共查询到20条相似文献,搜索用时 0 毫秒
1.
LI Zhe ZHANG Zhongsheng XUE Zhenshan SONG Xiaolin ZHANG Hongri WU Haitao JIANG Ming LYU Xianguo 《中国地理科学(英文版)》2019,(4):700-711
Natural wetlands are known to store huge amounts of organic carbon in their soils. Despite the importance of this storage,uncertainties remain about the molecular characteristics of soil organic matter(SOM), a key factor governing the stability of soil organic carbon(SOC). In this study, the molecular fingerprints of SOM in a typical freshwater wetland in Northeast China were investigated using pyrolysis gas-chromatography/mass-spectrometry technology(Py-GC/MS). Results indicated that the SOC, total nitrogen(TN),and total sulfur contents of the cores varied between 16.88% and 45.83%, 0.93% and 2.82%, and 1.09% and 3.79%, respectively. The bulk δ^13C and δ^15N varied over a range of 9.85‰, between –26.85‰ and –17.00‰, and between –0.126‰ and 1.002‰, respectively. A total of 134 different pyrolytic products were identified, and they were grouped into alkyl(including n-alkanes(C:0) and n-alkenes(C:1),aliphatics(Al), aromatics(Ar), lignin(Lg), nitrogen-containing compounds(Nc), polycyclic aromatic hydrocarbons(PAHs), phenols(Phs), polysaccharides(Ps), and sulfur-containing compounds(Sc). On average, Phs moieties accounted for roughly 24.11% peak areas of the total pyrolysis products, followed by Lg(19.27%), alkyl(18.96%), other aliphatics(12.39%), Nc compounds(8.08%), Ps(6.49%), aromatics(6.32%), Sc(3.26%), and PAHs(1.12%). Soil organic matter from wetlands had more Phs and Lg and less Nc moieties in pyrolytic products than soil organic matters from forests, lake sediments, pastures, and farmland.δ^13 C distribution patterns implied more C3 plant-derived soil organic matter, but the vegetation was in succession to C4 plant from C3 plant. Significant negative correlations between Lg or Ps proportions and C3 plant proportions were observed. Multiple linear analyses implied that the Ar and Al components had negative effects on SOC. Alkyl and Ar could facilitate ratios between SOC and total nitrogen(C/N), while Al plays the opposite role. Al was positively related to the ratio of dissolved organic carbon(DOC) to SOC. In summary, SOM of wetlands might characterize by more Phs and lignin and less Nc moieties in pyrolytic products. The use of Pyrolysis gas-chromatography/mass-spectrometry(Py-GC/MS) technology provided detailed information on the molecular characteristics of SOM from a typical freshwater wetland. 相似文献
2.
《中国海洋大学学报(英文版)》2019,(6)
This study assessed the effects of changes in organic carbon content on soil bacterial community composition and diversity in the Antarctic Fildes Peninsula. 16 S rRNA gene sequencing was performed to investigate bacterial community composition. Firstly, we found that organic carbon(OrC) and nutrients showed an increasing trend in the lake area. Secondly, soil geochemistry changes affected microbial composition in the soil. Specifically, we found 3416 operational taxonomical units(OTUs) in 300 genera in five main phyla: Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, and Bacteroidetes. Although the diversity was similar among the four sites, the composition was different. Among them, Hungateii content changed very significantly, from 16.67% to 33.33%. Canonical correspondence analysis showed that most measured geochemical factors were relevant in structuring microbiomes, and organic carbon concentration showed the highest correlation, followed by NO_(3-)~-N. Hungateii was significantly correlated with the content of organic carbon. Our finding suggested organic carbon played an important role in soil bacterial communities of the Antarctic coastal lake region. 相似文献
3.
Biochar amendment is considered as an efficient practice for improving carbon storage in soils. However, to what extent that biochar application promotes organic carbon in saline-sodic soils remains poorly understood. By comparing soil organic carbon(SOC)contents change before and after biochar addition, we deciphered the driving factors or processes that control SOC change in response to biochar application. A limited increase in SOC was observed, about by 1.16%-12.80%, even when biochar was ap... 相似文献
4.
To evaluate the influence of wetland reclamation on vertical distribution of carbon and nitrogen in coastal wetland soils, we measured the soil organic carbon(SOC), soil total nitrogen(STN) and selected soil properties at five sampling plots(reed marsh, paddy field, corn field, forest land and oil-polluted wetland) in the Liaohe River estuary in September 2013. The results showed that reclamation significantly changed the contents of SOC and STN in the Liaohe River estuary(P 0.001). The SOC concentrations were in the order: oil-polluted wetland corn field paddy field forest land reed marsh, with mean values of 52.17, 13.14, 11.46, 6.44 and 6.16 g/kg, respectively. STN followed a similar order as SOC, with mean values of 1351.14, 741.04, 632.32, 496.17 and 390.90 mg/kg, respectively. Interaction of reclamation types and soil depth had significant effects on SOC and STN, while soil depth had significant effects on SOC, but not on STN. The contents of SOC and STN were negatively correlated with pH and redox potential(Eh) in reed marsh and corn field, while the SOC and STN in paddy field had positive correlations with electrical conductivity(EC). Dissolved organic carbon(DOC), ammonium nitrogen(NH_4~+-N) and nitrate nitrogen(NO_3~–-N) were also significantly changed by human activities. NH_4~+-N and NO_3~–-N increased to different degrees, and forest land had the highest NO_3~–-N concentration and lowest DOC concentration, which could have been caused by differences in soil aeration and fertilization. Overall, the results indicate that reed harvest increased soil carbon and nitrogen release in the Liaohe River Estuary, while oil pollution significantly increased the SOC and STN; however, these cannot be used as indicators of soil fertility and quality because of the serious oil pollution. 相似文献
5.
WANG Hao XU Shiguo SUN Leshi 《中国地理科学(英文版)》2006,16(3):265-269
1 Introduction As a result of persistent increase in carbon dioxide in the atmosphere since the 1950s, global and regional climate features, such as temperature and precipitation, have ob- viously changed (Yu et al., 2002). The General Circulation Models (GCMs) provide potential climate scenarios by studying the effects of carbon dioxide on the temperature. Tickell (1993) predicted that the mean temperature will increase by 1℃ till the year 2050 and by 3℃ at the end of the 22th century. S… 相似文献
6.
Wetlands are sensitive to climate change, in the same time, wetlands can influence climate. This study analyzed the spatio-temporal characteristics of wetland change in the semi-arid zone of Northeast China from 1985 to 2010, and investigated the impact of large area of wetland change on local climate. Results showed that the total area of wetlands was on a rise in the study area. Although natural wetlands(marshes, riparians and lakes) decreased, constructed wetlands(rice fields) increased significantly, and the highest increase rate in many places exceeded 30%. Anthropogenic activities are major driving factors for wetland change. Wetland change produced an impact on local climate, mainly on maximum temperature and precipitation during the period of May–September. The increase(or decrease) of wetland area could reduce(or increase) the increment of maximum temperature and the decrement of precipitation. The changes in both maximum temperature and precipitation corresponded with wetland change in spatial distribution. Wetland change played a more important role in moderating local climate compared to the contribution of woodland and grassland changes in the study area. Cold-humid effect of wetlands was main way to moderating local climate as well as alleviating climatic warming and drying in the study area, and heterogeneity of underlying surface broadened the cold-humid effect of wetlands. 相似文献
7.
采用商河县2010年耕地地力评价有机质采样点的数据,运用GIS和地统计学相结合的方法,研究了商河县土壤有机质的密度及储量,并按照土类统计分析了不同土壤类型间的有机碳密度及储量差异。研究表明,商河县土壤有机碳密度范围为1.69~5.17kg/m2,平均3.44kg/m2;有机碳储量为0.26×1010kg。按乡镇统计,有机碳密度最大值为玉皇庙镇3.65kg/m2,最小值为郑陆镇3.15kg/m2,有机碳储量最大值玉皇庙镇3.47×108 kg,最小值张坊乡0.92×108 kg;按土壤类型统计,有机碳密度最大的为湿潮土3.46kg/m2,最小为风沙土3.29kg/m2,有机碳储量最大为潮土10.38×108 kg,最小为褐土化潮土1.34×108 kg。 相似文献
8.
《山地科学学报》2015,(3)
Labile organic carbon(LOC) and carbon management index(CMI), which are sensitive factors to the changes of environment, can improve evaluating the effect of land management practices changes on soil quality. The objective of this study was to investigate the effects of land use types and landscape positions on soil quality as a function of LOC and CMI. A field study in a small watershed in the red soil hilly region of southern China was conducted, and soil samples were collected from four typical lands(pine forest(PF) on slope land, barren hill(BH) on slope land, citrus orchard(CO) on terrace land and Cinnarnornum Camphora(CC) on terrace land) at a sampling depth of 20 cm. Soil nutrients, soil organic carbon(SOC), LOC and CMI were measured. Results showed that the LOC and CMI correlated to not only soil carbon but also soil nutrients, and the values of LOC and CMI in different land use types followed the order CC PF CO BH at the upperslope, while CO CC BH PF at mid-slope and down-slope. With respect to slope positions, the values of LOC and CMI in all the lands were followed the order: upper-slope down-slope midslope. As whole, the mean values of LOC and CMI in different lands followed the order CC CO PF BH. High CMI and LOC content were found in the terrace lands with broadleaf vegetations. These results indicated that the terracing and appropriate vegetations can increase the carbon input and lability and decrease soil erosion. However, the carbon pools and CMI in these lands were significantly lower than that in reference site. This suggested that it may require a long time for the soil to return to a highquality. Consequently, it is an efficient way to adopt the measures of terracing and appropriate vegetations planting in improving the content of LOC and CMI and controlling water and soil loss in fragile ecosystems. 相似文献
9.
Hydrological connectivity has significant effects on the functions of estuarine wetland ecosystem. This study aimed to examine the dynamics of hydrological connectivity and its impact on soil carbon pool in the Yellow River Delta, China. We calculated the hydrological connectivity based on the hydraulic resistance and graph theory, and measured soil total carbon and organic carbon under four different hydrological connectivity gradients(Ⅰ 0-0.03, Ⅱ 0.03-0.06, Ⅲ 0.06-0.12, Ⅳ 0.12-0.39). The resul... 相似文献
10.
Effects of Nitrogen Addition on Plant Functional Traits in Freshwater Wetland of Sanjiang Plain,Northeast China 总被引:1,自引:0,他引:1
To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m^2·yr), 6 g N/(m^2·yr), 12 g N/(m^2·yr) and 24 g N/(m^2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands. 相似文献
11.
以国家自然科学基金为依托建立模拟实验区,探究不同施工机械和碾压次数下的土壤物理指标(压实度、容重、孔隙度、含水量、电导率和温度)的变化。研究结果表明:随土层深度的增加,压实度、容重和电导率逐渐递增,孔隙度、含水量和温度逐渐递减;随碾压次数的增加,压实度和容重逐渐递增,孔隙度逐渐递减,土壤含水量、电导率和温度先增加后降低,其中使用自卸汽车时,3次碾压指标值最高,使用履带式推土机时,5次碾压指标值最高,而使用履带式推土机的处理效果要好于使用自卸汽车;通过对各处理与对照间的拟合度分析发现,使用履带式推土机碾压5次的土壤中各指标与对照拟合度最高,表明采用"履带式推土机×碾压5次"的组合,复垦土壤中物理性质与正常土壤最为接近。 相似文献
12.
Xiaojie Mou Xingtu Liu Zhigao Sun Chuan Tong Jiafang Huang Siang Wan Chun Wang Bolong Wen 《中国地理科学(英文版)》2018,28(3):400-410
The changes in soil organic carbon(C) mineralization as affected by anthropogenic disturbance directly determine the role of soils as C source or sink in the global C budget. The objectives of this study were to investigate the effects of anthropogenic disturbance(aquaculture pond, pollutant discharge and agricultural activity) on soil organic C mineralization under different water conditions in the Minjiang River estuary wetland, Southeast China. The results showed that the organic C mineralization in the wetland soils was significantly affected by human disturbance and water conditions(P 0.001), and the interaction between human disturbance activities and water conditions was also significant(P 0.01). The C mineralization rate and the cumulative mineralized carbon dioxide-carbon(CO_2-C)(at the 49th day) ranked from highest to lowest as follows: Phragmites australis wetland soil aquaculture pond sediment soil near the discharge outlet rice paddy soil. This indicated that human disturbance inhibited the mineralization of C in soils of the Minjiang River estuary wetland, and the inhibition increased with the intensity of human disturbance. The data for cumulative mineralized CO_2-C showed a good fit(R~2 0.91) to the first-order kinetic model C_t = C_0(1 – exp(–kt)). The kinetic parameters C_0, k and C_0 k were significantly affected by human disturbance and water conditions. In addition, the total amount of mineralized C(in 49 d) was positively related to C_0, C_0 k and electrical conductivity of soils. These findings indicated that anthropogenic disturbance suppressed the organic C mineralization potential in subtropical coastal wetland soils, and changes of water pattern as affected by human activities in the future would have a strong influence on C cycling in the subtropical estuarine wetlands. 相似文献
13.
Effects of Urbanization,Soil Property and Vegetation Configuration on Soil Infiltration of Urban Forest in Changchun,Northeast China 总被引:2,自引:0,他引:2
Peijiang Wang Haifeng Zheng Zhibin Ren Dan Zhang Chang Zhai Zhixia Mao Ze Tang Xingyuan He 《中国地理科学(英文版)》2018,28(3):482-494
Urban forest soil infiltration, affected by various factors, is closely related with surface runoff. This paper studied the effect of urban forest types, vegetation configuration and soil properties on soil infiltration. In our study, 191 typical plots were sampled in Changchun City, China to investigate the soil infiltration characteristics of urban forest and its influencing factors. Our results showed that the steady infiltration rates of urban forest soil were highly variable. High variations in the final infiltration rates were observed for different vegetation patterns and compaction degrees. Trees with shrubs and grasses had the highest infiltration rate and trees with bare land had the lowest infiltration rate. In addition, our results showed that the soil infiltration rate decreased with an increase in the bulk density and with a reduction in the soil organic matter content and non-capillary porosity. The soil infiltration rate also had significantly positive relationships with the total porosity and saturated soil water content. Urban soil compaction contributed to low soil infiltration rates. To increase the infiltration rate and water storage volume of urban forest soil, proper techniques to minimize and mitigate soil compaction should be used. These findings can provide useful information for urban planners about how to maximize the water volume of urban forest soil and decrease urban instantaneous flooding. 相似文献
14.
WANG Qian JIA Shuxia LIANG Aizhen CHEN Xuewen ZHANG Shixiu ZHANG Yan Neil B MCLAUGHLIN GAO Yan HUANG Dandan 《中国地理科学(英文版)》2023,(4):679-692
Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention, but the influences of conservation tillage on soil microbial community and especially function remain unclear. Shotgun metagenomics sequencing was performed to examine the taxonomic and functional community variations of black soils under three tillage regimes, namely no-tillage with residue(maize straw) return(NTS), moldboard plow with residue return(MPS), and moldboard plow without ... 相似文献
15.
Yuandong Wang Dianwei Liu Kaishan Song Jia Du Zongming Wang Bai Zhang Xuguang Tang Xiaochun Lei Yanqing Wu 《中国地理科学(英文版)》2011,21(3):334-345
Research on the optical characteristics of water color constituents in Chagan Lake of Jilin Province,Northeast China was carried out in order to investigate the variability of the spectra absorption parameters as inputs to bio-optical models and remote sensing algorithms for converting observed spectral signals into water quality information.Samples of total particulates,non-algal particles and colored dissolved organic matter (CDOM) were first prepared by quantitative filter technique (QFT) and then absorp... 相似文献
16.
Guanghui Zhao Wenyue Chang Jinxia Yan Xiaojun Li Dongli Tong Ranran Zhao Sharley James David Peidong Tai 《中国地理科学(英文版)》2017,27(6):1003-1012
The aquatic ecosystem maybe significantly affected by polycyclic aromatic hydrocarbons(PAHs) released from fresh water sediments. In order to protect biodiversity, the spatial distribution and sources of PAHs in the sediment of Wolong Lake in Northeast China were studied. A total of 17 surface sediment samples were collected and 12 PAHs were analyzed. The results were as follows. The concentration of total PAHs(TPAHs) ranged between 1412.9 μg/kg and 3948.3 μg/kg(dry weight). Indeno [1, 2, 3-c, d] pyrene was the dominant contaminant which accounted for 87%–98% of TPAHs. Diagnostic ratios of PAHs and principal component analysis showed that biomass combustion and vehicle emissions were likely to be the dominant sources of PAHs in the sediment. PAHs can be considered safe in the context of environmental and human health protection, based on the overall toxicity. Individual PAHs were positively correlated with total organic carbons. These results will be helpful to control PAHs and protect the aquatic ecosystem in the lake. 相似文献
17.
Effects of Forest Type and Urbanization on Carbon Storage of Urban Forests in Changchun,Northeast China 总被引:1,自引:2,他引:1
ZHANG Dan ZHENG Haifeng REN Zhibin ZHAI Chang SHEN Guoqiang MAO Zhixia WANG Peijiang HE Xingyuan 《中国地理科学(英文版)》2015,(2):147-158
Rapid urbanization has led to dramatic changes in urban forest structures and functions, and consequently affects carbon(C) storage in cities. In this study, field surveys were combined with high resolution images to investigate the variability of C storage of urban forests in Changchun, Northeast China. The main objectives of this study were to quantify the C storage of urban forests in Changchun City, Northeast China and understand the effects of forest type and urbanization on C storage of urban forests. The results showed that the mean C density and the total C storage of urban forests in Changchun were 4.41 kg/m2 and 4.74 × 108 kg, respectively. There were significant differences in C density among urban forest types. Landscape and relaxation forest(LF) had the highest C density with 5.41 kg/m2, while production and management forest(PF) had the lowest C density with 1.46 kg/m2. These differences demonstrate that urban forest type is an important factor needed to be considered when the C storage is accurately estimated. Further findings revealed significant differences in different gradients of urbanization, and the mean C density decreased from the first ring(6.99 kg/m2) to the fourth ring(2.87 kg/m2). The total C storage increased from the first ring to the third ring. These results indicate that C storage by urban forests will be significantly changed during the process of urbanization. The results can provide insights for decision-makers and urban planners to better understand the effects of forest type and urbanization on C storage of urban forests in Changchun, and make better management plans for urban forests. 相似文献
18.
鄱阳湖南矶湿地是亚热带典型过水性湿地,由于该区域水文情况复杂,且泥滩、沼泽和疫水(血吸虫)分布较广,导致野外考察验证工作困难,使用传统的遥感信息提取方法很难保证该地区湿地景观的提取精度。本文以高分一号影像为数据源,综合运用数字高程模型(DEM)、归一化植被指数(NDVI)、归一化水体指数(NDWI)等辅助数据,采用面向对象分类方法,对鄱阳湖南矶湿地景观信息进行提取研究,并取得了较好的分类效果。研究结果表明:(1)基于国产高分辨率影像的面向对象分类,既兼顾了国产高分辨率影像光谱、空间、结构、纹理信息,又综合利用多源辅助数据参与到分类计算中,分类精度得到明显的提升;(2)基于面向对象与多源数据分类方法对湿地混合像元有较好地识别能力,可获得较高的总体分类精度(94.3275%)和Kappa系数(0.9324),说明利用多源数据的面向对象方法提取湿地信息是可行的,其分类结果具有较高的准确性和可信度,较好地解决了过水性湿地景观分类问题;(3)该分类方法弥补了单一遥感影像分类方法的不足,对研究国产高分卫星在提取过水性湿地景观信息方面具有重要的参考和实际意义。最后,分析了多源数据面向对象分类尚待解决的问题和下一步的研究方向。 相似文献
19.
Soil Nutrient Variance by Slope Position in a Mollisol Farmland Area of Northeast China 总被引:1,自引:0,他引:1
ZHANG Shaoliang JIANG Lili LIU Xiaobing ZHANG Xingyi FU Shicong DAI Lin 《中国地理科学(英文版)》2016,(4):508-517
In order to generate scientifically-based comparative information to improve fertilization efficiency and reduce nutrient loss, 610 samples of 122 soil profiles were collected at the 0–60 cm depth to compare soil nutrient contents including soil organic matter(SOM), total nitrogen(TN), total phosphorus(TP), available phosphorus(AP), and available potassium(AK) among different slope positions in a Mollisol farmland area of Northeast China. The contents of SOM and TN typically decreased with increased soil depth at back and bottom slope. Soil loss and deposition tended to decrease SOM and TN at the 0–20 cm soil depth on both the back slope and the slope bottom. The TP firstly decreased from 0–20 cm to 30–40 cm, and then not constantly increased at the back slope and the bottom slope. Due to the characteristics of soil nutrients and crop absorption, the contents of both AP and AK were typically the highest at the summit, followed by the slope bottom and the back slope in the 0–20 cm layer. Generally, in order to sustain the high soil productivity and protect the environment, attention should be paid to soil conservation on back slope; in addition, additional N and P fertilizer is necessary on the back slope. 相似文献
20.
Poyang Lake is the largest freshwater lake in China, and it has a seasonal flooding cycle that significantly changes the water level every year. The aim of this paper was to explain how these hydrological changes influence diatom populations in Poyang Lake. The yearly hydrological cycle can be divided into 4 phases: low water-level phase, increasing water-level phase, high water-level phase and decreasing water-level phase. Variations in the abundance of planktonic diatoms were studied using quarterly monitoring data collected from January 2009 to October 2013. Generally, diatoms were dominant in Poyang Lake and accounted for more than 50% of the total phytoplankton biomass except in July 2009 (26%) and January 2012 (35%). Aulacoseira granulata and Surirella robusta were the predominant species in all four phases, and they accounted for 25.02% to 56.89% and 5.07% to 14.78% of the total phytoplankton biomass, respectively. A redundancy analysis (RDA) showed that changes in physico-chemical parameter were related to the water level, and changes in diatom biomass were related to nitrite levels and pH. These results indicate that changes in environmental parameters related to both seasonal variations and water-level fluctuations caused variations in diatom biomass and community composition in Poyang Lake. Furthermore, extreme hydrological events can have different influences on the diatom community composition in the main channel and lentic regions. This research provides data on the diatom variations in Poyang Lake and will be useful for establishing biological indicators of environmental change and protecting Poyang Lake in the future. 相似文献