首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We calculate the parameters of the two-point correlation function of quasars w(r) = (r c /r) γ on the basis of the SDSS DR3 data. The correlation functions are first determined from projected distances with the use of a special technique for compiling randomized catalogs. Next the parameters of the spatial correlation function are obtained with the assumption of local isotropy. For the quasars with redshifts z = 0.8–2.1, we obtained the estimates γ = 1.76 ± 0.14, r c = 6.60 ± 0.85 h ?1 Mpc in the comoving distance range 2–30 Mpc and γ = 1.90 ± 0.11, r c = 6.95±0.57 h ?1 Mpc in the range 2–50 Mpc. These estimates agree, within the limits of errors, with the estimates obtained for the redshifts 0.4 < z < 2.1. The original catalog shows some deficit of pairs with separations less than 1 Mpc.  相似文献   

2.
We have obtained new estimates of the Sun’s distance from the symmetry plane Z and the vertical disk scale height h using currently available data on stellar OB associations, Wolf–Rayet stars, HII regions, and Cepheids. Based on individual determinations, we have calculated the mean Z = ?16 ± 2 pc. Based on the model of a self-gravitating isothermal disk for the density distribution, we have found the following vertical disk scale heights: h = 40.2 ± 2.1 pc from OB associations, h = 47.8 ± 3.9 pc from Wolf–Rayet stars, h = 48.4 ± 2.5 pc from HII regions, and h = 66.2 ± 1.6 pc from Cepheids. We have estimated the surface, Σ = 6 kpc?2, and volume, D(Z ) = 50.6 kpc?3, densities from a sample of OB associations. We have found that there could be ~5000 OB associations in the Galaxy.  相似文献   

3.
Based on observations of SN 1999em, we determined the physical parameters of this supernova using hydrodynamic calculations including nonequilibrium radiative transfer. Taking the distance to SN 1999em estimated by the expanding photosphere method (EPM) to be D = 7.5 Mpc, we found the parameters of the presupernova: radius R = 450R, mass M = 15M, and explosion energy E = 7 × 1050 erg. For the distance D = 12 Mpc determined from Cepheids, R, M, and E must be increased to the following values: R = 1000R, M = 18M, and E = 1051 erg. We show that one cannot restrict oneself to using the simple analytical formulas relating the supernova and presupernova parameters to obtain reliable parameters for type-IIP presupernovae.  相似文献   

4.
We present our Hα observations of 11 isolated southern galaxies: SDIG, PGC 51659, E 222-010, E 272-025, E 137-018, IC 4662, Sag DIG, IC 5052, IC 5152, UGCA 438, and E 149-003, with distances from 1 to 7 Mpc. We have determined the total Hα fluxes from these galaxies. The star formation rates in these galaxies range from 10?1 (IC 4662) to 10?4 M yr?1 (SDIG) and the gas depletion time at the observed star formation rates lies within the range from 1/6 to 24 Hubble times H 0 ?1 .  相似文献   

5.
We present properties of the low-surface-brightness galaxy KDG218 observed with the HST/ACS. The galaxy has a half-light (effective) diameter of a e = 47″ and a central surface brightness of SB V (0) = 24.m4/□″. The galaxy remains unresolved with the HST/ACS, which implies its distance of D > 13.1 Mpc and linear effective diameter of A e > 3.0 kpc. We notice that KDG218 is most likely associated with a galaxy group around the massive lenticular NGC4958 galaxy at approximately 22 Mpc, or with the Virgo Southern Extension filament at approximately 16.5 Mpc. At these distances, the galaxy is classified as an ultra-diffuse galaxy (UDG) similar to those found in the Virgo, Fornax, and Coma clusters. We also present a sample of 15 UDG candidates in the Local Volume. These sample galaxies have the following mean parameters: 〈D〉 = 5.1 Mpc, 〈A e 〉 = 4.8 kpc, and 〈SB B (e)〉 = 27.m4/□″. All the local UDG candidates reside near massive galaxies located in the regions with the mean stellar mass density (within 1 Mpc) about 50 times greater than the average cosmic density. The local fraction of UDGs does not exceed 1.5% of the Local Volume population. We notice that the presented sample of local UDGs is a heterogeneous one containing irregular, transition, and tidal types, as well as objects consisting of an old stellar population.  相似文献   

6.
Based on data from the Two-Micrometer All-Sky Survey (2MASS), we analyzed the infrared properties of 451 Local-Volume galaxies at distances D ≤ 10 Mpc. We determined the K-band luminosity function of the galaxies in the range of absolute magnitudes from ?25m to ?11m. The local luminosity density within 8 Mpc is 6.8 × 108L Mpc?3, a factor of 1.5 ± 0.1 higher than the global mean K-band luminosity density. We determined the ratios of the virial mass to the K-band luminosity for nearby groups and clusters of galaxies. In the luminosity range from 5 × 1010 to 2 × 1013L, the dependence log(M/LK) ∝ (0.27 ± 0.03) log LK with a dispersion of ~0.1 comparable to the measurement errors of the masses and luminosities of the systems of galaxies holds for the groups and clusters of galaxies. The ensemble-averaged ratio, 〈M/LK〉 ? (20–25) M/L, was found to be much smaller than the expected global ratio, (80–90)M/L, in the standard model with Ωm = 0.27. This discrepancy can be eliminated if the bulk of the dark matter in the Universe is not associated with galaxies and their systems.  相似文献   

7.
We have selected and analyzed a sample of OB stars with known line-of-sight velocities determined through ground-based observations and with trigonometric parallaxes and propermotions from the Gaia DR2 catalogue. Some of the stars in our sample have distance estimates made from calcium lines. A direct comparison with the trigonometric distance scale has shown that the calcium distance scale should be reduced by 13%. The following parameters of the Galactic rotation curve have been determined from 495 OB stars with relative parallax errors less than 30%: (U, V,W) = (8.16, 11.19, 8.55)± (0.48, 0.56, 0.48) km s?1, Ω0 = 28.92 ± 0.39 km s?1 kpc?1, Ω'0 = ?4.087 ± 0.083 km s?1 kpc?2, and Ω″ 0 = 0.703 ± 0.067 km s?1 kpc?3, where the circular velocity of the local standard of rest is V0 = 231 ± 5 km s?1 (for the adopted R0 = 8.0 ± 0.15 kpc). The parameters of the Galactic spiral density wave have been found from the series of radial, VR, residual tangential, ΔVcirc, and vertical, W, velocities of OB stars by applying a periodogram analysis. The amplitudes of the radial, tangential, and vertical velocity perturbations are fR = 7.1± 0.3 km s?1, fθ = 6.5 ± 0.4 km s?1, and fW = 4.8± 0.8 km s?1, respectively; the perturbation wavelengths are λR = 3.3 ± 0.1 kpc, λθ = 2.3 ± 0.2 kpc, and λW = 2.6 ± 0.5 kpc; and the Sun’s radial phase in the spiral density wave is (χ)R = ?135? ± 5?, (χ)θ = ?123? ± 8?, and (χ)W = ?132? ± 21? for the adopted four-armed spiral pattern.  相似文献   

8.
The present paper is devoted to the construction of a catalog of isolated galaxy pairs extracted from the HyperLEDA extragalactic database. The radial velocities of the galaxies in the pairs are in the range [3000, 16000] km s?1. In order to get an unbiased pair catalog as complete as possible, we have limited the absolute magnitude of the galaxies to M ≤ ?18.5. The criteria used to define the isolated galaxy pairs are the following: 1) velocity criterion: radial velocity difference between the pair members ΔV < 500 kms?1; 2) interdistance criterion: projected distance between the members rp < 1 Mpc; 3) reciprocity criterion: each member is the closest galaxy to the other one, which excludes multiplets; 4) isolation criterion: we define a pair as isolated if the ratio ρ = r3/rp of the projected distance of the pair to its closest galaxy (this one having a velocity difference lower than 500 km s?1 with respect to the pair) and the members projected interdistance rp is larger than 2.5.We have searched for these closest galaxies first in HyperLEDA M-limited source catalog, then in the full one.We have managed not to suppress the small number of pairs having close-by but faint dwarf galaxy companions. The galaxy pair catalog lists the value of ρ for each isolated pair. This method allows the user of the catalog to select any isolation level (beyond the chosen limit ρ > 2.5). Our final catalog contains 13 114 galaxy pairs, of which 57% are fairly isolated withρ > 5, and 30% are highly isolated with ρ ≥ 10.  相似文献   

9.
Using the method of searching for arbitrary shaped voids in the distribution of volume-limited samples of galaxies from the DR5 SDSS survey, we have identified voids and investigated their characteristics and the change in these characteristics with decreasing M lim (from ?19.7 to ?21.2, H 0 = 100 km s?1 Mpc?1)—the upper limit on the absolute magnitude of the galaxies involved in the construction of voids. The total volume of the 50 largest voids increases with decreasing M lim with a break near M* = ?20.44—the characteristic value of the luminosity function for SDSS galaxies. The mean overdensity in voids increases with decreasing M lim also with a weak break near M*. The exponent of the dependence of the volume of a void on its rank increases significantly with decreasing M lim starting from M lim ~ ?20.4 in the characteristic range of volumes, which reflects the tendency for greater clustering of brighter galaxies. The averaged profile of the galaxy overdensity in voids has a similar pattern almost at all M lim. The galaxies mostly tend to gravitate toward the void boundaries and to avoid the central void regions; the overdensity profile is flat in the intermediate range of distances from the void boundaries. The axial ratios of the ellipsoids equivalent to the voids are, on average, retained with changing M lim and correspond to elongated and nonoblate void shapes, but some of the voids can change their shape significantly. The directions of the greatest void elongations change chaotically and are distributed randomly at a given M lim. The void centers show correlations reflecting the correlations of the galaxy distribution on scales (35–70)h ?1 Mpc. The galaxy distribution in the identified voids is nonrandom—groups and filaments can be identified. We have compared the properties of the galaxies in voids (in our case, the voids are determined by the galaxies with absolute magnitudes M abs < M lim = ?20.44, except for the isolated galaxies) and galaxies in structures identified using the minimum spanning tree. A bimodal color distribution of the galaxies in voids has been obtained. A noticeable difference is observed in the mean color indices and star formation rates per unit stellar mass of the galaxies in dense regions (structures)—as expected, the galaxies in voids are, on average, bluer and have higher log (SFR/M star). These tendencies become stronger toward the central void regions.  相似文献   

10.
The splitting of eh(A+B) into a single product of e h A and e hB results in symplectic integrators when A and B are classical Lie operators. However, at high orders, a single product splitting, with exponentially growing number of operators, is very difficult to derive. This work shows that, if the splitting is generalized to a sum of products, then a simple choice of the basis product reduces the problem to that of extrapolation, with analytically known coefficients and only quadratically growing number of operators. When a multi-product splitting is applied to classical Hamiltonian systems, the resulting algorithm is no longer symplectic but is of the Runge-Kutta-Nyström (RKN) type. Multi-product splitting, in conjunction with a special force-reduction process, explains why at orders p = 4 and 6, RKN integrators only need p ? 1 force evaluations.  相似文献   

11.
We consider two samples of OB stars with different distance scales that we have studied previously. The first and second samples consist of massive spectroscopic binaries with photometric distances and distances determined from interstellar calcium lines, respectively. The OB stars are located at heliocentric distances up to 7 kpc. We have identified them with the Gaia DR1 catalogue. Using the proper motions taken from the Gaia DR1 catalogue is shown to reduce the random errors in the Galactic rotation parameters compared to the previously known results. By analyzing the proper motions and parallaxes of 208 OB stars from the Gaia DR1 catalogue with a relative parallax error of less than 200%, we have found the following kinematic parameters: (U, V) = (8.67, 6.63)± (0.88, 0.98) km s?1, Ω0 = 27.35 ± 0.77 km s?1 kpc?1, Ω′0 = ?4.13 ± 0.13 km s?1 kpc?2, and Ω″0 = 0.672 ± 0.070 km s?1 kpc?3, the Oort constants are A = ?16.53 ± 0.52 km s?1 kpc?1 and B = 10.82 ± 0.93 km s?1 kpc?1, and the linear circular rotation velocity of the local standard of rest around the Galactic rotation axis is V 0 = 219 ± 8 km s?1 for the adopted R 0 = 8.0 ± 0.2 kpc. Based on the same stars, we have derived the rotation parameters only from their line-of-sight velocities. By comparing the estimated values of Ω′0, we have found the distance scale factor for the Gaia DR1 catalogue to be close to unity: 0.96. Based on 238 OB stars of the combined sample with photometric distances for the stars of the first sample and distances in the calcium distance scale for the stars of the second sample, line-of-sight velocities, and proper motions from the Gaia DR1 catalogue, we have found the following kinematic parameters: (U, V, W) = (8.19, 9.28, 8.79)± (0.74, 0.92, 0.74) km s?1, Ω0 = 31.53 ± 0.54 km s?1 kpc?1, Ω′0 = ?4.44 ± 0.12 km s?1 kpc?2, and Ω″0 = 0.706 ± 0.100 km s?1 kpc?3; here, A = ?17.77 ± 0.46 km s?1 kpc?1, B = 13.76 ± 0.71 km s?1 kpc?1, and V 0 = 252 ± 8 km s?1.  相似文献   

12.
We analyze the statistical properties of normal galaxies to be detected in the all-sky survey by the eROSITA X-ray telescope of the Spectrum-X-Gamma observatory. With the current configuration and parameters of the eROSITA telescope, the sensitivity of a 4-year-long all-sky survey will be ≈10?14 erg s?1 in the 0.5–2 keV band. This will allow ~(1.5–2) × 104 normal galaxies with approximately the same contribution of star-forming and elliptical galaxies to be detected. All galaxies of the X-ray survey are expected to enter into the existing far-infrared (IRAS) or near-infrared (2MASS) catalogs; the sample of star-forming galaxies will be approximately equivalent in sensitivity to the sample of star-forming galaxies in the IRAS catalog of infrared sources. Thus, a large homogeneous sample of normal galaxies with measured X-ray, near-infrared, and far-infrared fluxes will be formed. About 90% of the galaxies in the survey are located within ~200–400 Mpc. A typical (most probable) galaxy will have a luminosity log L X ~ 40.5–41.0, will be located at a distance of ~70–90 Mpc, and will be either a star-forming galaxy with a star formation rate of ~20M yr?1 whose X-ray emission is produced by ultraluminous X-ray sources (ULXs) or an elliptical galaxy with amass log M * ~ 11.3 emitting through to a hot interstellar gas. The galaxies within 35 Mpc will collectively contain ~102 ULXs with luminosities log L X > 40, ~80% of whichwill be the only luminous source in the galaxy. Thus, although the angular resolution of the eROSITA telescope is too low for the luminosity function of compact sources in galaxies to be studied in detail, the survey data will allow one to investigate its bright end and, possibly, to impose constraints on the maximum luminosity of ULXs.  相似文献   

13.
This study based on longitudinal Zeeman effect magnetograms and spectral line scans investigates the dependence of solar surface magnetic fields on the spectral line used and the way the line is sampled to estimate the magnetic flux emerging above the solar atmosphere and penetrating to the corona from magnetograms of the Mt. Wilson 150-foot tower synoptic program (MWO). We have compared the synoptic program λ5250 Å line of Fe?i to the line of Fe?i at λ5233 Å since this latter line has a broad shape with a profile that is nearly linear over a large portion of its wings. The present study uses five pairs of sampling points on the λ5233 Å line. Line profile observations show that the determination of the field strength from the Stokes V parameter or from line bisectors in the circularly polarized line profiles lead to similar dependencies on the spectral sampling of the lines, with the bisector method being the less sensitive. We recommend adoption of the field determined with the line bisector method as the best estimate of the emergent photospheric flux and further recommend the use of a sampling point as close to the line core as is practical. The combination of the line profile measurements and the cross-correlation of fields measured simultaneously with λ5250 Å and λ5233 Å yields a formula for the scale factor δ ?1 that multiplies the MWO synoptic magnetic fields. By using ρ as the center-to-limb angle (CLA), a fit to this scale factor is δ ?1=4.15?2.82sin?2(ρ). Previously δ ?1=4.5?2.5sin?2(ρ) had been used. The new calibration shows that magnetic fields measured by the MDI system on the SOHO spacecraft are equal to 0.619±0.018 times the true value at a center-to-limb position 30°. Berger and Lites (2003, Solar Phys. 213, 213) found this factor to be 0.64±0.013 based on a comparison using the Advanced Stokes Polarimeter.  相似文献   

14.
We perform a kinematic analysis of the Hipparcos and TRC proper motions of stars by using a linear Ogorodnikov-Milne model. All of the distant (r>0.2 kpc) stars of the Hipparcos catalog have been found to rotate around the Galactic y axis with an angular velocity of M 13 ? =?0.36±0.09 mas yr?1. One of the causes of this rotation may be an uncertainty in the lunisolar precession constant adopted when constructing the ICRS. In this case, the correction to the IAU (1976) lunisolar precession constant in longitude is shown to be Δp1=?3.26±0.10 mas yr?1. Based on the TRC catalog, we have determined the mean Oort constants: A=14.9±1.0 and B=?10.8±0.3 km s?1 kpc?1. The component of the model that describes the rotation of all TRC stars around the Galactic y axis is nonzero for all magnitudes, M 13 ? =?0.86±0.11 mas yr?1.  相似文献   

15.
The catalogue of protoplanetary nebulae by Vickers et al. has been supplemented with the line-of-sight velocities and proper motions of their central stars from the literature. Based on an exponential density distribution, we have estimated the vertical scale height from objects with an age less than 3 Gyr belonging to the Galactic thin disk (luminosities higher than 5000 L ) to be h = 146 ± 15 pc, while from a sample of older objects (luminosities lower than 5000 L ) it is h = 568 ± 42 pc. We have produced a list of 147 nebulae in which there are only the line-of-sight velocities for 55 nebulae, only the proper motions for 25 nebulae, and both line-of-sight velocities and proper motions for 67 nebulae. Based on this kinematic sample, we have estimated the Galactic rotation parameters and the residual velocity dispersions of protoplanetary nebulae as a function of their age. We have established that there is a good correlation between the kinematic properties of nebulae and their separation in luminosity proposed by Vickers. Most of the nebulae are shown to be involved in the Galactic rotation, with the circular rotation velocity at the solar distance being V 0 = 227 ± 23 km s?1. The following principal semiaxes of the residual velocity dispersion ellipsoid have been found: (σ1, σ2, σ3) = (47, 41, 29) km s?1 from a sample of young protoplanetary nebulae (with luminosities higher than 5000 L ), (σ1, σ2, σ3) = (50, 38, 28) km s?1 from a sample of older protoplanetary nebulae (with luminosities of 4000 L or 3500 L ), and (σ1, σ2, σ3) = (91, 49, 36) km s?1 from a sample of halo nebulae (with luminosities of 1700 L ).  相似文献   

16.
17.
Based on our UBV RI observations and X-ray data from the RXTE satellite, we have investigated the variability of the galaxy 3C 120 over the period 1996–2008. The relative variability amplitude in the U and B bands without any subtraction of the contribution from the underlying galaxy is 23 and 22%, respectively, against 21% in the X-ray band. The autocorrelation function based on the B-band data is considerably wider than that based on the X-ray data. The structure functions on a time scale from 1 to ~100–300 days in the X-ray and optical spectral ranges have the form of a power law (SFτ b ). However, their indices differ significantly: b = 0.42 in the X-ray band and b = 1.36 in the B band. Considering the X-ray and optical variabilities as a superposition of independent flares in a wide range of durations, we may conclude that the amplitudes of short flares in the X-ray band are higher than those in the optical one and, conversely, the relative amplitudes of long flares in the X-ray band are slightly lower than those in the optical one, i.e., short events dominate in the X-ray band. The optical flux variations in the R c and I c bands lag significantly behind those in the B band, by 3.9 ?0.7 +1.0 and 6.2 ?0.6 +1.1 days, respectively, if the lag is estimated from the centroid of the cross-correlation function. The X-ray variability on a time scale of about 1800 days (~5 yr) lags behind the B-band variations by 5.3 ?3.3 +2.7 days, but the confidence level of this estimate is only 87%. A more detailed analysis of the correlation between the X-ray and optical emissions has revealed a fairly complex picture: different degrees of correlation between the optical and X-ray fluxes are observed at different times.  相似文献   

18.
Based on a self-consistent solution of the equations of gas dynamics, kinetics of hydrogen atomic level populations, and radiative transfer, we analyze the structure of a shock wave that propagates in a partially ionized hydrogen gas. We consider the radiative transfer at the frequencies of spectral lines by taking into account the effects of a moving medium in the observer's frame of reference. The flux in Balmer lines is shown to be formed behind the shock discontinuity at the initial hydrogen recombination stage. The Doppler shift of the emission-line profile is approximately one and a half times smaller than the gas flow velocity in the Balmer emission region, because the radiation field of the shock wave is anisotropic. At Mach numbers M1?10 and unperturbed gas densities σ1=10?10 g cm?3, the Doppler shift is approximately one third of the shock velocity U1. The FWHM of the emission-line profile δ ? is related to the shock velocity by δ ? k ? U1, where k ? = 1, 0.6, and 0.65 for the Hα, Hβ, and Hγ lines, respectively.  相似文献   

19.
The apparatus of correlation gamma function (Γ*(r)) is used to analyze volume-limited samples from the DR4 Main Galaxy Sample of the SDSS survey with the aim of determining the characteristic scales of galaxy clustering. Up to 20h ?1 Mpc (H 0 = 65 km s?1 Mpc?1), the distribution of galaxies is described by a power-law density—distance dependence, Γ*(r) ∝ r , with an index γ ≈ 1.0. A change in the state of clustering (a significant deviation from the power law) was found on a scale of (20–25) h ?1 Mpc. The distribution of SDSS galaxies becomes homogeneous (γ ~ 0) from a scale of ~60h ?1 Mpc. The dependence of γ on the luminosity of galaxies in volume-limited samples was obtained. The power-law index γ increases with decreasing absolute magnitude of sample galaxies M abs. At M abs ~ ?21.4, which corresponds to the characteristic value M r * of the SDSS luminosity function, this dependence exhibits a break followed by a more rapid increase in γ.  相似文献   

20.
A sample of classical Cepheids with known distances and line-of-sight velocities has been supplemented with proper motions from the Gaia DR1 catalogue. Based on the velocities of 260 stars, we have found the components of the peculiar solar velocity vector (U, V, W) = (7.90, 11.73, 7.39) ± (0.65, 0.77, 0.62) km s?1 and the following parameters of the Galactic rotation curve: Ω0 = 28.84 ± 0.33 km s?1 kpc?1, Ω′0 = ?4.05 ± 0.10 km s?1 kpc?2, and Ω″0 = 0.805 ± 0.067 km s?1 kpc?3 for the adopted solar Galactocentric distance R 0 = 8 kpc; the linear rotation velocity of the local standard of rest is V 0 = 231 ± 6 km s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号