首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since the reform and opening-up program started in 1978,the level of urbanization has increased rapidly in China.Rapid urban expansion and restructuring have had significant impacts on the ecological environment especially within built-up areas.In this study,ArcGIS 10,ENVI 4.5,and Visual FoxPro 6.0 were used to analyze the human impacts on vegetation in the built-up areas of 656Chinese cities from 1992 to 2010.Firstly,an existing algorithm was refined to extract the boundaries of the built-up areas based on the Defense Meteorological Satellite Program Operational Linescan System(DMSP_OLS)nighttime light data.This improved algorithm has the advantages of high accuracy and speed.Secondly,a mathematical model(Human impacts(HI))was constructed to measure the impacts of human factors on vegetation during rapid urbanization based on Advanced Very High Resolution Radiometer(AVHRR)Normalized Difference Vegetation Index(NDVI)and Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI.HI values greater than zero indicate relatively beneficial effects while values less than zero indicate proportionally adverse effects.The results were analyzed from four aspects:the size of cities(metropolises,large cities,medium-sized cities,and small cities),large regions(the eastern,central,western,and northeastern China),administrative divisions of China(provinces,autonomous regions,and municipalities)and vegetation zones(humid and semi-humid forest zone,semi-arid steppe zone,and arid desert zone).Finally,we discussed how human factors impacted on vegetation changes in the built-up areas.We found that urban planning policies and developmental stages impacted on vegetation changes in the built-up areas.The negative human impacts followed an inverted′U′shape,first rising and then falling with increase of urban scales.China′s national policies,social and economic development affected vegetation changes in the built-up areas.The findings can provide a scientific basis for municipal planning departments,a decision-making reference for government,and scientific guidance for sustainable development in China.  相似文献   

2.
Forest net primary productivity (NPP) is a key parameter for forest monitoring and management. In this study, monthly and annual forest NPP in the northeastern China from 1982 to 2010 were simulated by using Carnegie-Ames-Stanford Approach (CASA) model with normalized difference vegetation index (NDVI) sequences derived from Advanced Very High Resolution Radiometer (AVHRR) Global Invento y Modeling and Mapping Studies (GIMMS) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) products. To address the problem of data inconsistency between AVHRR and MODIS data, a per-pixel unary linear regres- sion model based on least ~;quares method was developed to derive the monthly NDVI sequences. Results suggest that estimated forest NPP has mean relative error of 18.97% compared to observed NPP from forest inventory. Forest NPP in the northeastern China in- creased significantly during the twenty-nine years. The results of seasonal dynamic show that more clear increasing trend of forest NPP occurred in spring and awmnn. This study also examined the relationship between forest NPP and its driving forces including the climatic and anthropogenic factors. In spring and winter, temperature played the most pivotal role in forest NPR In autumn, precipitation acted as the most importanl factor affecting forest NPP, while solar radiation played the most important role in the summer. Evaportran- spiration had a close correlation with NPP for coniferous forest, mixed coniferous broadleaved forest, and broadleaved deciduous forest. Spatially, forest NPP in the Da Hinggan Mountains was more sensitive to climatic changes than in the other ecological functional re- gions. In addition to climalie change, the degradation and improvement of forests had important effects on forest NPP. Results in this study are helpful for understanding the regional carbon sequestration and can enrich the cases for the monitoring of vegetation during long time series.  相似文献   

3.
River runoff is affected by many factors, including long-term effects such as climate change that alter rainfall-runoff relationships, and short-term effects related to human intervention(e.g., dam construction, land-use and land-cover change(LUCC)). Discharge from the Yellow River system has been modified in numerous ways over the past century, not only as a result of increased demands for water from agriculture and industry, but also due to hydrological disturbance from LUCC, climate change and the construction of dams. The combined effect of these disturbances may have led to water shortages. Considering that there has been little change in long-term precipitation, dramatic decreases in water discharge may be attributed mainly to human activities, such as water usage, water transportation and dam construction. LUCC may also affect water availability, but the relative contribution of LUCC to changing discharge is unclear. In this study, the impact of LUCC on natural discharge(not including anthropogenic usage) is quantified using an attribution approach based on satellite land cover and discharge data. A retention parameter is used to relate LUCC to changes in discharge. We find that LUCC is the primary factor, and more dominant than climate change, in driving the reduction in discharge during 1956–2012, especially from the mid-1980 s to the end-1990 s. The ratio of each land class to total basin area changed significantly over the study period. Forestland and cropland increased by about 0.58% and 1.41%, respectively, and unused land decreased by 1.16%. Together, these variations resulted in changes in the retention parameter, and runoff generation showed a significant decrease after the mid-1980 s. Our findings highlight the importance of LUCC to runoff generation at the basin scale, and improve our understanding of the influence of LUCC on basin-scale hydrology.  相似文献   

4.
On the basis of large amount of historical and measured data,this paper analyzed the regional,periodic,frequency,continuing,and response characteristics of droughts and floods in Zhejiang and proposed the conception of ratio of peak runoff.Main characteristics of droughts and floods in Zhejiang are as follows:1)The western Zhejiang region is plum rain major control area,and the eastern coastal region of Zhejiang is typhoon major control area.2)Within a long period in the future,Zhejiang will be in the long period that features droughts.3)In Zhejiang the 17th century was frequent drought and flood period,the 16th,19th,and 20th centuries were normal periods,while the 18th century was spasmodic drought and flood period.4)The severe and medium floods in Zhejiang were all centered around the M-or m-year of the 11-year sunspot activity period.5)There are biggish years of annual runoff occurred in El Ni?o year(E)or the following year(E 1)in Zhejiang.The near future evolution trend of droughts and floods in Zhejiang is as follows:1)Within a relatively long period in the future,Zhejiang Province will be in the long period of mostly drought years.2)Between 1999 and 2009 this area will feature drought years mainly,while the period of 2010-2020 will feature flood years mostly.3)Zhejiang has a good response to the sunspot activities,and the years around 2009,2015,and 2020 must be given due attention,especially around 2020 there might be an extremely severe flood year in Zhejiang.4)Floods in Zhejiang have good response to El Ni?o events,in El Ni?o year or the following year much attention must be paid to.And 5)In the future,the first,second,and third severe typhoon years in Zhejiang will be 2009,2012,and 2015,respectively.  相似文献   

5.
Based on remote sensing and GIS techniques, land use maps in 2000, 2005 and 2010 in China′s coastal zone were produced, and structural raster data of land use were further generated to calculate land use intensity comprehensive index(LUICI) for analyzing land use spatial-temporal characteristics at 1 km scale. Results show that: 1) from the perspective of spatial patterns of landforms at a macro scale, there is a significant difference in land use intensity between the north and the south of China′s coastal zone. Hotspots of changes mainly concentrated in metropolitan areas, estuaries and coastal wetlands; 2) elevation is an important factor that controlling land use spatial patterns at local scale. Land use intensity is much higher within areas below the elevation of 400 m and it decreased significantly as the elevation increasing; 3) there is a significant land-ocean gradient for land use intensity, which is low in island and near-shore areas, but high in the regions that 4–30 km far away the coastline because of much intensive human activities; however, in recent decades land use intensity had been promoted significantly in low near-shore area due to extensive sea reclamations; 4) significant differences of land use intensity were also found among provincial administrative units. A rising trend of land use intensity was found in provincial-level administrative units from 2000 to 2010. To sum up, elevation, land-ocean gradient, socio-economic status and policy are all influencing factors to the spatial patterns and temporal variations of land use intensity in China′s coastal zone.  相似文献   

6.
Elm (Ulmus pumila), widely distributed in the north temperate zone, contributes to a special savanna-like woodland in typical grassland region in the northeastern China. This woodland performs a variety of ecological functions and environmental significance, such as decreasing soil erosion, stabilizing sand dunes, preserving species diversity. However, in the last approximate 30 years, the species composition, productivity and distribution area of elm woodland has decreased severely. A series of studies have been carried out to find out whether the climate changes or human disturbances caused the degradation of elm woodland and how these factors affected elm woodland. In this study, undisturbed, plowing and grazing elm woodland were investigated in 1983 and 2011 by using Point-Centered Quarter method. The relationship between vegetation changes and environmental factors was analyzed by Bray-Curtis ordination. The results show that in 2011, species diversity and understory productivity of undisturbed elm woodland decrease slightly compared to those of undisturbed elm woodland in 1983. However, nearly 60% of the species is lost in the plowing and grazing elm woodland relative to the species undisturbed elm woodland in 1983. Interestingly, plowing stimulates the growth of elm and certain understory species through furrowing soil and accelerating soil nutrient turnover rate. Grazing disturbance not only leads to species loss and productivity decrease, but also induces changes in elm growth (small, short and twisted). The mean age of the elm was 29 ± 2 yr in undisturbed and plowing elm woodland, while only 15 yr in the grazing elm woodland. The results of Bray-Curtis ordination analysis show that all sample stands clustered to three groups: Group I including the undisturbed sample stands of 83UE (undisturbed elm woodland in 1983) and 11UE (undisturbed elm woodland in 2011); Group II including sample stands of PE (elm woodland disturbed by plowing); Group III including samples stands of GE (elm woodland disturbed by grazing). The results indicate that the long time disturbance of the plowing and grazing have converted elm woodland to different community types. Climate change is not the primary reason causing the degradation of elm woodland, but plowing and grazing disturbance. Both plowing and grazing decrease the vegetation composition and species diversity. Grazing further decreases vegetation productivity and inhibits the growth of elm tree. Therefore, we suggest that reasonable plowing and exclusive grazing would be favorable for future regeneration of degraded elm woodland.  相似文献   

7.
The Tibetan Plateau(TP) is one of the most sensitive areas and is more susceptible to climate change than other regions in China. The TP also experiences extremely frequent light precipitation events compared to precipitation of other intensities. However, the definition, influencing factors, and characteristics of light precipitation in the TP have not been accurately explained. This study investigated the variation characteristics of light precipitation with intensities(Pre) of 0.1–10.0 mm/d b...  相似文献   

8.
Change of Cultivated Land and Its Implications on Food Security in China   总被引:4,自引:0,他引:4  
1 Introduction FAO defined food security not only in terms of access to and availability of food, but also in terms of resources distribution to produce food and the purchasing power on food where it is not produced (Shi et al., 1996; Ning, 2004). Obviously, to guarantee everyone adequate food is the primary aim and most important content of food security (Xie et al., 1999). Thus, to increase food supply is a precondition for food security by domestic food production and international food t…  相似文献   

9.
The increase in China’s skilled labor force has drawn much attention from policymakers, national and international firms and media. Understanding how educated talent locates and re-locates across the country can guide future policy discussions of equality, firm localization and service allocation. Prior studies have tended to adopt a static cross-national approach providing valuable insights into the relative importance of economic and amenity differentials driving the distribution of talent in ...  相似文献   

10.
Studies on long-term change of cropland is of great significance to the utilization of land resources and the implementation of scientific agricultural policies. The Korean Peninsula, adjacent to China, plays an important role in the international environment of Northeast Asia. The Korean Peninsula includes South Korea and North Korea—two countries that have a great difference in their institutions and economic developments. Therefore, we aim to quantify the spatiotemporal changes of croplands in these two countries using Landsat Thematic Imager(TM) and Operational Land Imager(OLI) imagery, and to compare the differences of cropland changes between the two countries. This paper take full advantage of ODM approach(object-oriented segmentation and decision-tree classification based on multi-season imageries) to obtain the distribution of croplands in 1990 and 2015. Results showed that the overall classification accuracy of cropland data is 91.10% in 1990 and 92.52% in 2015. The croplands were mainly distributed in areas with slopes that were less than 8° and with elevations that were less than 300 m in the Korean Peninsula. However, in other region(slope 8° or elevation 300 m), the area and proportion of North Korea's croplands were significantly higher than that of South Korea. Croplands significantly increased by 15.02% in North Korea from 1990 to 2015. In contrast, croplands in South Korea slightly decreased by 1.32%. During the 25 years, policy shift, economic development, population growth, and urban sprawl played primary roles for cropland changes. Additionally, the regional differences of cropland changes were mainly due to different agriculture policies implemented by different countries. The achievements of this study can provide scientific guidance for the protection and sustainability of land resources.  相似文献   

11.
Climate changes are likely to increase the risk of numerous extreme weather events throughout the world. The objectives of this study were to investigate and analyze the temporal-spatial variability patterns of temperature extremes based on daily maximum(TX) and minimum temperature(TN) data collected from 49 meteorological stations in Xinjiang of China during 1960–2015. These temperature data were also used to assess the impacts of altitude on the temperature extremes. Additionally, possible teleconnections with the large-scale circulation pattern(the El Nino-Southern Oscillation, ENSO and Arctic Oscillation, AO) were investigated. Results showed that all percentile indices had trends consistent with warming in most parts of Xinjiang during 1960–2015, but the warming was more pronounced for indices derived from TN compared to those from TX. The minimum TN and maximum TX increased at rates of 0.16℃/10 yr and 0.59℃/10 yr, respectively during 1960–2015. Accordingly, the diurnal temperature range showed a significant decreasing trend of –0.23℃/10 yr for the whole study area. The frequency of the annual average of the warm events showed significant increasing trends while that of the cold events presented decreasing trends. Over the same period, the number of frost days showed a statistically significant decreasing trend of –3.37 d/10 yr. The number of the summer days and the growing season showed significant increasing trends at rates of 1.96 and 2.74 d/10 yr, respectively. The abrupt change year of each index was from the 1980 s to the 1990 s, showing that this periodic interval was a transitional phase between cold and warm climate change. Significant correlations of temperature extremes and elevation included the trends of tropical nights, growing season frequency, and cold spell duration indicator. This result also indicated the clear and complex local influence on climatic extremes. In addition, the relationship between each index of the temperature extremes with large-scale atmospheric circulation(ENSO and AO) demonstrated that the influence of ENSO on each index of the temperature extremes was greater than that of the AO in Xinjiang.  相似文献   

12.
The landscape pattern of Da'an County, Northeast China has undergone significant changes since the 1950s as a result of climatic change and human activities. The aim of this paper is to quantitatively study landscape pattern and its spatial dynamics of Da'an County at the landscape level over the nearly 50-year span. Patch dynamics were examined according to land use and land cover change processes built from a series of images, as well as topographic maps, and temporal patterns built from landscape pattern metrics. The transition matrix of landscape patch types and changes of various landscape metrics were applied. The results showed that, from 1956 to 2000, the landscape within the study area had undertaken a complicated evolution in landscape structure and composition. The outstanding characteristic is that saline-alkali land increased and grassland decreased. As some smaller patches amalgamated, the heterogeneity of patch decreased. All those changes were the synthetic result of both climatic and anthropogenic influences, but the predominant factor was different in different parts. In the southern part of the study area, the landscape pattern changes resulted from the modification of climate obviously, while in the northern part, the landscape pattern changes were mainly caused by human activities, such as the conversion between farmland and saline-alkali land. This phenomenon showed that human activities played more important role in the north than in the south of Da'an County.  相似文献   

13.
Runoff change and trend of the Naoli River Basin were studied through the time series analysis using the data from the hydrological and meteorological stations. Time series of hydrological data were from 1957 to 2009 for Bao′an station, from 1955 to 2009 for Baoqing station, from 1956 to 2009 for Caizuizi station and from 1978 to 2009 for Hongqiling station. The influences of climate change and human activities on runoff change were investigated, and the causes of hydrological regime change were revealed. The seasonal runoff distribution of the Naoli River was extremely uneven, and the annual change was great. Overall, the annual runoff showed a significant decreasing trend. The annual runoff of Bao′an, Baoqing, and Caizuizi stations in 2009 decreased by 64.1%, 76.3%, and 84.3%, respectively, compared with their beginning data recorded. The wet and dry years of the Naoli River have changed in the study period. The frequency of wet year occurrence decreased and lasted longer, whereas that of dry year occurrence increased. The frequency of dry year occurrence increased from 25.0%-27.8% to 83.9%-87.5%. The years before the 1970s were mostly wet, whereas those after the 1970s were mostly dry. Precipitation reduction and land use changes contributed to the decrease in annual runoff. Rising temperature and water project construction have also contributed important effects on the runoff change of the Naoli River.  相似文献   

14.
15.
1 Introduction It has been reported that habitat nutrient availability frequently limited plant growth and determined species dominance and abundance in natural communities (Miao et al., 2000). Nutrient availability is also a main regulator of aquatic primary production. Human-induced nutrient enrichment results in die-back of native vegetation and alteration of species dominance in various aquatic eco- systems (Miao et al., 2000; Green and Galatowitsch, 2002). Particularly, nutrient enrichm…  相似文献   

16.
Lode 28 is the largest gold-bearing quartz vein in Haigou gold deposit,and the lode itself contains more than 30t of gold. Geochemical study shows that 12 trace elements related gold mineralization can be divided into 5 metallogenic factors(element assemblages) .The high values of F1,F2 and F4 together indicate overlapped of multiple stages of gold mineralization,revealing high potential of gold mineralization at depth;the single high value of F4 represents the root of an existing ore body while high values of F3 and F4 show the intervals of barren sectors in the lode. Comprehensive geochemical studies show the high prospection potential below the 14th level and between lines 39-71. It is also prospective to look for blind ore-bodies between lines 15-29 and below the 10th level.  相似文献   

17.
Dawsonite, NaAlCO3(OH)2, is widespread as a cement, replacement and cavity filling in Hailaer Basin in China and Bowen-Gunnedah-Sydney (BGS) basin system in Australia. The origin of dawsonite is emphatically contrasted and analyzed through stable isotopic composition. Dawsonite δ13C values ranging from -4.0×10-3 to 4.1×10-3 are remarkably consistent through the BGS basin system. The calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite range from -11.3×10-3 to -4.6×10-3. These values indicate carbon of dawsonite came from inorganic CO2 gas accompanied by magmatic activity. In Hailaer Basin, the Dawsonite δ13C values ranging from -4.64×10-3 to 2.12×10-3 are also consistent. The calculated δ13C values of CO2 gas in isotopic equilibrium with dawsonite range from -11.82×10-3 to -5.11×10-3. According to the coincidence of dawsonite-bearing well and CO2 gas well with mantle source,lying along deep fracture within or adjacent to Yanshanian granite,it is concluded that CO2 gas forming dawsonite is derived from mantle related to magmatic process during the Yanshanian. A little biologic origin carbon owing to petroleum charging intervened when dawsonite formed.  相似文献   

18.
Scallops of the Family Pectinidae are a valuable resource in marine industry of the world. Understanding the phylogeny of the family is important for the development of the industry. In this study, partial 16S mitochondrial rDNA genes were obtained from 8 scallop species that are commonly cultured indigenous and transplanted species in China. Phylogenetic relationships of Pectinidae were analyzed based on the 8 sequences and other 5 published ones in GenBank, representing 9 genera of the family. The molecular phylogeny trees were constructed using 3 methods with software PHYLIP. The results showe that total 13 species of scallops clustered in 4 clades. Pecten maximus joins P. jacobaeus then Amusium pleuronectes in cluster, indicating close relationship of genus Amusium with Pecten in evolution. P. yessoensis is close to Chlamysfarreri and C. islandica. No enough material was available to single out genus Patinopecten as an independent monophyletic subfamily. The position ofAdamussium colbecki indicates that it is far from genus Pecten but near to genus Chlamys in evolution.  相似文献   

19.
The neon flying squid, Ommastrephes bartramii, is a species of economically important cephalopod in the Northwest Pacific Ocean. Its short lifespan increases the susceptibility of the distribution and abundance to the direct impact of the environmental conditions. Based on the generalized linear model(GLM) and generalized additive model(GAM), the commercial fishery data from the Chinese squid-jigging fleets during 1995 to 2011 were used to examine the interannual and seasonal variability in the abundance of O. bartramii, and to evaluate the influences of variables on the abundance(catch per unit effort, CPUE). The results from GLM suggested that year, month, latitude, sea surface temperature(SST), mixed layer depth(MLD), and the interaction term(SST×MLD) were significant factors. The optimal model based on GAM included all the six significant variables and could explain 42.43% of the variance in nominal CPUE. The importance of the six variables was ranked by decreasing magnitude: year, month, latitude, SST, MLD and SST×MLD. The squid was mainly distributed in the waters between 40?N and 44?N in the Northwest Pacific Ocean. The optimal ranges of SST and MLD were from 14 to 20℃ and from 10 to 30 m, respectively. The squid abundance greatly fluctuated from 1995 to 2011. The CPUE was low during 1995–2002 and high during 2003–2008. Furthermore, the squid abundance was typically high in August. The interannual and seasonal variabilities in the squid abundance were associated with the variations of marine environmental conditions and the life history characteristics of squid.  相似文献   

20.
Extreme freeze-thaw action occurs on the Qinghai-Tibet Plateau due to its unique climate resulting from high elevation and cold temperature.This action causes damage to the surface soil structure, as soil erosion in the Qinghai-Tibet Plateau is dominated by freeze-thaw erosion.In this research,freezing–thawing process of the soil samples collected from the Qinghai–Tibet Plateau was carried out by laboratory experiments to determinate the volume variation of soil as well as physical and mechanical properties, such as porosity, granularity and uniaxial compressive strength, after the soil experiences various freeze–thaw cycles.Results show that cohesion and uniaxial compressive strength decreased as the volume and porosity of the soil increased after experiencing various freeze–thaw cycles, especially in the first six freeze–thaw cycles.Consequently, the physical and mechanical properties of the soil were altered.However, granularity and internal friction angle did not vary significantly with an increase in the freeze–thaw cycle.The structural damage among soil particles due to frozen water expansion was the major cause of changes in soil mechanical behavior in the Qinghai–Tibet Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号