full Moon a peak appears which exceeds the average value by about 3 standard deviations. Possible explanations for the generation of geomagnetic disturbances by the Moon are given.Paper presented at the Conference on Interactions of the Interplanetary Plasma with the Modern and Ancient Moon, sponsored by the Lunar Science Institute, Houston, Texas and held at the Lake Geneva Campus of George Williams College, Wisconsin, between September 30 and October 4, 1974.  相似文献   

15.
A general Hamiltonian for a rotating Moon in the field of the Earth is expanded in terms of parameters orienting the spin angular momentum relative to the pricipal axes of the Moon and relative to coordinate axes fixed in the orbital plane. The effects of elastic distortion are included as modifications of the moment of inertia tensor, where the magnitude of the distortion is parameterized by the Love numberk 2. The principal periodic terms in the longitude of a point on the Moon due to variations of the tide caused by the Earth are shown to have amplitudes between 3.9 × 10–3 and 1.6 × 10–2 with a period of an anomalistic month, 3.0 × 10–4 and 1.2 × 10–3 with a period of one-half an anomalistic month and 2.4 × 10–4 and 9.6 × 10–4 with a period of one-half of a nodical month. The extremes in the amplitudes correspond to rigidities of 8 × 1011 cgs and 2 × 1011 cgs, respectively, the former rigidity being comparable to that of the Earth. Only the largest amplitude given above is comparable to that detectable by the projected precision of the laser ranging to the lunar retrorereflectors, and this amplitude corresponds to an improbably low rigidity for the Moon. A detailed derivation of the free wobble of the lunar spin axis about the axis of maximum moment of inertia is given, where it is shown that elasticity can alter the period of the free wobble of 75.3 yr by only 3 × 10–4 to 10–3 of this period. Also, the effect of elasticity on the period of free libration is completely negligible by many orders of magnitude. If the Moon's rigidity is close to that of the Earth there is no effect of elasticity on the rotation which can be measured with the laser ranging and, therefore, no elastic properties of the Moon can be determined from variations in the rotation.Currently on leave from the Dept. of Physics, University of California, Santa, Barbara, California.Communication presented at the conference on Lunar Dynamics and Observational Coordinate Systems held January 15–17, 1973 at the Lunar Science Institute, Houston, Tex., U.S.A.  相似文献   

16.
The objective of this atlas is to present the thermal response of the lunar surface observed during an eclipse of the Moon with accurate position data. The observations were made at a wavelength of 11 µm with an angular resolution of 10, equivalent to 17 km at the disk center. Over a thousand thermally anomalous regions (hot spots) were detected. They cool more slowly than their environs and remain warmer than their environs during the umbral phase. In addition to these very localized hot spots some of the maria show thermal enhancements during the eclipse.Fourty four charts make up this atlas which are identical in coverage and projection to the Lunar Atlas Charts (LAC) series. The charts are in the form of digital images of a normalized temperature difference which is particularly useful for studying regions of small thermal enhancements. Each increase of intensity corresponds to 4 K temperature increase. Grid lines are drawn every two degrees with tic marks each one-half degree. A brief outline of the observations and data reduction methods is given. The map construction techniques are described along with a discussion on how the atlas could be used.The appendix is a list of the published infrared atlantes. These include isothermal contour maps and images of the day-time, eclipsed and night-time Moon, and catalogues of thermal anomalies of the eclipsed and night-time Moon.Paper dedicated to Professor Harold C. Urey on the occasion of his 80th birthday on 29 April, 1973. A portion of the research reported in this paper was done while the author was a Visiting Scientist at The Lunar Science Institute, which is operated by the Universities Space Research Association under Contract NSR-09-051-001 with the National Aeronautics and Space Administration. This paper is Lunar Science Institute Contribution No. 111.  相似文献   

17.
There are many surface units in Mare Serenitatis and in the adjacent Montes Haemus that can be defined by remote, Earth-based observations at visual, infrared, and radar wavelengths. These highland and mare surface units are obvious in color-difference photographs and in radar images, while the infrared images have little or no differences. These characteristics are consistent with units having definite chemical differences. However, a better definition of these surfaces requires the synthesis of many more data sets.Paper presented at the Lunar Science Institute Conference on Geophysical and Geochemical Exploration of the Moon and Planets, January 10–12, 1973.This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7–100, sponsored by the National Aeronautics and Space Administration.  相似文献   

18.
The results of a simultaneous solution for the orbital elements of Moon and planets are given and their derivation is discussed. A modern Cowell integrator is used for orbit computations, and least-squares fits are made to some 40000 optical observations taken since 1913. The model includes relativistic terms, the leading zonal harmonics of Earth and Moon, the precession of the lunar equator, and the tidal couple between Earth and Moon. The tidal term in the Moon's mean longitude is found to be –19±4 per century squared. The solution also yields an extrapolation of the atomic time scale back to 1912.5. At that time, the difference between atomic and ephemeris time is about 6±2 s. Lunar declinations observed by the Washington transit circles, after receiving limb corrections and thus with respect to the center of Watts' reference sphere, are smaller than computed values by 0.33±0.01. It is found that solar oblateness cannot quite be determined with optical data covering about 50 yr, butJ 2 is unlikely to be much larger than 10–5. The advance of Mercury's perihelion is verified to within our resolution of 2 per century to match that predicted by Einstein.The solution presented here is believed to be the only simultaneous improvement of the orbits of Moon and planets. This simultaneity is found to be an essential feature in separating the Moon's mean motion, the lunar tidal deceleration, and the corrections to the Earth rotation rate. It is now possible to refer all astronomical events of the past 60 yr to a time with uniform rate, namely the atomic clock system. Considering the long baseline, this model should facilitate the prediction of fast variables, such as the lunar longitude, with considerably increased confidence. The planetary orbital elements compete with efforts of similar scope and accuracy at the Massachusetts Institute of Technology and the Jet Propulsion Laboratory.  相似文献   

19.
Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. A power-law fit to ring diameters (Dring) and rim-crest diameters (Dr) of peak-ring basins on the Moon [Dring = 0.14 ± 0.10(Dr)1.21±0.13] reveals a trend that is very similar to a power-law fit to peak-ring basin diameters on Mercury [Dring = 0.25 ± 0.14(Drim)1.13±0.10] [Baker, D.M.H. et al. [2011]. Planet. Space Sci., in press]. Plots of ring/rim-crest ratios versus rim-crest diameters for peak-ring basins and protobasins on the Moon also reveal a continuous, nonlinear trend that is similar to trends observed for Mercury and Venus and suggest that protobasins and peak-ring basins are parts of a continuum of basin morphologies. The surface density of peak-ring basins on the Moon (4.5 × 10−7 per km2) is a factor of two less than Mercury (9.9 × 10−7 per km2), which may be a function of their widely different mean impact velocities (19.4 km/s and 42.5 km/s, respectively) and differences in peak-ring basin onset diameters. New calculations of the onset diameter for peak-ring basins on the Moon and the terrestrial planets re-affirm previous analyses that the Moon has the largest onset diameter for peak-ring basins in the inner Solar System. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.  相似文献   

20.
Oued Awlitis 001 is a highly feldspathic, moderately equilibrated, clast‐rich, poikilitic impact melt rock lunar meteorite that was recovered in 2014. Its poikilitic texture formed due to moderately slow cooling, which judging from textures of rocks in melt sheets of terrestrial impact structures, is observed in impact melt volumes at least 100 m thick. Such coherent impact melt volumes occur in lunar craters larger than ~50 km in diameter. The composition of Oued Awlitis 001 points toward a crustal origin distant from incompatible‐element‐rich regions. Comparison of the bulk composition of Oued Awlitis 001 with Lunar Prospector 5° γ‐ray spectrometer data indicates a limited region of matches on the lunar farside. After its initial formation in an impact crater larger than ~50 km in diameter, Oued Awlitis 001 was excavated from a depth greater than ~50 m. The cosmogenic nuclide inventory of Oued Awlitis 001 records ejection from the Moon 0.3 Ma ago from a depth of at least 4 m and little mass loss due to ablation during its passage through Earth's atmosphere. The terrestrial residence time must have been very short, probably less than a few hundred years; its exact determination was precluded by a high concentration of solar cosmic ray‐produced 14C. If the impact that excavated Oued Awlitis 001 also launched it, this event likely produced an impact crater >10 km in diameter. Using petrologic constraints and Lunar Reconnaissance Orbiter Camera and Diviner data, we test Giordano Bruno and Pierazzo as possible launch craters for Oued Awlitis 001.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号