首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
三维完全非线性波浪水槽的数值模拟   总被引:7,自引:0,他引:7  
用有限元求解拉普拉斯方程,建立了三维完全非线性数值波浪水槽.跟踪流体自由表面的方法为满足完全非线性自由表面条件的半拉格朗日法,对离散单元采用20节点的六面体二次等参数单元.并把数值计算结果与水面初始升高产生箱体内流体运动解析解和二阶斯托克斯波理论解进行了对比,结果表明该模型是稳定的、守恒的,能精确模拟非线性波浪的产生和传播.  相似文献   

2.
任意曲线边界条件下缓变水深水域波浪传播的数值模拟   总被引:3,自引:0,他引:3  
缓坡方程被广泛地应用于描述波浪的传播变形计算,目前一般采用矩形网格求解.将计算域剖分为任意四边形网格,以格林公式为基础,在变量沿单元边界线性变化的假定下,对双曲型的波能守恒方程、波数矢无旋性方程进行离散,同时通过等参单元变换推求节点偏导数值以离散椭圆型光程函数方程,从而建立了任意曲线边界条件下缓变水深水域波浪传播的数值模拟模型.将模型应用于平行直线型等深线地形,并将计算域剖分为不规则四边形网格,对不同入射角、底坡、波高等多种组合情况比较了数值解与解析解,结果表明两者一致.应用于复杂边界的实例,数值模拟结果与物模实验值基本吻合.  相似文献   

3.
在三维海洋模式POM基础上建立水质模型,采用中心差分格式、迎风格式以及Smolarkiewicz迎风格式离散物质输运方程.以三维理想水槽中连续源排放的浓度场预测为例,分析3种离散格式求解所得的浓度场.结果表明,3种格式的数值解与解析解的偏差均小于20%.中心差分格式会引起解的震荡,导致物质的反向输移,出现浓度负值.迎风格式能够保证浓度的正值,但该格式带来的数值耗散导致数值解与解析解偏离较大.Smolarkiewicz迎风格式在普通迎风格式基础上引入抗扩散流速,经多次叠代,能有效降低计算中的数值耗散,提高了计算精度.  相似文献   

4.
非结构化网格下椭圆型缓坡方程的数值求解   总被引:4,自引:4,他引:0  
魏美芳  唐军  沈永明 《海洋学报》2009,31(2):159-164
椭圆型缓坡方程是一种用线性波浪理论研究近岸波浪传播变形的有效波浪数学模型。非结构化网格下的有限容积法不仅对复杂边界的适应性好,还能保证迭代求解过程的守恒性。建立了非结构化网格下的椭圆型缓坡方程数值模型。在模型中采用非结构化网格下的有限容积法对椭圆型缓坡方程进行了数值离散,结合GPBiCG(m,n)算法求解离散方程。数值计算结果表明,该数值模型可有效地用于模拟近岸缓坡区域复杂边界下波浪的传播。  相似文献   

5.
本文讨论了变系数KdV方程的一种求解方法及其理论应用。首先利用解析解给出初值条件,其次通过龙格库塔法结合显格式差分法对方程进行离散,并运用MATLAB软件编程求出方程的数值解。为了更好地体现孤立波的特性,本文选取了不同的初始波形,以研究孤立波的极性转换、线性化及频散产生尾波等典型情形,并将此理论用于实际海洋的孤立波分析中,以便更简洁直观地了解内孤立波的特性。  相似文献   

6.
研究并行算法解决应用并行计算机完成规模尽可能大的偏微分方程的数值求解问题。利用Hopf-Cole变换,将一维非线性Burgers方程转化为线性扩散方程,基于第二类Saul’yev型非对称格式和Crank-Nicolson格式对扩散方程进行差分离散,建立解Burgers方程的交替分段并行差分格式,并讨论该方法的稳定性,给出了数值算例。此算法把剖分节点分成若干组,在每组上构造能够独立求解的差分方程,因此具有并行本性,适合在高性能多处理器的并行计算机上使用。数值试验的结果表明此方法是有效的,且有较高的精度。  相似文献   

7.
本文提出了一种基于图卷积神经网络的偏微分方程空间离散化数值求解加速方法,并将该方法应用于求解一维平流方程的研究中,实现了一维平流方程的加速求解。并设计了基于图卷积的一维平流方程空间离散化神经网络模型(GCPNN),其在物理先验知识指导下基于图模型利用空间图结构特征进行一维平流方程空间离散化求解加速方案建模,在构建图结构关系过程中,基于物理先验知识建立邻接矩阵,利用邻接矩阵融合了全局信息,从而实现了一维平流方程的加速求解。并且通过设计对比实验和消融实验验证了基于GCPNN的求解器相较于基线求解器和CNN求解器在求解精度和计算成本方面的优势,且验证了加入物理先验知识指导及全局信息融合的有效性。  相似文献   

8.
四叉树网格下的椭圆型缓坡方程数值模型研究   总被引:1,自引:1,他引:0  
唐军  李巧生  沈永明 《海洋学报》2013,35(5):162-168
波浪是近岸海域关键的水动力因素之一。考虑到近岸地形复杂、波浪演化显著的特点,建立了四叉树网格体系下的椭圆型缓坡方程数值模型,采用有限体积法对模型进行数值离散,应用GPBiCG(m, n)算法求解离散后的控制方程。模型中根据波浪波长布局计算网格,生成多层次四叉树网格,对复杂计算域有较好的适应性,并且在离散和方程求解中无需引入形函数、不产生复杂的交叉项,节约了存储空间和计算时间。将模型成功应用于物理模型实验及Acapulco海湾的波浪场数值模拟,结果表明该模型能够准确、高效地模拟近岸波浪场,可为近岸波浪场的模拟提供一定的理论和技术支持。  相似文献   

9.
在Liu和Fang推导的双层Boussinesq方程基础上,将其简化为一层水波方程,并建立了基于混合4阶Adams-Bashforth-Moulton时间格式的立面二维数值模型;数值模拟了波浪在潜堤上的演化过程,并将数值计算结果与相关实验结果进行了对比,验证了该数值模型的正确性。进而在不同的入射波条件下,将沿着水深分布的水平速度和垂向速度的数值模拟结果与线性、二阶、三阶解析解解析结果进行综合对比。对比结果表明,在不同的无因次水深kh条件下,数值解与解析解的整体吻合程度较好。在不同的波陡H/L条件下,数值解展现了较好的非线性特征。在不同的波高水深比H/h条件下,数值解与解析解之间的整体差异较小。可以看到,该数值模型较好地模拟了波浪垂向速度场分布,体现了其优良的综合性能。  相似文献   

10.
建立基于四阶完全非线性Boussinesq水波方程的二维波浪传播数值模型。采用Kennedy等提出的涡粘方法模拟波浪破碎。在矩形网格上对控制方程进行离散,采用高精度的数值格式对离散方程进行数值求解。对规则波在具有三维特征地形上的传播过程进行了数值模拟,通过数值模拟结果与实验结果的对比,对所建立的波浪传播模型进行了验证。同时,为了考察非线性对波浪传播的影响,给出和上述模型具有同阶色散性、变浅作用性能但仅具有二阶完全非线性特征的波浪模型的数值结果。通过对比两个模型的数值结果以及实验数据,讨论非线性在波浪传播过程中的作用。研究结果表明,所建立的Boussinesq水波方程在深水范围内不但具有较精确的色散性和变浅作用性能,而且具有四阶完全非线性特征,适合模拟波浪在近岸水域的非线性运动。  相似文献   

11.
利用海底粘滞性条件,首先导出了海底摩擦与海面坡度之间的简单关系式,在此基础上导出了水平流通量与海面坡度的关系式。然后利用连续性方程进一步得到了海面升高即潮位所满足的二阶椭圆型方程,进而导出了以潮位形式给出的半封闭海区岸壁不可穿透条件。最终在给定半封闭海区开边界水位分布的条件下构建了完整的关于潮位分布函数的微分方程边值问题。初步讨论表明,海底摩擦矢量与水平流通量矢量并不在相反的方向上。  相似文献   

12.
For settlement of the well-known problem of contemporary radar imaging models,i.e.,the pmblem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal watels at at high radar frequency bands(X-band and C-band),the impact of the ocean surface mixed layer turbulence and the significance of strat-ified oceanic model on SAR remote sensing of internal solitary waves are proposed.In the north of the South China Sea by utilizing seme observed data of background field the nonlinearity coefficient,the dispersion coefficient,the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately.Through simulations of internal tide transfor-mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of intereal wave field are obtained.The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m,but the maximum current speeds take place at depth 20 m in this area of the sea(about 20°30'N,114°E)in August.It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation.The obtained results provide the possibility for the simulation of SAR signatures of inter-nal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

13.
For settlement of the well-known problem of contemporary radar imaging models, i. e. , the problem of a general underestimation of radar signatures of hydrodynamic features over oceanic internal waves and underwater bottom topography in tidal waters at high radar frequency bands ( X-band and C-band), the impact of the ocean surface mixed layer turbulence and the significance of strat- ified oceanic model on SAR remote sensing of internal solitary waves are proposed. In the north of the South China Sea by utilizing some observed data of background field the nonlinearity coefficient, the dispersion coefficient, the horizontal variability coefficient and the phase speed in the generalized K-dV equation are determined approximately. Through simulations of internal tide transfor- mation the temporal evolution and spatial distribution of the vertical displacement and horizontal velocity of internal wave field are obtained. The simulation results indicate that the maximum amplitudes of internal solitary waves occur at depth 35 m, but the maximum current speeds take place at depth 20 m in this area of the sea (about 20°30'N, 114°E) in August. It was noticed that considering the effects of flood current and ebb current respectively is appropriate to investigate influence of the background shear flow on coefficients of the K-dV equation. The obtained results provide the possibility for the simulation of SAR signatures of internal solitary waves under considering the impact of ocean surface mixed layer turbulence in the companion paper.  相似文献   

14.
A coupling model for calculating wind-driven currents and waves in a shallow basin with allowance for current-wave interactions is introduced. The model is constructed on the basis of the three-dimensional σ-coordinate model of currents [3] and the SWAN (Simulating Waves Nearshore) spectral wave model [4]. The effect of waves on currents is taken into account in the coefficients of surface and bottom friction through roughness parameters. Results of combined modeling of stationary fields of currents and waves generated by spatially homogeneous wind are correlated with the corresponding results of separate modeling for a cylindrical basin of constant depth and the water area of Lake Donuzlav (the northwestern coast of the Crimea). The allowance for the effect of waves during calculation of tangential wind stresses in the model of currents is shown to be among major factors intensifying water circulation and forming spatial inhomogeneities of the vortex type. In addition, some cases of local decreases in tangential wind stresses are revealed; they appear when the lake is penetrated from the side of the open sea by relatively long waves, which significantly decrease the roughness of the water surface.  相似文献   

15.
Kumar  Prashant  Priya  Prachi  Rajni 《中国海洋工程》2021,35(5):662-675

A mathematical model has been developed to analyze the influence of extreme water waves over multiconnected regions in Visakhapatnam Port, India by considering an average water depth in each multiconnected regions. In addition, partial reflection of incident waves on coastal boundary is also considered. The domain of interest is divided mainly into two regions, i.e., open sea region and harbor region namely as Region-I and Region-II, respectively. Further, Region-II is divided into multiple connected regions. The 2-D boundary element method (BEM) including the Chebyshev point discretization is utilized to solve the Helmholtz equation in each region separately to determine the wave amplification. The numerical convergence is performed to obtain the optimum numerical accuracy and the validation of the current numerical approach is also conducted by comparing the simulation results with existing studies. The four key spots based on the moored ship locations in Visakhapatnam Port are identified to perform the numerical simulation. The wave amplification at these locations is estimated for monochromatic incident waves, considering approximate water depth and different reflection coefficients on the wall of port under the resonance conditions. In addition, wave field analysis inside the Visakhapatnam Port is also conducted to understand resonance conditions. The current numerical model provides an efficient tool to analyze the amplification on any realistic ports or harbors.

  相似文献   

16.
Based on the full water-wave equation,a second-order analytic solution for nonlinear interaction of short edge waves on a plane sloping bottom is presented in this paper.For special case of slope angle β=π/2,this solution can reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline.Interactions between two edge waves including progressive,standing and partially reflected standing waves are also discussed.The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves are also given.The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated,and the corresponding theoretical autocorrelation and spectral density functions of the first and the second orders are derived.The boundary conditions for the determination of the parameters of short edge wave are suggested,that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory.Finally some computation results are demonstrated.  相似文献   

17.
Based on the full water-wave equation, a second-order analytic solution for nonlinear interaction of short edge waves on a constant plane sloping bottom is presented in this paper. For special case of slope angle b=p/2, this solution can be reduced to the same order solution of deep water gravity surface waves traveling along parallel coastline. Interactions between two edge waves including progressive, standing and partially reflected standing waves were also discussed. The unified analytic expressions with transfer functions for kinematic-dynamic elements of edge waves were also discussed. The random model of the unified wave motion processes for linear and nonlinear irregular edge waves is formulated, and the corresponding theoretical autocorrelation and spectral density functions of the first and second orders are derived. The boundary conditions for the determining determination of the parameters of short edge wave are suggested, that may be seen as one special simple edge wave excitation mechanism and an extension to the sea wave refraction theory. Finally some computation results are demonstrated.  相似文献   

18.
In order to predict the roll motion of a floating structure in irregular waves accurately, it is crucial to estimate the unknown damping coefficients and restoring moment coefficients in the nonlinear roll motion equation. In this paper, a parameter identification method based on a combination of random decrement technique and support vector regression (SVR) is proposed to identify the coefficients in the roll motion equation of a floating structure by using the measured roll response in irregular waves. Case studies based on the simulation data and model test data respectively are designed to validate the applicability and validity of the identification method. Firstly, the roll motion of a vessel is simulated by using the known coefficients from literature, and the simulated data are used to identify the coefficients in the roll motion equation. The identified coefficients are compared with the known values to validate the applicability of the identification method. Then the roll motion is predicted by using the identified coefficients. The prediction results are compared with the simulated data, and good agreement is achieved. Secondly, the model test data of a FPSO are used to identify the coefficients in the roll motion equation. Then the random decrement signature of the roll motion is predicted by using the identified coefficients and compared with that obtained from the model test data, and satisfactory agreement is achieved. From this study, it is shown that the identification method can be effectively applied to identify the coefficients in the nonlinear roll motion equation in irregular waves.  相似文献   

19.
A Boussinesq model for simulating wave and current interaction   总被引:1,自引:0,他引:1  
A new formulation of a pair of Boussinesq equations for three-dimensional nonlinear dispersive shallow-water waves is presented. This set of model equations permits spatial and temporal variations of the bottom topography and the presence of uniform currents. The newly derived equations are used to simulate the propagation of cnoidal waves and their interactions with a uniform current in a wave channel. The modified Euler's predictor-corrector algorithm for time advancing and a central difference representation for the space derivatives are applied to the computation of the basic equations. A set of open boundary conditions is developed to effectively transmit the cnoidal waves out of the computational domain. It is found that, as expected, the wave length decreases with an opposing current and increases with a following current. The wave height increases in magnitude with an opposing current and decreases with a following current. The Mach reflection due to oblique cnoidal waves propagating into an open channel with an opposing current is also investigated. Due to the opposing current, the wave patterns are compressed into smaller saddle-like regions in comparison with the Mach reflection without current effect.  相似文献   

20.
A coupled-mode model is developed for treating the wave–current–seabed interaction problem, with application to wave scattering by non-homogeneous, steady current over general bottom topography. The vertical distribution of the scattered wave potential is represented by a series of local vertical modes containing the propagating mode and all evanescent modes, plus additional terms accounting for the satisfaction of the free-surface and bottom boundary conditions. Using the above representation, in conjunction with unconstrained variational principle, an improved coupled system of differential equations on the horizontal plane, with respect to the modal amplitudes, is derived. In the case of small-amplitude waves, a linearised version of the above coupled-mode system is obtained, generalizing previous results by Athanassoulis and Belibassakis [J Fluid Mech 1999;389:275–301] for the propagation of small-amplitude water waves over variable bathymetry regions. Keeping only the propagating mode in the vertical expansion of the wave potential, the present system reduces to an one-equation model, that is shown to be compatible with mild-slope model concerning wave–current interaction over slowly varying topography, and in the case of no current it exactly reduces to the modified mild-slope equation. The present coupled-mode system is discretized on the horizontal plane by using second-order finite differences and numerically solved by iterations. Results are presented for various representative test cases demonstrating the usefulness of the model, as well as the importance of the first evanescent modes and the additional sloping-bottom mode when the bottom slope is not negligible. The analytical structure of the present model facilitates its extension to fully non-linear waves, and to wave scattering by currents with more general structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号