首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
To test the hypothesis about the existence of two different subsystems of novae in the Galaxy, disk and bulge novae, we have constructed the spatial distribution of 64 novae in z coordinate. A large number of fast novae, believed to be disk novae, are at a considerable distance from the Galactic plane (up to z ~ 3700 pc), which cannot be explained by the photometric measurement errors. Slow novae, believed to be bulge novae, show a higher concentration to the Galactic plane (z ? 1700 pc). The application of the Kolmogorov-Smirnov test has shown that the hypothesis of two populations is valid with a probability of 95.6%.  相似文献   

2.
We present the results of the study of a red nova from the observations carried out with the Russian 6-m telescope (BTA) along with other telescopes of SAO RAS and SAI MSU. To investigate the nova progenitor,we used the data from the Digital Sky Survey and amateur photos available on the Internet. In the period between April 1993 and July 2014, the brightness of the progenitor gradually increased by \(2_ \cdot ^m 2\) in the V-band. At the peak of the first outburst in mid-November 2014, the star reached an absolute visual magnitude of \(- 12_ \cdot ^m 75\) but was discovered later, in February 2015, in a repeated outburst at the magnitude of \(- 11_ \cdot ^m 65\). The amplitude of the outburst was minimum among the red novae, only \(5_ \cdot ^m 6\) in V-band. The Hα emission line and the background of a cool supergiant continuum with gradually decreasing surface temperature were observed in the spectra. Such process is typical for red novae, although the object under study showed extreme parameters: maximum luminosity, maximum outburst duration, minimum outburst amplitude, unusual shape of the light curve. This event is interpreted as a massive OB star system components’merging accompanied by formation of a common envelope and then the expansion of this envelope with minimal energy losses.  相似文献   

3.
The CORONAS-I and CORONAS-F data on variations in the ionizing shortwave ultraviolet (UV) solar radiation (EUV radiation) at wavelengths of less than 130 nm and near the H Lyman-alpha line are presented. The CORONAS-I data refer to the period close to solar minimum (the index F 10.7 = 80?100), and the CORONAS-F measurements were held close to solar maximum (F10.7 = 140?280). The UV data are compared to those from the UARS and SOHO satellites and to the results obtained from the ionospheric measurements of ionosphere critical frequencies.  相似文献   

4.
Empirical functions approximating the dependences of total sunspot area A on relative sunspot number W and group sunspot number GN have been found. In the function A(W), allowance for its dependence on the secular activity cycle has been made; it is shown that this allowance is not needed for the function A(GN). The yearly mean A for 1700–1874 have been reconstructed using these functions and the available W and GN time series. Having supplemented the original data with archival observations, we have been able to reconstruct the monthly mean A W since 1821. We discuss the causes of the systematic difference between the reconstructions using W and GN.  相似文献   

5.
We present a preliminary analysis of X-ray data of quasars in the context of the 4D eigenvector 1 parameter space (Sulentic et al. 2000a, b). 4DE1 serves as a surrogate H-R diagram for representing empirical diversity among quasars and identifying the physical drivers of the diversity. The soft X-ray spectral index (Γsoft) was adopted as one of the key 4DE1 that correlates contrasting extremes in Type 1 properties. 4DE1 motivated the hypothesis of two quasar populations (A and B) divided by L/L EDD≈0.2. Pop. A is a largely radio-quiet population with FWHM H β<4000 km/s and often showing a soft X-ray excess. Pop. B is a mix of radio-quiet and a majority of RL quasars shows only a hard X-ray power-law SED. The X-ray separation was based upon earlier ROSAT and ASCA data but we now confirm this dichotomy with large samples of X-ray spectra obtained with XMM-Newton and SWIFT. One popular idea connects the soft excess in Pop. A quasars as a signature of thermal emission from a hot accretion disk in sources radiating close to the Eddington limit.  相似文献   

6.
We analyze the statistical distribution of weakly radiating pulsars, i.e., radio pulsars that have passed to the stage of an orthogonal rotator during the evolution of the inclination angle X. We discuss in detail the factors that lead to a significant reduction in the energy losses for this class of objects. We have determined the number of weakly radiating radio pulsars and their distribution in spin period P. The predictions of a theory based on the model of current losses are shown to be consistent with observational data.  相似文献   

7.
We analyzed magnetic-field structures of three three-dipole magnetic stars HD 18078, HD 37776, and HD 149438. The fact that the model and observed phase dependences B e (Φ) and B s (Φ) for HD 18078 computed with the same parameters of the dipoles agree with each other shows conclusively that global magnetic structures are formed by dipole structures. Magnetic poles show up conspicuously on Mercator maps of the distribution of magnetic field, the field strength there is maximal and equal to B p = 3577, 10 700, and 275Gin the three stars mentioned above.Dipolemodelsmake it possible to analyze magnetic-field structure inside stars.  相似文献   

8.
This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976?–?2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions (i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry (i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.  相似文献   

9.
We present new UB V observations of the symbiotic nova V 1329 Cyg. Based on all our UB V observations of a uniform system, we redetermined the orbital period of the binary and estimated the magnitudes and luminosities of its components. We show that the pre-outburst visual luminosities of the red giant and the hot star were almost equal and that the rapid irregular photographic variability of the star was caused by the nonstationary behavior of the hot component. The outburst amplitude of the hot component (subdwarf) in 1964 was found to be ~2m in the V band, which is typical of ordinary symbiotic stars. We estimated the continuum luminosity of the gaseous component that appeared after the outburst. In the V band, it was almost 1m fainter than the flared hot star. Structurally, the gaseous component is an ionized gaseous disk comparable in size to an M giant.  相似文献   

10.
The spectra taken with the Main Stellar Spectrograph (MSS) of the 6-m telescope with a resolution of R ~ 15000 and a signal-to-noise ratio of 200–300 are used to determine the radial velocities and projected rotational velocities (υ e sin i) for 32 magnetic CP stars. Measured υ e sin i values range from 18 km/s (the lower boundary determined by the instrumental profile) to 65 km/s. Measurements of standard stars demonstrate the absence of systematic differences between our and published data. Eight of the 32 magnetic stars are found or confirmed to be binary and binarity is suspected for another four stars. The components of tangential velocity are determined for 27 stars with known parallaxes.  相似文献   

11.
We report the results of the study of red-sequence (RS) galaxies in 47 galaxy clusters (0.023 < z < 0.047) located in different environments: in the superclusters Hercules and Leo, and in the field, based on the SDSS catalog data. In the
interval, the number of bright RS dwarf galaxies in galaxy clusters increaseswith the X-ray luminosity of the cluster as logN ∝ log X 0.64 . The dwarf-to-giant ratio (DGR) does not depend on the surroundings, mass, or richness of the cluster. This ratio is seen to increase for galaxy clusters with log L X > 43.5 erg/s or σ > 520 km/s. The compositeDGR of galaxy clusters, determined both from the membership in different structures and the X-ray luminosity along the radius R 200, is minimum in the central regions of the clusters (about 0.6 ± 0.06), reaches a maximum within 0.3–0.9R 200 (about 0.9 ± 0.10), and decreases approximately to 0.7 ± 0.03 upon reaching the radius 1.4 R 200.
  相似文献   

12.
The results of a series of 24-hour observations of radio-source interplanetary and ionospheric scintillation performed on April 4–10, 2006, at the Pushchino Radio Astronomy Observatory are presented. The observations were carried out with the Large Phased Array radio telescope of the Lebedev Institute of Physics, Russian Academy of Sciences, at a frequency of 110 MHz. The scintillating fluxes of all radio sources that fall within a field of sky between declinations +28° and +31° were automatically recorded applying eight beams of the reception pattern operating simultaneously. All of the sources with flux densities of 0.2 Jy or higher were detected. The structure functions of the flux fluctuations were measured for time shifts 1 and 10 s, which characterize the interplanetary (1 s) and ionospheric (10 s) scintillation, respectively. The mean scintillation index m IPP (on a characteristic time scale of 1 s) of an ensemble of radio sources located within a sky band 4° wide in declination and 1 h wide in right ascension was measured as the parameter that characterizes the interplanetary plasma. Diurnal variations of the interplanetary scintillation index were determined. The maximum m IPP value at daytime equals 0.3, and the minimum value at nighttime equals 0.10. Weak interday variations of the mean daytime and nighttime scintillation indices were detected. The ionospheric scintillation indices m Ion are small compared to m IPP at daytime, but m Ion ? m IPP at nighttime. On the whole, both the interplanetary plasma and ionosphere were quiet during the observations.  相似文献   

13.
An improved version of the 3D stellar reddening map in a space with a radius of 1200 pc around the Sun and within 600 pc of the Galactic midplane is presented. As in the previous 2010 and 2012 versions of the map, photometry with an accuracy better than 0.05 m in the J and Ks bands for more than 70 million stars from the 2MASS catalogue is used in the new version. However, the data reduction technique is considerably more complicated. As before, an analysis of the distribution of stars near the main-sequence turnoff on the (J ? Ks)?Ks diagram, where they form a distribution maximum, provides a basis for the method. The shift of this maximum, i.e., the mode (J ? Ks), along (J ? Ks) and Ks, given the spatial variations of the mean dereddened color (J ? Ks)0 of these stars, is interpreted as a growth of the reddening with increasing distance. The main distinction of the new method is that instead of the fixed mean absolute magnitude, dereddened color, distance, and reddening for each cell, the individual values of these quantities are calculated for each star by iterations when solving the system of equations relating them. This has allowed one to increase the random accuracy of the map to 0.01 m and its spatial resolution to 20 pc in coordinates and distance and to 1° in longitude and latitude. Comparison with other reddening estimates for the same spatial cells and Gaia DR1 TGAS stars shows that the constructed map is one of the best maps for the space under consideration. Its systematic errors have been estimated to be σ(E(J ? Ks)) = 0.025 m , or σ(E(B ? V)) = 0.04 m . The main purpose of the map is to analyze the characteristics of Galactic structures, clouds, and cloud complexes. For this purpose, the reddening map within each spatial cell has also been computed by analyzing the reddening along each line of sight.  相似文献   

14.
We present a charged analogue of Pant et al. (2010, Astrophys. Space Sci., 330, 353) solution of the general relativistic field equations in isotropic coordinates by using simple form of electric intensity E that involve charge parameter K. Our solution is well behaved in all respects for all values of X lying in the range 0 <X≤ 0.11, K lying in the range 4 <K≤ 6.2 and Schwarzschild compactness parameter u lying in the range 0 <u≤ 0.247. Since our solution is well behaved for wide ranges of the parameters, we can model many different types of ultra-cold compact stars like quark stars and neutron stars. We have shown that corresponding to X = 0.077 and K = 6.13 for which u = 0.2051 and by assuming surface density ρ b =4.6888×1014 g cm ?3 the mass and radius are found to be 1.509M , 10.906 km respectively which match with the observed values of mass 1.51M and radius 10.90 km of the quark star XTE J1739-217. The well behaved class of relativistic stellar models obtained in this work might have astrophysical significance in the study of more realistic internal structures of compact stars.  相似文献   

15.
After initial claims and a long hiatus, it is now established that several binary stars emit high- (0.1–100 GeV) and very high-energy (>100 GeV) gamma rays. A new class has emerged called “gamma-ray binaries”, since most of their radiated power is emitted beyond 1 MeV. Accreting X-ray binaries, novae and a colliding wind binary (η Car) have also been detected—“related systems” that confirm the ubiquity of particle acceleration in astrophysical sources. Do these systems have anything in common? What drives their high-energy emission? How do the processes involved compare to those in other sources of gamma rays: pulsars, active galactic nuclei, supernova remnants? I review the wealth of observational and theoretical work that have followed these detections, with an emphasis on gamma-ray binaries. I present the current evidence that gamma-ray binaries are driven by rotation-powered pulsars. Binaries are laboratories giving access to different vantage points or physical conditions on a regular timescale as the components revolve on their orbit. I explain the basic ingredients that models of gamma-ray binaries use, the challenges that they currently face, and how they can bring insights into the physics of pulsars. I discuss how gamma-ray emission from microquasars provides a window into the connection between accretion–ejection and acceleration, while η Car and novae raise new questions on the physics of these objects—or on the theory of diffusive shock acceleration. Indeed, explaining the gamma-ray emission from binaries strains our theories of high-energy astrophysical processes, by testing them on scales and in environments that were generally not foreseen, and this is how these detections are most valuable.  相似文献   

16.
Three three-component (bulge, disk, halo) model Galactic gravitational potentials differing by the expression for the dark matter halo are considered. The central (bulge) and disk components are described by the Miyamoto–Nagai expressions. The Allen–Santillán (I), Wilkinson–Evans (II), and Navarro–Frenk–White (III) models are used to describe the halo. A set of present-day observational data in the range of Galactocentric distances R from 0 to 200 kpc is used to refine the parameters of thesemodels. For the Allen–Santillán model, a dimensionless coefficient γ has been included as a sought-for parameter for the first time. In the traditional and modified versions, γ = 2.0 and 6.3, respectively. Both versions are considered in this paper. The model rotation curves have been fitted to the observed velocities by taking into account the constraints on the local matter density ρ = 0.1 M pc?3 and the force K z =1.1/2πG = 77 M pc?2 acting perpendicularly to the Galactic plane. The Galactic mass within a sphere of radius 50 kpc, M G (R ≤ 50 kpc) ≈ (0.41 ± 0.12) × 1012 M , is shown to satisfy all three models. The differences between the models become increasingly significant with increasing radius R. In model I, the Galactic mass within a sphere of radius 200 kpc at γ = 2.0 turns out to be greatest among the models considered, M G (R ≤ 200 kpc) = (1.45 ±0.30)× 1012 M , M G (R ≤ 200 kpc) = (1.29± 0.14)× 1012 M at γ = 6.3, and the smallest value has been found in model II, M G (R ≤ 200 kpc) = (0.61 ± 0.12) × 1012 M . In our view, model III is the best one among those considered, because it ensures the smallest residual between the data and the constructed model rotation curve provided that the constraints on the local parameters hold with a high accuracy. Here, the Galactic mass is M G (R ≤ 200 kpc) = (0.75 ± 0.19) × 1012 M . A comparative analysis with the models by Irrgang et al. (2013), including those using the integration of orbits for the two globular clusters NGC 104 and NGC 1851 as an example, has been performed. The third model is shown to have subjected to a significant improvement.  相似文献   

17.
The drag coefficients and the patterns of supersonic flows around rectangular parallelepipeds (bodies with rectangular and square faces-bricks and tiles, respectively) were found from numerical experiments. These drag coefficients c x are considerably different from the values used, in particular, in the meteor-related literature to calculate the motion of brick-shaped meteor bodies. The values of c x and the flow pattern near the face of the body weakly depend on the relative size of the body within the parameter range considered.  相似文献   

18.
A family of well behaved perfect fluid balls has been derived starting with the metric potential g 44=B(1+Cr 2) n for all positive integral values of n. For n≥4, the members of this family are seen to satisfy the various physical conditions e.g. c 2 ρp≥0,dp/dr<0,/dr<0, along with the velocity of sound \((\sqrt{dp/c^{2}d\rho} )< 1\) and the adiabatic index ((p+c 2 ρ)/p)(dp/(c 2 ))>1. Also the pressure, energy density, velocity of sound and ratio of pressure and energy density are of monotonically decreasing towards the pressure free interface (r=a). The fluid balls join smoothly with the Schwarzschild exterior model at r=a. The well behaved perfect fluid balls so obtained are utilised to construct the superdense star models with their surface density 2×1014  gm/cm3. We have found that the maximum mass of the fluid balls corresponding to various values of n are decreasing with the increasing values of n. Over all maximum mass for the whole family turns out to be 4.1848M Θ and the corresponding radius as 19.4144 km while the red shift at the centre and red shift at surface as Z 0=1.6459 and Z a =0.6538 respectively this all happens for n=4. It is interesting to note that for higher values of n viz n≥170, the physical data start merging with that of Kuchowicz superdense star models and hence the family of fluid models tends to the Kuchowicz fluid models as n→∞. Consequently the maximum mass of the family of solution can not be less than 1.6096 M Θ which is the maximum mass occupied by the Kuchowicz superdense ball. Hence each member of the family for n≥4 provides the astrophysical objects like White dwarfs, Quark star, typical neutron star.  相似文献   

19.
The dependence of the degree of anomaly of parameter Z of Geneva photometry (Z0 = Z CP ?Z norm.) on the average surface magnetic field Bs is analyzed. The Z0 value is proportional to the degree of anomaly of chemical composition. It was found that Bs → 0 corresponds Z0 → ?0.010÷ ?0.015, i.e., part of CP stars are virtually devoid of magnetic field, but exhibit chemical anomalies. This effect may be due to selection whereby only objects with strong chemical anomalies are classified as CP stars, thereby producing a deficit of stars with relatively weak anomalies. Moreover, CP stars have other sources of stabilization of their atmospheres besides the magnetic field, e.g., slow rotation. Formulas relating Z0 to Bs are derived.  相似文献   

20.
This study analyzes the evolution of 2 × 105 orbits with initial parameters corresponding to the orbits of comets of the Oort cloud under the action of planetary, galactic, and stellar perturbations over 2 × 109 years. The dynamical evolution of comets of the outer (orbital semimajor axes a > 104 AU) and inner (5 × 103 < a (AU) < 104) parts of the comet cloud is analyzed separately. The estimates of the flux of “new” and long-period comets for all perihelion distances q in the planetary region are reported. The flux of comets with a > 104 AU in the interval 15 AU < q < 31 AU is several times higher than the flux of comets in the region q < 15 AU. We point out the increased concentration of the perihelia of orbits of comets from the outer cloud, which have passed several times through the planetary system, in the Saturn-Uranus region. The maxima in the distribution of the perihelia of the orbits of comets of the inner Oort cloud are located in the Uranus-Neptune region. “New” comets moving in orbits with a < 2 × 104 AU and arriving at the outside of the planetary system (q > 25 AU) subsequently have a greater number of returns to the region q < 35 AU. The perihelia of the orbits of these comets gradually drift toward the interior of the Solar System and accumulate beyond the orbit of Saturn. The distribution of the perihelia of long-period comets beyond the orbit of Saturn exhibits a peak. We discuss the problem of replenishing the outer Oort cloud by comets from the inner part and their subsequent dynamical evolution. The annual rate of passages of comets of the inner cloud, which replenish the outer cloud, in the region q < 1 AU in orbits with a > 104 AU (~ 5.0 × 10?14 yr?1) is one order of magnitude lower than the rate of passage of comets from the outer Oort cloud (~ 9.1 × 10?13 yr?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号