首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nearly complete sample of 24 Magellanic Cloud WC/WO subclass Wolf–Rayet stars is studied spectroscopically and photometrically to determine its binary frequency. Theory predicts the Roche lobe overflow produced Wolf–Rayet binary frequency to be 52±14 per cent in the Large Magellanic Cloud and 100 per cent in the Small Magellanic Cloud, not counting non-Roche lobe overflow Wolf–Rayet binaries. Lower ambient metallicity ( Z ) leads to lower opacity, preventing all but the most massive (hence luminous) single stars from reaching the Wolf–Rayet stage. However, theory predicts that Roche lobe overflow even in binaries of modest mass will lead to Wolf–Rayet stars in binaries with periods below approximately 200 d, for initial periods below approximately 1000 d, independent of Z . By examining their absolute continuum magnitudes, radial velocity variations, emission-line equivalent widths and full widths at half-maximum, a WC/WO binary frequency of only 13 per cent, significantly lower than the prediction, is found in the Large Magellanic Cloud. In the unlikely event that all of the cases with a less certain binary status actually turn out to be binary, current theory and observation would agree. (The Small Magellanic Cloud contains only one WC/WO star, which happens to be a binary.) The three WC+O binaries in the Large Magellanic Cloud all have periods well below 1000 d. The large majority of WC/WO stars in such environments apparently can form without the aid of a binary companion. Current evolutionary scenarios appear to have difficulty explaining either the relatively large number of Wolf–Rayet stars in the Magellanic Clouds, or the formation of Wolf–Rayet stars in general.  相似文献   

2.
We have obtained complete phase coverage of the WC7+O binaries WR 42 = HD 97152 and WR 79 = HD 152270 with high signal-to-noise ratio (S/N), moderate-resolution spectra. Remarkable orbital phase-locked profile variations of the C  iii λ 5696 line are observed and interpreted as arising from colliding wind effects. Within this scenario, we have modelled the spectra using a purely geometrical model that assumes a cone-shaped wind–wind interaction region which partially wraps around the O star. Such modelling holds the exciting promise of revealing a number of interesting parameters for WR+O binaries, such as the orbital inclination, the streaming velocity of material in the interaction region and the ratio of wind momentum flux. Knowledge of these parameters in turn leads to the possibility of a better understanding of WR star masses, mass-loss rates and wind region characteristics.  相似文献   

3.
A spectroscopic study of the binary Wolf–Rayet (WR)+O system WR 145 is performed, in order to determine the radial velocity orbits of the individual stars, the angle of orbital inclination and the stellar masses. The emission and absorption components are separated from the original spectra, allowing us to confirm the spectral classification WN 7o/CE of the hybrid WR component and to derive a spectral classification O7V((f)) for the O star. A study of the wind-collision properties is performed. Fitting the radial velocity and full width at half-maximum of the excess emission with Lührs' model results in an inclination angle of   i = 63°  , leading to estimates of the stellar masses:   M WR= 18 M  and   M O= 31 M  . Both of these masses are compatible with those of other stars of similar types.  相似文献   

4.
In this paper I will review some recent developments in the field of circumstellar shocks, particularly as they relate to colliding stellar winds. I shall review the basic physics of colliding winds and shocks, and discuss recent developments in hydrodynamic modelling of colliding winds. I shall also report on recent X-ray observations of shock emission in Wolf-Rayet binary systems where high resolution X-ray spectra of colliding wind shock emission is being seen. I will discuss the occurrence of colliding winds to such diverse systems as Wolf-Rayet binaries, pre-main sequence binaries, symbiotic stars as well as the Galactic center object IRS 7, where recent results on interacting winds are yielded insight into the structure of winds in general.  相似文献   

5.
We investigate the optical counterparts of recently discovered Be/X-ray binaries in the Small Magellanic Cloud (SMC). In total four sources, SXP101, SXP700, SXP348 and SXP65.8 were detected during the Chandra survey of the wing of the SMC. SXP700 and SXP65.8 were previously unknown. Many optical ground-based telescopes have been utilized in the optical follow-up, providing coverage in both the red and blue bands. This has led to the classification of all of the counterparts as Be stars and confirms that three lie within the Galactic spectral distribution of known Be/X-ray binaries. SXP101 lies outside this distribution and is the latest spectral type known. Monitoring of the Hα emission line suggests that all the sources barring SXP700 have highly variable circumstellar discs, possibly a result of their comparatively short orbital periods. Phase-resolved X-ray spectroscopy has also been performed on SXP65.8, revealing that the emission is indeed harder during the passage of the X-ray beam through the line of sight.  相似文献   

6.
We report the results of a spectroscopic and polarimetric study of the massive, hydrogen-rich WN6h stars R144 (HD 38282 = BAT99-118 = Brey 89) and R145 (HDE 269928 = BAT99-119 = Brey 90) in the Large Magellanic Cloud. Both stars have been suspected to be binaries by previous studies (R144: Schnurr et al.; R145: Moffat). We have combined radial-velocity (RV) data from these two studies with previously unpublished polarimetric data. For R145, we were able to establish, for the first time, an orbital period of 158.8 d, along with the full set of orbital parameters, including the inclination angle i , which was found to be   i = 38°± 9°  . By applying a modified version of the shift-and-add method developed by Demers et al., we were able to isolate the spectral signature of the very faint line companion star. With the RV amplitudes of both components in R145, we were thus able to estimate their absolute masses. We find minimum masses   M WRsin3 i = 116 ± 33 M  and   M Osin3 i = 48 ± 20 M  for the WR and the O component, respectively. Thus, if the low-inclination angle were correct, resulting absolute masses of the components would be at least 300 and  125 M  , respectively. However, such high masses are not supported by brightness considerations when R145 is compared to systems with known very high masses such as NGC 3603-A1 or WR20a. An inclination angle close to  90°  would remedy the situation, but is excluded by the currently available data. More and better data are thus required to firmly establish the nature of this puzzling, yet potentially very massive and important system. As to R144, however, the combined data sets are not sufficient to find any periodicity.  相似文献   

7.
The properties of the interaction region of colliding winds in hot star binaries and evolved low mass binaries are discussed in the frame of 2D and 3D hydrodynamical numerical simulations. The emission of such systems and their nebulae, in particular in X-rays, is reviewed and new results regarding orbital line profile variations are presented. The connection between colliding winds, thin shell instabilities and structure formation is outlined. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
In the first paper of this series, we presented EBAS – Eclipsing Binary Automated Solver, a new fully automated algorithm to analyse the light curves of eclipsing binaries, based on the ebop code. Here, we apply the new algorithm to the whole sample of 2580 binaries found in the Optical Gravitational Lensing Experiment (OGLE) Large Magellanic Cloud (LMC) photometric survey and derive the orbital elements for 1931 systems. To obtain the statistical properties of the short-period binaries of the LMC, we construct a well-defined subsample of 938 eclipsing binaries with main-sequence B-type primaries. Correcting for observational selection effects, we derive the distributions of the fractional radii of the two components and their sum, the brightness ratios and the periods of the short-period binaries. Somewhat surprisingly, the results are consistent with a flat distribution in log P between 2 and 10 d. We also estimate the total number of binaries in the LMC with the same characteristics, and not only the eclipsing binaries, to be about 5000. This figure leads us to suggest that  (0.7 ± 0.4)  per cent of the main-sequence B-type stars in the LMC are found in binaries with periods shorter than 10 d. This frequency is substantially smaller than the fraction of binaries found by small Galactic radial-velocity surveys of B stars. On the other hand, the binary frequency found by Hubble Space Telescope ( HST ) photometric searches within the late main-sequence stars of 47 Tuc is only slightly higher and still consistent with the frequency we deduced for the B stars in the LMC.  相似文献   

9.
We have investigated the long-term X-ray variability, defined as the root-mean-square (rms) of the All Sky Monitor Rossi X-ray Timing Explorer (ASM RXTE ) light curves, of a set of galactic Be/X-ray binaries and searched for correlations with system parameters, such as the spin period of the neutron star and the orbital period and eccentricity of the binary. We find that systems with larger rms are those harbouring fast-rotating neutron stars, low eccentric and narrow orbits. These relationships can be explained as the result of the truncation of the circumstellar disc. We also present an updated version of the Hα equivalent width–orbital period diagram, including sources in the Small Magellanic Cloud (SMC). This diagram provides strong observational evidence of the interaction of neutron star with the circumstellar envelope of its massive companion.  相似文献   

10.
《New Astronomy Reviews》2004,48(9):727-730
We present results of our ongoing observing program on search and studies of massive stars (O type) in binary systems in our neighbour galaxies, the Magellanic Clouds. Radial velocity orbits are presented for two new binaries, one in the Small Magellanic Cloud and another in the Large Magellanic Cloud.  相似文献   

11.
High-dispersion near-infrared spectra have been taken of seven highly evolved, variable, intermediate-mass (4–6 M) asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.  相似文献   

12.
The Small Magellanic Cloud is a close, irregular galaxy that has experienced a complex star formation history due to the strong interactions occurred both with the Large Magellanic Cloud and the Galaxy. Despite its importance, the chemical composition of its stellar populations older than ∼ 1–2 Gyr is still poorly investigated. I present the first results of a spectroscopic survey of ∼ 200 Small Magellanic Cloud giant stars performed with FLAMES@VLT. The derived metallicity distribution peaks at [Fe/H] ∼ –0.9/–1.0 dex, with a secondary peak at [Fe/H] ∼ –0.6 dex. All these stars show [α /Fe] abundance ratios that are solar or mildly enhanced (∼+0.1 dex). Also, three metal‐poor stars (with [Fe/H] ∼ –2.5 dex and enhanced [α /Fe] ratios compatible with those of the Galactic Halo) have been detected in the outskirts of the SMC: These giants are the most metal‐poor stars discovered so far in the Magellanic Clouds. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Kα line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.  相似文献   

14.
We have started a spectroscopic survey to identify new chromospherically active components and low-mass pre-main sequence (PMS) stars in recently discovered All Sky Automated Survey (ASAS) eclipsing binaries. In this paper, we briefly describe our scientific motivation, the observing tools and the results obtained from the first phase of this survey. Using the available observing facilities in India, the spectroscopic observations of a sample of 180 candidate eclipsing binary stars selected from ASAS-I&II releases were carried out during 2004–2006. The strength of Hα emission was used to characterize the level of chromospheric activity. Our spectroscopic survey reveals that out of 180 stars about 36 binary systems show excess Hα emission. One of the objects in our sample, ASAS 081700-4243.8, displays very strong Hα emission. Follow-up high-resolution spectroscopic observations reveal that this object is indeed very interesting and most likely a classical Be-type system with K0III companion.  相似文献   

15.
In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where non-thermal radio emitters are massive binaries. I will show how several stellar, wind and orbital parameters can be combined in order to make some semi-quantitative predictions on the high-energy counterpart to the non-thermal emission detected in the radio domain. These theoretical considerations will be followed by a census of results obtained so far, and related to this topic. These results concern the radio, the visible, the X-ray and the γ-ray domains. Prospects for the very high energy γ-ray emission from massive stars will also be addressed. Two particularly interesting examples—one O-type and one Wolf-Rayet binary—will be considered in details. Finally, strategies for future developments in this field will be discussed.  相似文献   

16.
Results are presented of an analysis of eclipsing binaries in the Large Magellanic Cloud. The sample of close OB-type stars was taken from the MACHO microlensing survey. The present study was restricted to systems with orbital periods shorter than 2 days and V and R light curves with large eclipse amplitudes, high S/N and homogeneous and dense phase coverage. Problems encountered during the analysis are discussed, especially with respect to the degeneracy of photometric mass ratios and other parameter correlations.  相似文献   

17.
We present an investigation of rotation–activity correlations using International Ultraviolet Explorer ( IUE ) SWP measurements of the C  iv emission line at 1550Å for 72 active binary systems. We use a standard stellar evolution code to derive non-empirical Rossby numbers, R 0, for each star in our sample and compare the resulting C  iv rotation–activity correlation to that found for empirically derived values of the Rossby number and that based on rotation alone. For dwarf stars our values of R 0 do not differ greatly from empirical ones and we find a corresponding lack of improvement in correlation. Only a marginal improvement in correlation is found for evolved components in our sample. We discuss possible additional factors, other than rotation or convection, that may influence the activity levels in active binaries. Our observational data imply, in contrast to the theoretical predictions of convective motions, that activity is only weakly related to mass in evolved stars. We conclude that current dynamo theory is limited in its application to the study of active stars because of the uncertainty in the angular velocity-depth profile in stellar interiors and the unknown effects of binarity and surface gravity.  相似文献   

18.
Six stars out of a sample of ∼2300 carbon stars in the Magellanic Clouds have been identified as having strong C2 bands but CN bands that are very weak or absent. It is argued that five of these are likely to be R Coronae Borealis (RCB) stars on the basis of their spectral characteristics and peculiar colours. Most are variables and the Large Magellanic Cloud (LMC) members have extreme radial velocities that are more like the planetary nebula population than the carbon stars. This sample consists of four LMC members (only one of them previously recognized as an RCB star), one Small Magellanic Cloud (SMC) member (the first RCB star reported in the SMC) and one foreground Galactic star.  相似文献   

19.
A spectroscopic search for luminous companions to WC9-type Wolf–Rayet stars making circumstellar dust reveals the presence of absorption lines attributable to companions in the blue spectra of WR 69 (HD 136488) and WR 104 (Ve2–45). Comparison of spectra of WR 104 observed in 1995 and 1997 showed the absorption lines to be more conspicuous in the latter observation and the emission lines weaker, suggesting a selective eclipse of the WC9 star similar to that observed by Crowther in 1996. The WC9 emission-line spectra are shown to be less uniform than previously thought, showing a significant range of O  ii line strengths. The only two WC9 stars in the observed sample that do not make circumstellar dust, WR 81 (He3–1316) and WR 92 (HD 157451), are found to have anomalously weak O  ii and strong He  ii lines. We suggest that these spectroscopic differences may reflect a compositional difference that plays a role in determining which of the WC9 stars make dust.  相似文献   

20.
A new fiber‐fed spectrograph was installed at the 60 cm telescope of the Stará Lesná Observatory. The article presents tests of its performance (spectral resolution, signal‐to‐noise ratio, radial‐velocity stability) and reports observations of selected variable stars and exoplanet host stars. First test observations show that the spectrograph is an ideal tool to observe bright eclipsing and spectroscopic binaries but also symbiotic and nova‐like stars. The radial‐velocity stability (60–80 m s–1) is sufficient to study spectroscopic binaries and to detect easily the orbital motion of hot‐Jupiter extrasolar planets around bright stars. (© 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号