首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entrainment of air from the free atmosphere into the convective boundary layer is reviewed and further investigated using observations from a 2 μm Doppler lidar. It is possible to observe different individual processes entraining air into the turbulent layer, which develop with varying stability of the free atmosphere. These different processes are attended by different entrainment-zone thicknesses and entrainment velocities. Four classes of entrainment parametrizations, which describe relationships between the fundamental parameters of the process, are examined. Existing relationships between entrainment-zone thickness and entrainment velocity are basically confirmed using as scaling parameters boundary-layer height and convective velocity. An increase in the correlation coefficient between stability parameters based on the stratification of the free atmosphere and entrainment velocity (and entrainment-zone thickness respectively) up to 200% was possible using more suitable length and velocity scales.  相似文献   

2.
It has been noted that when the convective Richardson number Ri* is used to characterize the depth of the entrainment zone, various parameterization schemes can be obtained. This situation is often attributed to the invalidity of parcel theory. However, evidence shows that the convective Richardson number Ri^* might be an improper characteristic scaling parameter for the entrainment process. An attempt to use an innovative parameter to parameterize the entrainment-zone thickness has been made in this paper.Based on the examination of the data of water-tank experiments and atmospheric measurements, it is found that the total lapse rate of potential temperature across the entrainment zone is proportional to that of the capping inversion layer. Inserting this relationship into the so-called parcel theory, it thus gives a new parameterization scheme for the depth of the entrainment zone. This scheme includes the lapse rate of the capping inversion layer that plays an important role in the entrainment process. Its physical representation is reasonable. The new scheme gives a better ordering of the data measured in both watertank and atmosphere as compared with the traditional method using Ri^*. These indicate that the parcel theory can describe the entrainment process suitably and that the new parameter is better than Ri^*.  相似文献   

3.
A conditional sampling based on the combination of a passive tracer emitted at the surface and thermodynamic variables is proposed to characterise organized structures in large-eddy simulations of cloud-free and cloudy boundary layers. The sampling is evaluated against more traditional sampling of dry thermals or clouds. It enables the characterization of convective updrafts from the surface to the top of the boundary layer (or the top of cumulus clouds), describing in particular the transition from the sub-cloud to the cloud layer, and retrieves plume characteristics, entrainment and detrainment rates, variances and fluxes. This sampling is used to analyze the contribution of boundary-layer thermals to vertical fluxes and variances.  相似文献   

4.
We used a set of large-eddy simulations to investigate the effect of one-dimensional stripe-like surface heat-flux heterogeneities on mixed-layer top entrainment. The profiles of sensible heat flux and the temporal evolution of the boundary-layer depth revealed decreased entrainment for small heat-flux amplitudes and increased entrainment for large heat-flux amplitudes, compared to the homogeneously-heated mixed layer. For large heat-flux amplitudes the largest entrainment was observed for patch sizes in the order of the boundary-layer depth, while for significantly smaller or larger patch sizes entrainment was similar as in the homogeneous case. In order to understand the underlying physics of this impact, a new approach was developed to infer local information on entrainment by means of the local flux divergence. We found an entrainment maximum over the centre of the stronger heated surface patch, where thermal energy is accumulated by the secondary circulation (SC) that was induced by the surface heterogeneity. Furthermore, we observed an entrainment maximum over the less heated patch as well, which we suppose is to be linked to the SC-induced horizontal flow convergence at the top of the convective boundary layer (CBL). For small heat-flux amplitudes a counteracting effect dominates that decreases entrainment, which we suppose is the horizontal advection of cold air in the lower, and warm air in the upper, CBL by the SC, stabilizing the CBL and thus weakening thermal convection. Moreover, we found that a mean wind can reduce the heterogeneity-induced impact on entrainment. If the flow is aligned perpendicular to the border between the differentially-heated patches, the SC and thus its impact on entrainment vanishes due to increased horizontal mixing, even for moderate wind speeds. However, if the flow is directed parallel to the border between the differentially-heated patches, the SC and thus its impact on entrainment persists.  相似文献   

5.
In the present study, an attempt is made to assess the atmospheric boundary-layer (ABL) depth over an urban area, as derived from different ABL schemes employed by the mesoscale model MM5. Furthermore, the relationship of the mixing height, as depicted by the measurements, to the calculated ABL depth or other features of the ABL structure, is also examined. In particular, the diurnal evolution of ABL depth is examined over the greater Athens area, employing four different ABL schemes plus a modified version, whereby urban features are considered. Measurements for two selected days, when convective conditions prevailed and a strong sea-breeze cell developed, were used for comparison. It was found that the calculated eddy viscosity profile seems to better indicate the mixing height in both cases, where either a deep convective boundary layer develops, or a more confined internal boundary layer is formed. For the urban scheme, the incorporation of both anthropogenic and storage heat release provides promising results for urban applications.  相似文献   

6.
Surface Heterogeneity and Vertical Structure of the Boundary Layer   总被引:4,自引:3,他引:4  
  相似文献   

7.
Mean Profiles of Moisture Fluxes in Snow-Filled Boundary Layers   总被引:1,自引:0,他引:1  
Profiles of moisture fluxes have been examined for convective boundary layers containing clouds and snow, using data derived from aircraft measurements taken on four dates during the 1983/1984 University of Chicago lake-effect snow project. Flux profiles were derived from vertical stacks of aircraft cross-wind flight legs taken at various heights over Lake Michigan near the downwind shore. It was found that, if ice processes are taken into account, profiles of potential temperature and water content were very similar to those presented in past studies of convective boundary layers strongly heated from below. Profiles of total water content and equivalent potential temperature adjusted for ice were nearly invariant with height, except very near the top of the boundary layer, suggesting that internal boundary-layer mixing processes were rapid relative to the rates at which heat and vapour were transported into the boundary layer through entrainment and surface fluxes. Ice was found to play a significant, measurable role in boundary-layer moisture fluxes. It was estimated that 40 to 57% of the upward vapour flux was returned to the surface in the form of snow, converting about 45 to 64% of the surface latent heat flux into sensible heat in the snow-producing process. Assuming advective fluxes are relatively small (thought to be appropriate after the first few tens of km over the lake as suggested by past studies), the boundary layer was found to warm at a rate faster than could be explained by surface heat fluxes and latent heat releases alone, the remainder of the heating presumably coming from radiational processes and entrainment. Discussions of moisture phase change processes throughout the boundary layer and estimates of errors of these flux measurements are presented.  相似文献   

8.
At the top of the planetary boundary layer, the entrainment of air, which incorporates dry and warm air from the free troposphere into the boundary layer, is a key process for exchanges with the free troposphere since it controls the growth of the boundary layer. Here, we focus on the semi-arid boundary layer where the entrainment process is analyzed using aircraft observations collected during the African Monsoon Multidisciplinary Analysis experiment and large-eddy simulations. The role of the entrainment is specifically enhanced in this region where very large gradients at the planetary boundary-layer top can be found due to the presence of the moist, cold monsoon flow on which the dry, warm Harmattan flow is superimposed. A first large-eddy simulation is designed based on aircraft observations of 5 June 2006 during the transition period between dry conditions and the active monsoon phase. The simulation reproduces the boundary-layer development and dynamics observed on this day. From this specific case, sensitivity tests are carried out to cover a range of conditions observed during seven other flights made in the same transition period in order to describe the entrainment processes in detail. The combination of large-eddy simulations and observations allows us to test the parametrization of entrainment in a mixed-layer model with zero-order and first-order approximations for the entrainment zone. The latter representation of the entrainment zone gives a better fit with the conditions encountered in the Sahelian boundary layer during the transition period because large entrainment thicknesses are observed. The sensitivity study also provides an opportunity to highlight the contribution of shear stress and scalar jumps at the top of the boundary layer in the entrainment process, and to test a relevant parametrization published in the recent literature for a mixed-layer model.  相似文献   

9.
High frequency measurements of near-surface meteorological data acquired in north Benin during the 2006 West African monsoon seasonal cycle, in the context of the African Monsoon Multidisciplinary Analysis (AMMA) experiment, offer insight into the characteristics of surface turbulence in relation to planetary boundary-layer (PBL) processes. A wide range of conditions is encountered at the lower and upper limits of the PBL: (i) from water-stressed to well-fed vegetation, and (ii) from small to large humidity and temperature jumps at the PBL top inversion, due to the Saharan air layer overlying the monsoonal flow. As a result, buoyant convection at the surface and entrainment at the PBL top play very different roles according to the considered scalar. We show that, when the boundary-layer height reaches the shear level between the monsoonal and Harmattan flows, the temperature source and humidity sink at the boundary-layer top are sufficient to allow the entrainment to affect the entire boundary layer down to the surface. This situation occurs mainly during the drying and moistening periods of the monsoon cycle and affects the humidity statistics in particular. In this case, the humidity turbulent characteristics at the surface are no longer driven solely by buoyant convection, but also by entrainment at the boundary-layer top. Consequently, the Monin–Obukhov similarity theory appears to fail for the parameterisation of humidity-related moments.  相似文献   

10.
We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane’s ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent −5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.  相似文献   

11.
A simple formulation of the boundary layer is developed for use in large-scale models and other situations where simplicity is required. The formulation is suited for use in models where some resolution is possible within the boundary layer, but where the resolution is insufficient for resolving the detailed boundary-layer structure and overlying capping inversion. Surface fluxes are represented in terms of similarity theory while turbulent diffusivities above the surface layer are formulated in terms of bulk similarity considerations and matching conditions at the top of the surface layer. The boundary-layer depth is expressed in terms of a bulk Richardson number which is modified to include the influence of thermals. Attention is devoted to the interrelationship between predicted boundary-layer growth, the turbulent diffusivity profile, countergradient heat flux and truncation errors.The model predicts growth of the convectively mixed layer reasonably well and is well-behaved in cases of weak surface heat flux and transitions between stable and unstable cases. The evolution of the modelled boundary layer is studied for different ratios of surface evaporation to potential evaporation. Typical variations of surface evaporation result in a much greater variation in boundary-layer depth than that caused by the choice of the boundary-layer depth formulation.  相似文献   

12.
We propose improvements in the “non-local” parameterization scheme of the convective boundary layer. The countergradient terms for components of the momentum fluxes are introduced in a form analogous to those for other scalars. The scheme also includes explicit expressions for entrainment fluxes of momentum, temperature, and humidity. A simplified procedure for calculating the boundary-layer height is proposed, consisting of two steps: the evaluation of the convection level, followed by the assessment of the depth of the interfacial layer.  相似文献   

13.
Mixed-layer depth and entrainment zone thickness areextracted from two large lidar data sets with arecently developed technique. The entrainment fluxratio (which is often used to model entrainment inatmospheric boundary-layer models) can be calculatedfrom these two quantities. This ratio is generallybelieved to be in the range of 0.1 and 0.4. Aqualitative analysis of time series (MERMOZ II dataset) confirms this range of values under equilibriumconditions (afternoon hours), but also shows that itclearly underestimates the importance of entrainmentduring the morning hours when the mixed layer isgrowing most rapidly. An examination of the spatialdistribution of the entrainment flux ratio (Pacific'93 data set) shows that this parameter is spatiallyhighly variable, even during equilibrium hours inthe afternoon. In regions where the boundary layerhas to adjust to new boundary conditions at theground, values much larger than 0.4 can be observed. Although these results can only be interpretedqualitatively, they suggest that currently usedentrainment parameterisations in boundary-layer modelsare not sufficient to capture the entrainment processproperly.  相似文献   

14.
We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depth-equilibrium for different vertical profiles of aerosol heating rates. Our results indicated that aerosol heat absorption decreased the depth of the CBL due to a combination of factors: (i) surface shadowing, reducing the sensible heat flux at the surface and, (ii) the development of a deeper inversion layer, stabilizing the upper CBL depending on the vertical aerosol distribution. Steady-state analytical solutions for CBL depth and potential temperature jump, derived using zero-order mixed-layer theory, agreed well with the large-eddy simulations. An analysis of the entrainment zone heat budget showed that, although the entrainment flux was controlled by the reduction in surface flux, the entrainment zone became deeper and less stably stratified. Therefore, the vertical profile of the aerosol heating rate promoted changes in both the structure and evolution of the CBL. More specifically, when absorbing aerosols were present only at the top of the CBL, we found that stratification at lower levels was the mechanism responsible for a reduction in the vertical velocity and a steeper decay of the turbulent kinetic energy throughout the CBL. The increase in the depth of the inversion layer also modified the potential temperature variance. When aerosols were present we observed that the potential temperature variance became significant already around $0.7z_i$ (where $z_i$ is the CBL height) but less intense at the entrainment zone due to the smoother potential temperature vertical gradient.  相似文献   

15.
For numerical weather prediction models and models resolving deep convection, shallow convective ascents are subgrid processes that are not parameterized by classical local turbulent schemes. The mass flux formulation of convective mixing is now largely accepted as an efficient approach for parameterizing the contribution of larger plumes in convective dry and cloudy boundary layers. We propose a new formulation of the EDMF scheme (for Eddy Diffusivity\Mass Flux) based on a single updraft that improves the representation of dry thermals and shallow convective clouds and conserves a correct representation of stratocumulus in mesoscale models. The definition of entrainment and detrainment in the dry part of the updraft is original, and is specified as proportional to the ratio of buoyancy to vertical velocity. In the cloudy part of the updraft, the classical buoyancy sorting approach is chosen. The main closure of the scheme is based on the mass flux near the surface, which is proportional to the sub-cloud layer convective velocity scale w *. The link with the prognostic grid-scale cloud content and cloud cover and the projection on the non- conservative variables is processed by the cloud scheme. The validation of this new formulation using large-eddy simulations focused on showing the robustness of the scheme to represent three different boundary layer regimes. For dry convective cases, this parameterization enables a correct representation of the countergradient zone where the mass flux part represents the top entrainment (IHOP case). It can also handle the diurnal cycle of boundary-layer cumulus clouds (EUROCS\ARM) and conserve a realistic evolution of stratocumulus (EUROCS\FIRE).  相似文献   

16.
During the last two decades, different scalings for convective boundary layer (CBL) turbulence have been proposed. For the shear-free regime, Deardorff (1970) introduced convective velocity and temperature scales based on the surface potential temperature flux,Q s , the buoyancy parameter, , and the time-dependent boundary-layer depth,h. Wyngaard (1983) has proposed decomposition of turbulence into two components, bottom-up (b) and top-down (t), the former characterized byQ s , the latter, by the potential temperature flux due to entrainment,Q h . Sorbjan (1988) has devised height-dependent velocity and temperature scales for both b- and t-components of turbulence.Incorporating velocity shear, the well known similarity theory of Monin and Obukhov (1954) has been developed for the atmospheric surface layer. Zilitinkevich (1971, 1973) and Betchov and Yaglom (1971) have elaborated this theory with the aid of directional dimensional analysis for a particular case when different statistical moments of turbulence can be alternatively attributed as being of either convective or mechanical origin.In the present paper, we attempt to create a bridge between the two approaches pointed out above. A new scaling is proposed on the basis of, first, decomposition of statistical moments of turbulence into convective (c), mechanical (m) and covariance (c&m) contributions using directional dimensional analysis and, second, decomposition of these contributions into bottom-up and top-down components using height-dependent velocity and temperature scales. In addition to the statistical problem, the scaling suggests a new approach of determination of mean temperature and velocity profiles with the aid of the budget equations for the mean square fluctuations.Notation ATL alternative turbulence layer - CBL convective boundary layer - CML convective and mechanical layer - FCL free convection layer - MTL mechanical turbulence layer  相似文献   

17.
Basic entrainment equations applicable to the sheared convective boundary layer (CBL) are derived by assuming an inversion layer with a finite depth, i.e., the first-order jump model. Large-eddy simulation data are used to determine the constants involved in the parameterizations of the entrainment equations. Based on the integrated turbulent kinetic energy budget from surface to the top of the CBL, the resulting entrainment heat flux normalized by surface heat flux is a function of the inversion layer depth, the velocity jumps across the inversion layer, the friction velocity, and the convection velocity. The developed first-order jump model is tested against large-eddy simulation data of two independent cases with different inversion strengths. In both cases, the model reproduces quite reasonably the evolution of the CBL height, virtual potential temperature, and velocity components in the mixed layer and in the inversion layer.The part of this work was done when the first author visited at NCAR.  相似文献   

18.
For the presentation and analysis of atmospheric boundary-layer (ABL) data, scales are used to non-dimensionalise the observed quantities and independent variables. Usually, the ABL height, surface sensible heat flux and surface scalar flux are used. This works well, so long as the absolute values of the entrainment ratio for both the scalar and temperature are similar. The entrainment ratio for temperature naturally ranges from −0.4 to −0.1. However, the entrainment ratio for passive scalars can vary widely in magnitude and sign. Then the entrainment flux becomes relevant as well. The only customary scalar scale that takes into account both the surface flux and the entrainment flux is the bulk scalar scale, but this scale is not well-behaved for large negative entrainment ratios and for an entrainment ratio equal to −1. We derive a new scalar scale, using previously published large-eddy simulation results for the convective ABL. The scale is derived under the constraint that scaled scalar variance profiles are similar at those heights where the variance producing mechanisms are identical (i.e., either near the entrainment layer or near the surface). The new scale takes into account that scalar variance in the ABL is not only related to the surface flux of that scalar, but to the scalar entrainment flux as well. Furthermore, it takes into account that the production of variance by the entrainment flux is an order of magnitude larger than the production of variance by the surface flux (per unit flux). Other desirable features of the new scale are that it is always positive (which is relevant when scaling standard deviations) and that the scaled variances are always of order 1–10.  相似文献   

19.
A technique for determining the height of the convective atmospheric boundary layer (CBL) with a 915 MHz boundary-layer profiler is discussed. The results are compared with CBL heights determined from radiosonde measurements. The profiler provides continuous CBL height measurements with very good time resolution (30 minutes or less), allowing for detailed understanding of the growth and fluctuations of the CBL. In addition, the profiler provides information about the degree of definition of the CBL top and the thickness of the entrainment zone. The measurements discussed were taken during the Rural Oxidants in the Southern Environment II (ROSE II) experiment.  相似文献   

20.
Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NOx transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O3 at the surface.The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NOx loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号