首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present meterwave maps showing a coronal hole at 30.9, 50.0, and 73.8 MHz using the Clark Lake Radioheliograph in October 1984. The coronal hole seen against the disk at all three frequencies shows interesting similarities to, and significant differences from its optical signatures in He i l10830 spectroheliograms.Using the model of coronal holes by Dulk et al. (1977) we derive the electron density from the radio observations of the brightness temperature. The discrepancy between the density value derived from the Skylab EUV data and that computed from our radio data is even larger than in Dulk et al. 's comparison at similar and higher frequencies.  相似文献   

2.
A large long-lived soft X-ray emitting arch system was observed during the last Skylab mission. This arcade stayed in the same approximate position for several solar rotations. We suggest that these long-lived arches owe their stability to the stable coronal magnetic-field configuration. A global constant force-free magnetic field analysis, as developed by Nakagawaet al. (1977), is used to describe the arches, and results in a marked resemblance between the theoretical magnetic-field configuration and the observed X-ray emitting feature.  相似文献   

3.
The paper presents the results obtained from the UV-spectrometer of the Solar Spectrum Experiment during the Spacelab 1 mission in December 1983. The irradiance data concern 492 passbands, which are located between 200 and 358 nm at almost equidistant wavelengths separated by about 0.3 nm. The passbands have a well-defined, bell-shaped profile with a full width at half maximum of about 1.3 nm. The data, which have an error budget between 4 and 5%, agree closely with the spectral distributions observed by Heath (1980) and Mentall et al. (1981) and confirm that the solar irradiance and the fluxes of Sun-like stars show about the same spectral distribution down to at least 240 nm.  相似文献   

4.
J. D. Bohlin 《Solar physics》1977,51(2):377-398
The disk boundaries of coronal holes have been systematically determined from XUV observations taken during the manned Skylab missions (June 1973–January 1974). The resulting Atlas was used to find the sizes, global distributions, differential rotation rates, growth/decay rates and lifetimes of holes during this period. The polar cap holes together covered 15% of the Sun's total surface area, a number which remained surprisingly constant throughout Skylab despite the fact that each pole was independently evolving in time. Lower latitude holes contributed another 2 to 5%. The anomalous differential rotation law derived for a large north-south hole by Timothy et al. (1975) has been confirmed. However, other Skylab holes were too low in latitude to demonstrate the generality of this result. The average growth/decay rate for holes was 1.5 × 104 km2 s-1, in excellent agreement with the value used by Leighton (1964) for his successful treatment of the surface transport of solar magnetic fields. The lifetimes of lower-latitude holes are found to regularly exceed 5 solar rotations, in good agreement with the lifetimes of recurrent geomagnetic storms with which holes are now known to be associated.  相似文献   

5.
G. R. Isaak 《Solar physics》1983,82(1-2):235-235
The size of the rotational splitting recently observed (Claverie et al., 1981) is correlated with the 12.2d variation in the measurements of solar oblateness observed by Dicke (1976) and implies a convection zone of depth of 0.1 R . The near equality of amplitudes of global velocity oscillations (Claverie et al., 1981) of the various m components of the l = 1 and l = 2 modes as seen from the Earth viewing the Sun nearly along the equator is unexpected for pure rotational splitting. It is suggested that a magnetic perturbation is present and an oblique asymmetric magnetic rotator with magnetic fields of a few million gauss is responsible. A more detailed account was submitted to Nature.Proceedings of the 66th IAU Colloquium: Problems in Solar and Stellar Oscillations, held at the Crimean Astrophysical Observatory, U.S.S.R., 1–5 September, 1981.  相似文献   

6.
High resolution observations of interstellar Na Iabsorptions in the spectra of early-type stars in the second Galacticquadrant have been used to derive the spatial distribution of thenearby interstellar gas in the Galactic anticentre hemisphere. The datashow the presence, within the region explored and within the nearest150 pc, of eight diffuse interstellar clouds with LSR velocities in therange 15–55 km s-1. Molecular gas previously identified close tothe Sun by Trapero et al. (1995) and Trapero et al. (1996) is embeddedin one of the clouds. The motion of these clouds does not reflect anymotion of the gas away from the Scorpio-Centaurus association, showingthat the kinematics observed in the neighbourhood of the Sun byLallement and Bertin (1992) is restricted, in the second Galactic quadrant,to the nearest 50 pc.  相似文献   

7.
We have observed C2H2 and HCN rovibrational transitions near 13µm in absorption against GL2591. We also have observed rotational transitions at 0.6-3 mm of CS, HCN, H2CO, and HCO+. Analysis of the rotational lines, which arise in the extended cloud around the source, shows that no single density model can explain all the data. Models with density and temperature gradients do much better; in particular models withn(r) r –1.5 can reproduce the observed pattern of emission line strengths. The abundances show significant depletion compared to models of gas-phase chemistry. The rovibrational data were analyzed in comparison to the absorption line analysis of CO by Mitchellet al. (1989). Our data are consistent with the C2H2 and HCN absorption arising in the same warm (200 K) and hot (1010 K) components seen in CO, but we see little evidence for the cold (38 K) component seen in CO. The rovibrational lines from higher states (J 21) indicate that the hot HCN deviates from LTE, leading to a density of about 3 × 107 cm–3. Comparison of the two data sets shows that the rovibrational absorption of HCN, rather than arising in the extended envelope, must come from a region with a small angular extent. A model in which early-time gas phase abundances are preserved on grain mantles and released at high temperature can explain the data.  相似文献   

8.
In order to place empirical constraints on possible plasma heating processes and acceleration mechanisms for mass flows in polar plumes, we studied the variability of the O vi and Mgx emissions from four plumes observed by the Harvard Skylab experiment. The observations consist of a 40 min sequence of spectroheliograms acquired with ~2 min temporal resolution. We found that the Mgx emission from each plume had a strong ‘dc’ component and that any variations, if present, occurred at approximately the 10% (of the mean) level or less. This implies that temporal variations in the density and/or temperature were 5% or less. There were some statistically significant variations in the measured Mgx signals. Two of the plumes decreased in brightness by approximately 10% during the 40 min period of the observations. In addition two plumes exhibited short-term (few minute) variations which appear to be statistically significant at a confidence level of >90%. The latter variations (if real) appear to be due to small (~2 × 104 K) fluctuations in temperature caused by fluctuations in the local plasma heating rate.  相似文献   

9.
The low l solar acoustic spectrum has been measured with great accuracy (v/v 10–4), for intermediate radial order modes, 11 n 34 (Jiménez et al., 1986; Grec, Fossat, and Pomerantz, 1983; Pallé et al., 1986). The measurement of the frequencies of modes of lower n, up to the fundamental one, are very important as they depart from asymptotic behaviour and, therefore, put more severe constraints on solar models. However, their amplitudes are very low (under 2 cm s–1) and when compared to the solar velocity background noise (Jiménez et al., 1986), a S/N 1 is obtained. Taking advantage of the fact that lifetimes seem to be higher at lower frequencies (lower n values) (Jefferies et al., 1988; Elsworth et al., 1990), very long Doppler velocity measurements, obtained at Teide Observatory, have been used to increase S/N, therefore, providing the possibility to detect such modes. The frequencies observed are compared to those predicted by a solar model (Christensen-Dalsgaard, Däppen, and Lebreton, 1988), using the best equation of state yet computed (Mihalas, Däppen, and Hummer, 1988).  相似文献   

10.
Extreme ultraviolet observations of coronal holes   总被引:2,自引:0,他引:2  
Extreme-ultraviolet Skylab and ground-based solar magnetic field data have been combined to study the origin and evolution of coronal holes. It is shown that holes exist only within the large-scale unipolar magnetic cells into which the solar surface is divided at any given time. A well-defined boundary zone usually exists between the edge of a hole and the neutral line which marks the edge of its magnetic cell. This boundary zone is the region across which a cell is connected by magnetic arcades with adjacent cells of opposite polarity. Three pieces of observational evidence are offered to support the hypothesis that the magnetic lines of force from a hole are open. Kitt Peak magnetograms are used to show that, at least on a relative scale, the average field strengths within holes are quite variable, but indistinguishable from the field strengths in other quiet parts of the Sun's surface.Finally it is shown that the large, equatorial holes characteristic of the declining phase of the last solar cycle during Skylab (1973–74) were all formed as a result of the mergence of bipolar magnetic regions (BMR's), confirming an earlier hypothesis by Timothy et al. (1975). Systematic application of this model to the different aspects of the solar cycle correctly predicts the occurrence of both large, equatorial coronal holes (the M-regions which cause recurrent geomagnetic storms) and the polar cap holes.  相似文献   

11.
The First Spacelab mission, launched on Space ShuttleFlight STS-9 in November 1983 carried a multidisciplinary payload which was intended to demonstrate that valuable scientific results can be achieved from such short duration missions. The payload complement included a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment were the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 up to 30 keV. The instrument based on the gas scintillation proportional counter had an effective area of some 180 cm2 with an energy resolution of 9% at 7 keV.The instrument parameters and the performance, using data from the flight and ground calibration, are discussed.  相似文献   

12.
Skylab soft X-ray observations of two lower coronal limb events and corresponding H observations (Skylab and ground-based) are analyzed. We discuss the morphology and evolution of an eruptive prominence occurring on 21 August 1973, beginning (in H) at about 1300 UT and of a surge on 4 December 1973, beginning at about 1758 UT. For the eruptive prominence, measured X-ray flux is used in the determination of line-of-sight temperatures, emission measures, and electron densities. A peak temperature of 8.5 × l06 K and densities to 3.5 × l09 cm-3 are derived. A time-dependent, two-dimensional, single-fluid magnetohydrodynamic computer code has been used to simulate the coronal response to these prominences. We find that the coronal response to the observed eruptive prominence may be simulated with a density-dominated pressure pulse at the base of the corona ( 30000 km above photosphere), while a temperature pulse of short duration will simulate the coronal response to the surge. Approximately 1031 ergs and 1040 particles (or 1016 g) were deposited into the corona during the eruptive prominence event, while about 1029 ergs and 1038 particles (or 1014 g) were injected during the surge event. A shock wave formed ahead of the ejected material at about 70000 km above the photosphere in the eruptive prominence event and had a velocity of 275 km s-1 at 1.5 r above the limb.Presently at NASA / Marshall Space Flight Center.  相似文献   

13.
S. W. Kahler 《Solar physics》1981,71(2):337-347
Skylab X-ray images of the early phases of six active region transient brightenings were compared with simultaneous H images to study the spatial relationships between filaments and the X-ray brightenings. When the X-ray loops were roughly perpendicular to the axes of the H filaments, the filaments did not disappear. X-ray loops which appeared nearly parallel to the filaments were generally associated with the disappearances of those filaments. It is suggested that the perpendicular loops correspond to the class I X-ray flares of Pallavicini et al. (1977) while the parallel loops are the early phases of their class II flares characterized in the decay phases by arcades of large loops with low energy densities. Both kinds of X-ray flares can be associated with impulsive phases.  相似文献   

14.
High-resolution images of the decay phase of a soft X-ray flare observed by the S-054 experiment on Skylab are compared with interferometric scans of the radio burst obtained simultaneously at 2.8 cm (Felli et al., 1975). The spatial resulution of the radio instrument in one direction, although lower than the X-ray telescope resolution, is high enough for a detailed comparison. The comparison clarifies the relationship between the sources of soft X-ray and thermal radio emission in solar flares. The X-ray emission is localized in a loop-like structure which appears spatially coincident with the rapidly varying component of the radio burst. The more stable components of the radio source, which do not appear to contribute substantially to X-ray emission, are found to be spatially associated with the extremes of the X-ray loop. A model of plasma-filled loops is suggested which accounts for the emissions in both spectral ranges and for their spatial location and temporal development.On leave from Osservatorio Astrofisico di Arcetri, Florence, Italy.  相似文献   

15.
The SOUP experiment demonstrated that photospheric surface flows can be measured by correlation tracking of white-light intensity features at high resolution (November et al., 1987). In order to assess the feasibility of this technique with observations made at lower resolution, we have applied it to the same SOUP data artificially degraded, but still free of seeing distortion. Comparison with the velocity structures inferred from the original data shows generally good agreement when the resolution is better than about 2. The radial outflow from a sunspot penumbra, however, can only be seen with resolution of better than 1. With resolution of worse than 2, the inferred velocity fields rapidly lose coherence, while resolution of better than 1 yields little improvement. We conclude that apertures as small as 10–14 cm on a space-based platform will be useful for the measurement of large-scale horizontal motions.  相似文献   

16.
The burst component of the solar X-ray flux in the soft wavelength range 2 < < 12 Å observed from Explorer 33 and Explorer 35 from July 1966 to September 1968 was analyzed. In this period 4028 burst peaks were identified.The differential distributions of the temporal and intensity parameters of the bursts revealed no separation into more than one class of bursts. The most frequently observed value for rise time was 4 min and for decay time was 12 min. The distribution of the ratio of rise to decay time can be represented by an exponential with exponent -2.31 from a ratio of 0.3 to 2.7; the maximum in this distribution occurred at a ratio of 0.3. The values of the total observed flux, divided by the background flux at burst maximum, can be represented by a power law with exponent -2.62 for ratios between 1.5 and 32. The distribution of peak burst fluxes can be represented by a power law with exponent - 1.75 over the range 1–100 milli-erg (cm2 sec)–1. The flux time integral values are given by a power law with exponent -1.44 over the range 1–50 erg cm–2.The distribution of peak burst flux as a function of H importance revealed a general tendency for larger peak X-ray fluxes to occur with both larger H flare areas and with brighter H flares. There is no significant dependence of X-ray burst occurrence on heliographic longitude; the emission thus lacks directivity.The theory of free-free emission by a thermal electron distribution was applied to a composite quantitative discussion of hard X-ray fluxes (data from Arnoldy et al., 1968; Kane and Winckler, 1969; and Hudson et al., 1969) and soft X-ray fluxes during solar X-ray bursts. Using bursts yielding measured X-ray intensities in three different energy intervals, covering a total range of 1–50 keV, temperatures and emission measures were derived. The emission measure was found to vary from event to event. The peak time of hard X-ray events was found to occur an average of 3 min before the peak time of the corresponding soft X-ray bursts. Thus a changing emission measure during the event is also required. A free-free emission process with temperatures of 12–39 × 106K and with an emission measure in the range 3.6 × 1047 to 2.1 × 1050 cm–3 which varies both from event to event and within an individual event is required by the data examined.Now at Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey.  相似文献   

17.
E. Rolli  A. Magun 《Solar physics》1995,160(1):29-40
The analysis of the dynamic evolution of the chromospheric electron density during solar flares is fundamental for the testing of solar flare models. For this purpose we developed a digital imaging spectrograph for the observation of higher Balmer lines below 400 nm with a time resolution of 1 s and an algorithm for the determination of the electron density from the observed line profiles. On January 5, 1992 a M1/1N flare was observed in H, H and Caii H and the temporal evolution of the electron density was determined. The chromospheric electron density rises several times from less than 3 × 1019 to 1 × 1020 m–3 during the hard X-ray peaks.  相似文献   

18.
R. Grant Athay 《Solar physics》1988,116(2):223-237
An attempt is made in this paper to determine the coefficient a in a power-law relationship of the form V ~T between the r.m.s. velocity fluctuation, V for raster images with 3 resolution and the temperature, T of line formation using SMM solar data. For T between 8000 and 105 K, the data suggest a best fit with 3/4 < 1. It is argued, however, that unresolved fine structure tends to reduce the observed value of V and that higher resolution data may yield different values for . Skylab data have shown that the non-thermal line broadening velocity, , is proportional to T 1/2. Also, for all temperatures less than 105 K, V . This latter result, however, is again dependent on spatial resolution and may not be true in observations made with sufficient spatial resolution. The magnitudes of both V and indicate that bulk motions play important roles in the structure of the solar atmosphere as well as in its energy and momentum balance. It is important, therefore, to identify the true nature of such motions with better accuracy than is possible with currently available data.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

19.
As a sequel to the work by Machado et al. (1978), we discuss and evaluate the suggestions made by these authors on how to possibly reconcile the observed temperature enhancements at temperature-minimum levels in solar flares with some form of theoretical heating mechanism. After establishing the H LTE assumption used by Machado et al., we then consider EUV irradiation, and joule heating by steady currents, as heating mechanisms. We find that, unless there are strong inhomogeneities associated with either mechanism, neither can reasonably be reconciled with observations. It is concluded that detailed, high resolution (both spatial and temporal) measurements are necessary to further our understanding of the flare process at temperature-minimum levels.On leave from: Department of Astronomy, The University, Glasgow G12 8QQ, Scotland, U. K.  相似文献   

20.
A flare event occurred which involved the disappearance of a filament near central meridian on 29 August 1973. The event was well observed in X-rays with the AS & E telescope on Skylab and in H at BBSO. It was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H brightenings at the footpoints of the brightest X-ray loops. These magnetic structures and the preflare history of the region are then used to argue that the event involved a reconnection of magnetic field lines rather than a brightening in place of pre-existing loops. The simultaneity of the H brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation. These observations are compared to other studies of filament disappearances. The preflare structures and the alignment of the early X-ray flare loops with the H filament are consistent with the schematic picture of a filament presented first by Canfield et al. (1974).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号