首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Roughness length for heat over an urban canopy   总被引:1,自引:0,他引:1  
The roughness length for heat zT was evaluated over an urban canopy, using the measured sensible heat flux and radiometric temperature. To overcome thermal heterogeneity in the urban area, the measured radiometric temperature was transformed into the equivalent temperature of an upward longwave radiation flux. The equivalent temperature was found to provide an effective parameterization of the radiometric temperature. The daytime average of the resulting ln(zT/z0) was 10, where z0 is the aerodynamic roughness length. This result generally agrees with previous studies; however, the anthropogenic heat is a large uncertainty, which could cause an error at least 240% in zT.  相似文献   

2.
We present a field investigation over a melting valley glacier on the Tibetan Plateau. In the ablation zone, aerodynamic roughness lengths (z 0M ) vary on the order of 10−4–10−2 m, whose evolution corresponds to three melt phases with distinct surface cover and moisture exchange: snow (sublimation/evaporation), bare ice (deposition/condensation), and ice hummocks (sublimation/evaporation). Bowen-ratio similarity is validated in the stably stratified katabatic winds, which suggests a useful means for data quality check. A roughness sublayer is regarded as irrelevant to the present ablation season, because selected characteristics of scalar turbulence over smooth snow are quite similar to those over hummocky ice. We evaluate three parametrizations of the scalar roughness lengths (z 0T for temperature and z 0q for humidity), viz. key factors for the accurate estimation of sensible heat and latent heat fluxes using the bulk aerodynamic method. The first approach is based on surface-renewal models and has been widely applied in glaciated areas; the second has never received application over an ice/snow surface, despite its validity in (semi-)arid regions; the third, a derivative of the first, is proposed for use specifically over rough ice defined as z 0M > 10−3 m or so. This empirical z 0M threshold value is deemed of general relevance to glaciated areas (e.g. ice sheet/cap and valley/outlet glaciers), above which the first approach gives notably underestimated z 0T,q . The first and the third approaches tend to underestimate and overestimate turbulent heat/moisture exchange, respectively, frequently leading to relative errors higher than 30%. Comparatively, the second approach produces fairly low errors in energy flux estimates both in individual melt phases and over the whole ablation season; it thus emerges as a practically useful choice to parametrize z 0T,q in glaciated areas. Moreover, we find all three candidate parametrizations unable to predict diurnal variations in the excess resistances to humidity transfer, thus encouraging more efforts for improvement.  相似文献   

3.
Vertical profiles of wind speed, temperature and humidity were used to estimate the roughness lengths for momentum (z 0), heat (z H ) and moisture (z Q) over smooth ice and snow surfaces. The profile-measurements were performed in the vicinity of a blue ice field in Queen Maud Land, East Antarctica. The values ofz 0 over ice (3·10–6 m) seem to be the smallest ever obtained over permanent, natural surfaces. The settling of snow on the ice and the loss of momentum at saltating snow particles serve as momentum dissipating processes during snow-drift events, expressed as a strong dependence ofz 0 on u#.The scalar roughness lengths and surface temperature can be evaluated from the temperature and humidity profile measurements if the ratioz H /z Q is specified. This new method circumvents the difficult measurement of surface temperature. The scalar roughness lengths seem to be approximately equal toz0 for a large range of low roughness Reynolds numbers, despite the frequent occurrence of drifting snow. Possible reasons for this agreement with theory of non-saltating flow are discussed.  相似文献   

4.
We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.  相似文献   

5.
Evidence is presented that in the stable atmospheric surface layer turbulent fluxes of heat and momentum can be determined from the standard deviations of longitudinal wind velocity and temperature, σ u and σ T respectively, measured at a single level. An attractive aspect of this method is that it yields fluxes from measurements that can be obtained with two-dimensional sonic anemometers. These instruments are increasingly being used at official weather stations, where they replace the standard cup anemometer–wind vane system. With methods such as the one described in this note, a widespread, good quality, flux network can be established, which would greatly benefit the modelling community. It is shown that a ‘variance’ dimensionless height (ζ σ) defined from σ u and σ T is highly related to the ‘conventional’ dimensionless stability parameter ζ=z/L, where z is height and L is the Obukhov length. Empirical functions for ζ σ are proposed that allow direct calculation of heat and momentum fluxes from σ u and σ T. The method performs fairly well also during a night of intermittent turbulence.  相似文献   

6.
Using the relationship between the bulk Richardson numberR z and the Obukhov stability parameterz/L (L is the Obukhov length), formally obtained from the flux-profile relationships, methods to estimatez/L are discussed. Generally,z/L can not be uniquely solved analytically from flux-profile relationships, and it may be defined using routine observations only by iteration. In this paper, relationships ofz/L in terms ofR z obtained semianalytically were corrected for variable aerodynamic roughnessz 0 and for aerodynamic-to-temperature roughness ratiosz 0/z T, using the flux-profile iteration procedure. Assuming the so-called log-linear profiles to be valid for the nearneutral and moderately stable region (z/L<1), a simple relationship is obtained. For the extension to strong stability, a simple series expansion, based on utilisation of specified universal functions, is derived.For the unstable region, a simple form based on utilisation of the Businger-Dyer type universal functions, is derived. The formulae yield good estimates for surfaces having an aerodynamic roughness of 10–5 to 10–1 m, and an aerodynamic-to-temperature roughness ratio ofz 0/z T=0.5 to 7.3. When applied to the universal functions, the formulae yield transfer coefficients and fluxes which are almost identical with those from the iteration procedure.  相似文献   

7.
The Louis scheme for calculating the vertical eddy fluxes within the atmospheric surface layer is improved by broadening the original assumptions. In our approach, the momentum and heat transfer roughness lengths (z0 and zT respectively) can be different, and z0 need not be negligibly small compared with the lowest height (z) in modelling. For these conditions, we choose more consistent wind and potential temperature profile forms, then derive new algorithms for calculating fluxes. Improvement is demonstrated for a wide range of z/L (L is the Obukhov length), z/z0 and z0 zT, by comparing these fluxes with those derived from a theoretical surface-layer model. The improved algorithms can be used in atmospheric modelling systems for more varied surfaces and a wide range of atmospheric stability.  相似文献   

8.
The Monin–Obukhov similarity theory (MOST) functions fε and fT, of the dissipation rate of turbulent kinetic energy (TKE). ε, and the structure parameter of temperature, CT2, were determined for the stable atmospheric surface layer using data gathered in the context of CASES-99. These data cover a relatively wide stability range, i.e. ζ=z/L of up to 10, where z is the height and L the Obukhov length. The best fits were given by fε = 0.8 + 2.5ζ and fT= 4.7[ 1+1.6(ζ)2/3], which differ somewhat from previously published functions. ε was obtained from spectra of the longitudinal wind velocity using a time series model (ARMA) method instead of the traditional Fourier transform. The neutral limit fε =0.8 implies that there is an imbalance between TKE production and dissipation in the simplified TKE budget equation. Similarly, we found a production-dissipation imbalance for the temperature fluctuation budget equation. Correcting for the production-dissipation imbalance, the ‘standard’ MOST functions for dimensionless wind speed and temperature gradients (φm and φm) were determined from fε and fT and compared with the φm and φh formulations of Businger and others. We found good agreement with the Beljaars and Holtslag [J. Appl. Meteorol. 30, 327–341 (1991)] relations. Lastly, the flux and gradient Richardson numbers are discussed also in terms of fε and fT.  相似文献   

9.
It is frequently observed in field experiments that the eddy covariance heat fluxes are systematically underestimated as compared to the available energy. The flux imbalance problem is investigated using the NCAR’s large-eddy simulation (LES) model imbedded with an online scheme to calculate Reynolds-averaged fluxes. A top–down and a bottom–up tracer are implemented into the LES model to quantify the influence of entrainment and bottom–up diffusion processes on flux imbalance. The results show that the flux imbalance follows a set of universal functions that capture the exponential decreasing dependence on u */w *, where u * and w * are friction velocity and the convective velocity scale, respectively, and an elliptic relationship to z/z i , where z i is the mixing-layer height. The source location in the boundary layer is an important factor controlling the imbalance magnitude and its horizontal and vertical distributions. The flux imbalance of heat and the bottom–up tracer is tightly related to turbulent coherent structures, whereas for the top–down diffusion, such relations are weak to nonexistent. Our results are broadly consistent with previous studies on the flux imbalance problem, suggesting that the published results are robust and are not artefacts of numerical schemes.  相似文献   

10.
In the framework of an international field program for the study of semi-arid areas, observations were done in the region called La Crau in southern France. In this paper, the use of the surface radiative temperature for the determination of the sensible heat flux is addressed. We found that, once proper values of the roughness length of momentum (z 0) and heat (z 0h) are set, the sensible heat flux can be reliably predicted with a one-layer resistance model using standard observations of wind speed and air temperature, together with the surface temperature. The latter quantity has to be known with a precision better than ±2°C. From our observations, the value of the parameterB –1k –1 In (z 0 z 0h) was found to be 9.2, which falls between values quoted by Brutsaert (1982) for grass and bluff bodies.  相似文献   

11.
The roughness length, z 0u , and displacement height, d 0u , characterise the resistance exerted by the roughness elements on turbulent flows and provide a conventional boundary condition for a wide range of turbulent-flow problems. Classical laboratory experiments and theories treat z 0u and d 0u as geometric parameters independent of the characteristics of the flow. In this paper, we demonstrate essential stability dependences—stronger for the roughness length (especially in stable stratification) and weaker but still pronounced for the displacement height. We develop a scaling-analysis model for these dependences and verify it against experimental data.  相似文献   

12.
A numerical model of airflow in the lowest 50–100 m of the atmosphere above changes in surface roughness and temperature or heat flux has been developed based on boundary layer approximations, the Businger-Dyer hypotheses for the non-dimensional wind shear and heat flux and a mixing length hypothesis.Results have been obtained for several situations, in particular, airflow with neutral upstream conditions encountering a step change in surface temperature or heat flux with no roughness change. In these cases large increases in shear stress at the outer edge of the internal boundary layer are predicted. The case of unstable upstream flow encountering a step change to zero heat flux is also considered.Two situations that may be encountered near the shores of the Great Lakes are considered.Notation B Businger-Dyer constant (= 16.0) in form for M, H - c p Specific heat at constant pressure - g Acceleration due to gravity - H Upward vertical heat flux - H 0 , H 1 Surface heat fluxes for x < 0, x 0 - k von Kármán's constant ( = 0.4) - l Mixing length - L Monin-Obukhov length - L 0 Upstream value of L - m Ratio of roughness lengths (= z 1/z 0) - RL * Non-dimensional parameter, see Equations (20, 22 and 24) - RL 1 * Same as RL * but with z 1 scaling (= mRL *) - T Scaled temperature - T 0 (z) Upstream temperature profile - u 0, u 1(x) Surface friction velocities for x < 0, x 0 - U, W Horizontal and vertical mean velocities - U 0 (z) Upstream velocity profile - x, z Horizontal and vertical coordinates - z i Local roughness length  相似文献   

13.
A differential equation is obtained to describe the concentration of passive admixtures (water vapor, sensible heat, pollutants, CO2, etc.) of turbulent flow inside a dense and uniform vegetational canopy. The profiles of eddy diffusivity, wind speed and shear stress are assumed to be exponential decay functions of depth below the top of the canopy. This equation is solved for the case of a vegetation with constant concentration of the admixture at the foliage surfaces. The solution is used to formulate bulk mass or heat transfer coefficients, which can be applied to practical problems involving surfaces covered with a vegetation or with similar porous or fibrous roughness elements. The results are shown to be consistent with experimental data presented by Chamberlain (1966), Garratt and Hicks (1973) and Garratt (1978). Calculations with the model illustrate that, as compared to its behavior over surfaces with bluff roughness elements, ln(z 0/z 0c ) (wherez 0 is the momentum roughness andz 0c , the scalar roughness) for permeable roughness elements is relatively insensitive tou * and practically independent ofz 0.  相似文献   

14.
A large-eddy simulation (LES) model, using the one-equation subgrid-scale (SGS) parametrization, was developed to study the flow and pollutant transport in and above urban street canyons. Three identical two-dimensional (2D) street canyons of unity aspect ratio, each consisting of a ground-level area source of constant pollutant concentration, are evenly aligned in a cross-flow in the streamwise direction x. The flow falls into the skimming flow regime. A larger computational domain is adopted to accurately resolve the turbulence above roof level and its influence on the flow characteristics in the street canyons. The LES calculated statistics of wind and pollutant transports agree well with other field, laboratory and modelling results available in the literature. The maximum wind velocity standard deviations σ i in the streamwise (σ u ), spanwise (σ v ) and vertical (σ w ) directions are located near the roof-level windward corners. Moreover, a second σ w peak is found at z ≈ 1.5h (h is the building height) over the street canyons. Normalizing σ i by the local friction velocity u *, it is found that σ u /u * ≈ 1.8, σ v /u * ≈ 1.3 and σ w /u * ≈ 1.25 exhibiting rather uniform values in the urban roughness sublayer. Quadrant analysis of the vertical momentum flux u′′w′′ shows that, while the inward and outward interactions are small, the sweeps and ejections dominate the momentum transport over the street canyons. In the x direction, the two-point correlations of velocity R v,x and R w,x drop to zero at a separation larger than h but R u,x (= 0.2) persists even at a separation of half the domain size. Partitioning the convective transfer coefficient Ω T of pollutant into its removal and re-entry components, an increasing pollutant re-entrainment from 26.3 to 43.3% in the x direction is revealed, suggesting the impact of background pollutant on the air quality in street canyons.  相似文献   

15.
The solution of the planetary boundary-layer equations by finite-difference methods has recently become very popular. Among recent papers using such methods, several use somewhat arbitrary finite-difference meshes and some do not make use of a constant flux or wall layer near the ground. It is shown that the use of finite differences right down to the ground can be a very inaccurate procedure when used in conjunction with an eddy viscosity or mixing length proportional to (z +z 0) orz near the ground. Such an approach can lead to results that are highly dependent on the finite-difference scheme used and virtually independent of the roughness length,z 0. A scheme using an expanding grid, based on the form chosen for mixing length or eddy viscosity, is proposed which gives good results with or without a surface layer in the case of a neutrally stratified atmosphere.  相似文献   

16.
The spatial variability of both turbulent flow statistics in the roughness sublayer (RSL) and temperature profiles within and above the canopy layer (CL) were investigated experimentally in a densely built-up residential area in Tokyo, Japan. Using five towers with measuring devices, each tower isolated from the others by at least 200 m, we collected high-frequency measurements of velocity and temperature at a height z=1.8 z H, where z H, the mean building height in the area, is 7.3 m. Also, temperature profiles were measured from z=0.4 to 1.8 z H. The ‘areal mean’ geometric parameters that were obtained for the areas within 200 m of each tower were fairly homogeneous among the tower sites. The main results are as follows: (1) The spatial variability of all RSL turbulent statistics, except the sensible heat flux, was comparable to that reported in a pine forest. Also, the variability decreased with increasing friction velocity. (2) The spatial variability of the RSL sensible heat flux was larger than that reported in a pine forest. Also, the variability depended on the time of the day and became larger in the morning. The difference among the sites was well related to the areal fraction of vegetation. (3) The spatial variability of the CL temperature profile depended on the time of the day and became larger in the morning. Nevertheless, the spatial standard deviation of CL temperature was always below 0.7 K. (4) It is suggested that the “warming-up” process in the morning when heat storage is dominant increases the spatial variation of RSL sensible heat flux and CL temperature according to the local properties around each tower and the variation decreases once there is further convective mixing in the midday  相似文献   

17.
This paper proposes a numerical technique based on the least-square error method for evaluating fluxes and other surface-layer parameters. The special feature of this method is that it requires no a-priori knowledge of either the temperature profile or the roughness length z 0. The accuracy of the method has been tested on both the Kansas and the Wangara experimental data. Results obtained compared favourably with those from direct measurements as well as from other studies using conventional approaches.  相似文献   

18.
Modification of a turbulent flow upstream of a change in surface roughness has been studied by means of a stream function-vorticity model.A flow reduction is found upstream of a step change in surface roughness when a fluid flows from a smooth onto a rough surface. Above that layer and above the region of flow reduction downstream of a smooth-rough transition, a flow acceleration is observed. Similar flow modification can be seen at a rough-smooth transition with the exception that flow reduction and flow acceleration are reversed. Within a fetch of –500 < x/z 0< + 500 (z 0 is the maximum roughness length, the roughness transition is located at x/z 0 = 0), flow reduction (flow acceleration) upstream of a roughness transition is one order of magnitude smaller than the flow reduction (flow acceleration) downstream of a smooth-rough (rough-smooth) transition. The flow acceleration (flow reduction) above that layer is two orders of magnitude.The internal boundary layer (IBL) for horizontal mean velocity extends to roughly 300z 0 upstream of a roughness transition, whereas the IBL for turbulent shear stress as well as the distortion of flow equilibrium extend almost twice as far. For the friction velocity, an undershooting (overshooting) with respect to upstream equilibrium is predicted which precedes overshooting (undershooting) over new equilibrium just behind a roughness transition.The flow modification over a finite fetch of modified roughness is weaker than over a corresponding fetch downstream of a single step change in roughness and the flow stays closer to upstream equilibrium. Even in front of the first roughness change of a finite fetch of modified roughness, a distortion of flow equilibrium due to the second, downwind roughness change can be observed.  相似文献   

19.
To understand the response of the Greenland ice sheet to climate change the so-called ablation zone is of particular importance, since it accommodates the yearly net surface ice loss. In numerical models and for data analysis, the bulk aerodynamic method is often used to calculate the turbulent surface fluxes, for which the aerodynamic roughness length (z 0) is a key parameter. We present, for the first time, spatial and temporal variations of z 0 in the ablation area of the Greenland ice sheet using year-round data from three automatic weather stations and one eddy-correlation mast. The temporal variation of z 0 is found to be very high in the lower ablation area (factor 500) with, at the end of the summer melt, a maximum in spatial variation for the whole ablation area of a factor 1000. The variation in time matches the onset of the accumulation and ablation season as recovered by sonic height rangers. During winter, snow accumulation and redistribution by snow drift lead to a uniform value of z 0≈ 10−4 m throughout the ablation area. At the beginning of summer, snow melt uncovers ice hummocks and z 0 quickly increases well above 10−2 m in the lower ablation area. At the end of summer melt, hummocky ice dominates the surface with z 0 > 5  ×  10−3 m up to 60 km from the ice edge. At the same time, the area close to the equilibrium line (about 90 km from the ice edge) remains very smooth with z 0 = 10−5 m. At the beginning of winter, we observed that single snow events have the potential to lower z 0 for a very rough ice surface by a factor of 20 to 50. The total surface drag of the abundant small-scale ice hummocks apparently dominates over the less frequent large domes and deep gullies. The latter results are verified by studying the individual drag contributions of hummocks and domes with a drag partition model.  相似文献   

20.
Mean wind velocity profiles were measured by means of radio-windsondes over the Landes region in southwestern France, which consists primarily of pine forests with scattered villages and clearings with various crops. Analysis of neutral profiles indicated the existence of a logarithmic layer between approximately zd 0 = 67(±18)z 0 and 128(+-32)z 0 (z is the height above the ground, z 0 the surface roughness and d 0 the displacement height). The upper limit can also be given as zd 0 = 0.33 (±0.18)h, where h is the height of the bottom of the inversion. The profiles showed that the surface roughness of this terrain is around 1.2 m and the displacement height 6.0 m. Shear stresses derived from the profiles were in good agreement with those obtained just above the forest canopy at a nearby location with the eddy correlation method by a team from the Institute of Hydrology (Wallingford, England).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号