首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mount Drum is one of the youngest volcanoes in the subduction-related Wrangell volcanic field (80×200 km) of southcentral Alaska. It lies at the northwest end of a series of large, andesite-dominated shield volcanoes that show a northwesterly progression of age from 26 Ma near the Alaska-Yukon border to about 0.2 Ma at Mount Drum. The volcano was constructed between 750 and 250 ka during at least two cycles of cone building and ring-dome emplacement and was partially destroyed by violent explosive activity probably after 250 ka. Cone lavas range from basaltic andesite to dacite in composition; ring-domes are dacite to rhyolite. The last constructional activity occurred in the vicinity of Snider Peak, on the south flank of the volcano, where extensive dacite flows and a dacite dome erupted at about 250 ka. The climactic explosive eruption, that destroyed the top and a part of the south flank of the volcano, produced more than 7 km3 of proximal hot and cold avalanche deposits and distal mudflows. The Mount Drum rocks have medium-K, calc-alkaline affinities and are generally plagioclase phyric. Silica contents range from 55.8 to 74.0 wt%, with a compositional gap between 66.8 and 72.8 wt%. All the rocks are enriched in alkali elements and depleted in Ta relative to the LREE, typical of volcanic arc rocks, but have higher MgO contents at a given SiO2, than typical orogenic medium-K andesites. Strontium-isotope ratios vary from 0.70292 to 0.70353. The compositional range of Mount Drum lavas is best explained by a combination of diverse parental magmas, magma mixing, and fractionation. The small, but significant, range in 87Sr/86Sr ratios in the basaltic andesites and the wide range of incompatible-element ratios exhibited by the basaltic andesites and andesites suggests the presence of compositionally diverse parent magmas. The lavas show abundant petrographic evidence of magma mixing, such as bimodal phenocryst size, resorbed phenocrysts, reaction rims, and disequilibrium mineral assemblages. In addition, some dacites and andesites contain Mg and Ni-rich olivines and/or have high MgO, Cr, Ni, Co, and Sc contents that are not in equilibrium with the host rock and indicate mixing between basalt or cumulate material and more evolved magmas. Incompatible element variations suggest that fractionation is responsible for some of the compositional range between basaltic andesite and dacite, but the rhyolites have K, Ba, Th, and Rb contents that are too low for the magmas to be generated by fractionation of the intermediate rocks. Limited Sr-isotope data support the possibility that the rhyolites may be partial melts of underlying volcanic rocks. Received March 13, 1993/Accepted September 10, 1993  相似文献   

2.
In order to establish a general chronology of the volcanic evolution and to determine the temporal succession of the structural units, potassium-argon measurements were made on 15 samples selected as a function of their stratigraphical position on Piton de la Fournaise volcano.The rocks of Réunion Island are essentially oceanic and basaltic lavas of two shield volcanoes: the central, now extinct Piton des Neiges and the more recent, still active, Piton de la Fournaise. Piton de la Fournaise volcano is generally thought to have been developed unconformably on the southeastern flank of the Piton des Neiges volcano. Previous studies have shown four successive phases and three calderas in the construction of Piton de la Fournaise.The subaerial basaltic shield-building lavas of Piton de la Fournaise appear to be older than previously thought: at least 530,000 y. old instead of 360,000 years. In terms of their duration and erupted volumes, the four successive phases are not equivalent. The duration of the first two phases is 240,000 years (from 530,000 to 290,000 y. B.P.) and 155,000 years (from about 220,000 to 65,000 y. B.P.). The duration of the third phase is less than 60,000 years and the fourth phase may actually be an episode of the third. The two volcanoes, Piton des Neiges and Piton de la Fournaise, were active simultaneously for at least 500,000 years. The evolution of Réunion Island appears to be consistent with activity along a developing rift. The evolution of Piton de la Fournaise is mainly linked with the structural development of the shield and to large-scale slumpings due to instability of the slope.  相似文献   

3.
Medicine Lake Volcano (MLV), located in the southern Cascades ∼ 55 km east-northeast of contemporaneous Mount Shasta, has been found by exploratory geothermal drilling to have a surprisingly silicic core mantled by mafic lavas. This unexpected result is very different from the long-held view derived from previous mapping of exposed geology that MLV is a dominantly basaltic shield volcano. Detailed mapping shows that < 6% of the ∼ 2000 km2 of mapped MLV lavas on this southern Cascade Range shield-shaped edifice are rhyolitic and dacitic, but drill holes on the edifice penetrated more than 30% silicic lava. Argon dating yields ages in the range ∼ 475 to 300 ka for early rhyolites. Dates on the stratigraphically lowest mafic lavas at MLV fall into this time frame as well, indicating that volcanism at MLV began about half a million years ago. Mafic compositions apparently did not dominate until ∼ 300 ka. Rhyolite eruptions were scarce post-300 ka until late Holocene time. However, a dacite episode at ∼ 200 to ∼ 180 ka included the volcano's only ash-flow tuff, which was erupted from within the summit caldera. At ∼ 100 ka, compositionally distinctive high-Na andesite and minor dacite built most of the present caldera rim. Eruption of these lavas was followed soon after by several large basalt flows, such that the combined area covered by eruptions between 100 ka and postglacial time amounts to nearly two-thirds of the volcano's area. Postglacial eruptive activity was strongly episodic and also covered a disproportionate amount of area. The volcano has erupted 9 times in the past 5200 years, one of the highest rates of late Holocene eruptive activity in the Cascades. Estimated volume of MLV is ∼ 600 km3, giving an overall effusion rate of ∼ 1.2 km3 per thousand years, although the rate for the past 100 kyr may be only half that. During much of the volcano's history, both dry HAOT (high-alumina olivine tholeiite) and hydrous calcalkaline basalts erupted together in close temporal and spatial proximity. Petrologic studies indicate that the HAOT magmas were derived by dry melting of spinel peridotite mantle near the crust mantle boundary. Subduction-derived H2O-rich fluids played an important role in the generation of calcalkaline magmas. Petrology, geochemistry and proximity indicate that MLV is part of the Cascades magmatic arc and not a Basin and Range volcano, although Basin and Range extension impinges on the volcano and strongly influences its eruptive style. MLV may be analogous to Mount Adams in southern Washington, but not, as sometimes proposed, to the older distributed back-arc Simcoe Mountains volcanic field.  相似文献   

4.
Mombacho is a deeply dissected volcano belonging to the Quaternary volcanic chain of Nicaragua. The southern, historic collapse crater (El Crater) currently hosts a fumarolic field with a maximum temperature of 121°C. Chemical and isotopic data from five gas-sampling field campaigns carried out in 2002, 2003 and 2005 highlight the presence of high-temperature gas components (e.g. SO2, HCl and HF), which indicate a significant contribution of juvenile magmatic fluids to the hydrothermal system feeding the gas discharges. This is strongly supported by the mantle-derived helium and carbon isotopic signatures, although the latter is partly masked by either a sedimentary subduction-related or a shallow carbonate component. The observed chemical and isotopic composition of the Mombacho fluids seems to indicate that this volcanic system, although it has not experienced eruptive events during the last centuries, can be considered active and possibly dangerous, in agreement with the geophysical data recorded in the region. Systematic geochemical monitoring of the fumarolic gas discharges, coupled with a seismic and ground deformation network, is highly recommended in order to monitor a possible new eruptive phase.  相似文献   

5.
The 1875-1840-Ma Great Bear magmatic zone is a 100-km wide by at least 900-km-long belt of predominantly subgreenschist facies volcanic and plutonic rocks that unconformably overlie and intrude an older sialic basement complex. The basement complex comprises older arc and back-arc rocks metamorphosed and deformed during the Calderian orogeny, 5–15 Ma before the onset of Great Bear magmatism. The Great Bear magmatic zone contains the products of two magmatic episodes, separated temporally by an oblique folding event caused by dextral transpression of the zone: (1) a 1875-1860-Ma pre-folding suite of mainly calc-alkaline rocks ranging continuously in composition from basalt to rhyolite, cut by allied biotite-hornblende-bearing epizonal plutons; and (2) a 1.85-1.84-Ga post-folding suite of discordant, epizonal, biotite syenogranitic plutons, associated dikes, and hornblende-diorites, quartz diorites, and monzodiorites. The pre-folding suite of volcanic and plutonic rocks is interpreted as a continental magmatic arc generated by eastward subduction of oceanic lithosphere. Cessation of arc magmatism and subsequent dextral transpression may have resulted from ridge subduction and resultant change in relative plate motion. Increased heat flux due to ridge subduction coupled with crustal thickening during transpression may have caused crustal melting as evidenced by the late syenogranite suite. Final closure of the western ocean by collision with a substantial continental fragment, now forming the neoautochthonous basement of the northern Canadian Cordillera, is manifested by a major swarm of transcurrent faults found throughout the Great Bear zone and the Wopmay orogen.Although there is probably no single evolutionary template for magmatism at convergent plate margins, the main Andean phase of magmatism, exemplified by the pre-folding Great Bear magmatic suite, evolves as larger quantities of subduction-related mafic magma rise into and heat the crust. This results in magmas that are more homogeneous, siliceous, and explosive with time, ultimately leading to overturn and fractionation of the continental crust.  相似文献   

6.
7.
Eruptions of the active Karymsky stratovolcano began about 5300 (6100 14C) b.p. from within a pre-existing caldera which formed 7700 14C b.p. As indicated by 32 14C determinations on buried soils and charcoal, the volcano has gone through two major cycles of activity, separated by a 2300 year period of repose. The first cycle can be divided into two stages (6100–5100 and 4300–2800 b.p.). The earlier stage began with especially intense eruptions of basaltic andesite to dacite. The later stage was characterized by moderate-strength eruptions of andesite. The second cycle, which is characterized by weak to moderate intermittent eruptions of andesite, started 500 b.p. and continues to the present. Eruptive patterns suggest that this cycle may continue for at least another 200 years with an eruptive character similar to that of the recent past.  相似文献   

8.
9.
A comprehensive volcanological study of the Albano multiple maar (Alban Hills, Italy) using (i) 40Ar/39Ar geochronology of the most complete stratigraphic section and other proximal and distal outcrops and (ii) petrographic observations, phase analyses of major and trace elements, and Sr and O isotopic analyses of the pyroclastic deposits shows that volcanic activity at Albano was strongly discontinuous, with a first eruptive cycle at 69±1 ka producing at least two eruptions, and a second cycle with two peaks at 39±1 and 36±1 ka producing at least four eruptions. Contrary to previous studies, we did not find evidence of magmatic or hydromagmatic eruptions younger than 36±1 ka. The activity of Albano was fed by a new batch of primary magma compositionally different from that of the older activity of the Alban Hills; moreover, the REE and 87Sr/86Sr data indicate that the Albano magma originated from an enriched metasomatized mantle. According to the modeled liquid line of descent, this magma differentiated under the influence of magma/limestone wall rock interaction. Our detailed eruptive and petrologic reconstruction of the Albano Maar evolution substantiates the dormant state of the Alban Hills Volcanic District. Electronic Supplementary Material Supplementary material is available for this article at Editorial responsibility: J. Donnelly-Nolan An erratum to this article can be found at  相似文献   

10.
The dacite to andesite zoned Mateare Tephra is the fallout of a predominantly plinian eruption from Chiltepe peninsula at the western shore of Lake Managua that occurred 3000–6000 years ago. It comprises four units: Unit A of high-silica dacite is stratified, ash-rich lapilli fallout generated by unsteady subplinian eruption pulses affected by minor water access to the conduit and conduit blocking by degassed magma. Unit B of less silicic dacite is well sorted, massive pumice lapilli fallout from the main, steady plinian phase of the eruption. Unit C is andesitic fallout that is continuous from unit B except for the rapid change in chemical composition, which had little influence on the ongoing eruption except for a minor transient reduction of the discharge rate and access of water to the conduit. After this, discharge rate re-established to a strong plinian eruption that emplaced the main part of unit C. This was again followed by water access to the conduit which increased through upper unit C. The lithic-rich lapilli to wet ash fallout of unit D is the product of the fully phreatomagmatic terminal phase of the eruption. A massive well-sorted sand layer, the Mateare Sand, replaces laterally variable parts of unit A and lowermost part of unit B in outcrops up to 32 m above present lake level. The corresponding interval missing in the primary fallout can be identified by comparing the composition of pumice entrained in the sand, and pumice from the local base of unit B on top of the sand, with the compositional gradient in undisturbed fallout. The amount of fallout entrained in the sand decreases with distance to the lake. The Mateare Sand occurs at elevations well above beach levels and its widespread continuous distribution defies a fluviatile origin. Instead, it was produced by lake tsunamis triggered by eruption pulses during the initial unsteady phase of activity. Such tsunamis could threaten areas not affected by fallout, and represent a hazard of particular importance in Nicaragua where two large lakes host several explosive volcanoes.  相似文献   

11.
The Fontana Lapilli deposit is one of very few examples of basaltic Plinian eruptions discovered so far. Juvenile clasts have uniform chemical composition and moderate ranges of density and bulk vesicularity. However, clast populations include two textural varieties which are microlite-poor and microlite-rich respectively. These two clast types have the same clast density range, making a distinction impossible on that base alone. The high bubble number density (~ 107 cm? 3) and small bubble population of the Fontana clasts suggest that the magma underwent coupled degassing following rapid decompression and fast ascent rate, leading to non-equilibrium degassing with continuous nucleation as it is common for silicic analogues. The Fontana products have lower microlite contents (10–60 vol.%) with respect to the other documented basaltic Plinian eruptions suggesting that the brittle fragmentation, implied for the other basaltic Plinian deposits, does not apply to the Fontana products and another fragmentation mechanism led the basaltic magma to erupt in a Plinian fashion.  相似文献   

12.
13.
Mount Cameroon is an active volcano located in the Gulf of Guinea, west of Central Africa. After the March–April 1999 eruption on the SW flank, another eruption of the volcano occurred in 2000. It took place from three sites on the southwest flank and near the summit. The first eruptive site was located 500 m to the southwest of the summit, at 3900 m altitude. Activity on this site was mainly explosive with no lava flow. The second site was located between 3220 and 3470 m altitude. Lava was emitted along NNE–SSE fissures from this site and flew towards Buea, the main city of the area, stopping ~ 4 km from the first houses. The last site was located in the south western flank at 2750 m altitude. The lava ejected from an old cone near the first 1999 eruptive site was divided into two branches, for a total length of around 1 km. The location of active volcanic cones in 1999 and 2000 seems to be linked to the local tectonics. The pre-eruptive period was characterized by a seismic swarm which may be a precursor recorded in March 2000 by an analogue seismic station. The main shock was a magnitude 3.2 event, and was felt by the population in Ekona town located on the eastern flank. It had a Modified Mercalli intensity of III–IV. When the eruption started, a temporary network of short period 3-component seismic stations was set up around the volcano to improve the monitoring of seismic activity. The co-eruptive period from late May to September was characterized by sequences of earthquake swarms, volcanic tremor and a family of earthquakes having similar waveform and appearing regularly in August and early September. Some of the earthquakes were felt by the population in Buea and its environments. The largest seismic event recorded had a magnitude of 4. During the post-eruptive period from mid-September to December, seismicity returned to its background level of 1–3 earthquakes per 3 days. Hypocenter locations reveal a linear narrow structure under the summit zone which could represent the magmatic conduit of the volcano. The frequency/magnitude relationship revealed a b-value of 1.43 higher than those previously determined, but more representative of volcanic media. Seismic energy release was gradual after the 2000 eruption started.  相似文献   

14.
Barren Island (Andaman Sea) is the northernmost active volcano of the Indonesian Arc. To construct the eruptive history of this little studied volcano, we measured 14C dates of inorganic carbon in sediment beds, and Sr and Nd isotopic ratios of seven discrete ash layers, in a marine sediment core collected from 32 km southeast of the volcano. The study reveals that the volcano had seven major ash eruptions at ~70, 69, 61, 24, 19, 15, and 10 ka. The ash layers erupted from 70 ka through 19 ka have highly uniform Nd isotopic composition, and since the ~15 ka eruption to the present the isotopic composition has been highly variable. Between ~24 ka and ~10 ka, the volcano had large ash eruptions spaced at 4,500 year intervals. Isotopically correlating the precaldera lavas and ash exposed on the volcano to the uppermost ash layer in the core, we infer that the caldera of Barren Island volcano is younger than 10 ka.  相似文献   

15.
Post-10 ka rhyolitic eruptions from the Haroharo linear vent zone, Okataina Volcanic Centre, have occurred from several simultaneously active vents spread over 12 km. Two of the three eruption episodes have tapped multiple compositionally distinct homogeneous magma batches. Three magmas totalling ~8 km3 were erupted during the 9.5 ka Rotoma episode. The most evolved Rotoma magma (SiO2=76.5–77.9 wt%, Sr=96–112 ppm) erupted from a southeastern vent, and is characterised by a cummingtonite-dominant mineralogy, a temperature of 739±14°C, and fO2 of NNO+0.52±0.11. The least evolved (SiO2=75.0–76.4 wt%, Sr=128–138 ppm, orthopyroxene+ hornblende-dominant) Rotoma magma erupted from several vents, and was hotter (764±18°C) and more reduced (NNO+0.40±0.13). The ~11 km3 Whakatane episode occurred at 5.6 ka and also erupted three magmas, each from a separate vent. The most evolved (SiO2=73.3–76.2 wt%, Sr=88–100 ppm) Whakatane magma erupted from the southwestern (Makatiti) vent and is cummingtonite-dominant, cool (745±11°C), and reduced (NNO+0.34±0.08). The least evolved (SiO2=72.8–74.1 wt%, Sr=132–134 ppm) magma was erupted from the northeastern (Pararoa) vent and is characterised by an orthopyroxene+ hornblende-dominant mineralogy, temperature of 764±18°C, and fO2 of NNO+0.40±0.13. Compositionally intermediate magmas were erupted during the Rotoma and Whakatane episodes are likely to be hybrids. A single ~13 km3 magma erupted during the intervening 8.1 ka Mamaku episode was relatively homogeneous in composition (SiO2=76.1–76.8 wt%, Sr=104–112 ppm), temperature (736±18°C), and oxygen fugacity (NNO+0.19±0.12). Some of the vents tapped a single magma while others tapped several. Deposit stratigraphy suggests that the eruptions alternated between magmas, which were often simultaneously erupted from separate vents. Both effusive and explosive activity alternated, but was predominantly effusive (>75% erupted as lava domes and flows). The plumbing systems which fed the vents are inferred to be complex, with magma experiencing different conditions in the conduits. As the eruption of several magmas was essentially concurrent, the episodes were likely triggered by a common event such as magmatic intrusion or seismic disturbance.  相似文献   

16.
Apatite distributions and compositions from cumulates from the EPR at Hess Deep, the MAR at the Kane Transform, and the SWIR at ODP Hole 735B were determined to assess the variability at each setting and to evaluate the potential utility of apatite in understanding the evolution of the lower ocean crust. Apatite in cumulates with low P2O5 contents are heterogeneously distributed along linear arrays or in tight clusters suggesting they crystallized from planar or pipe-like channels of evolved liquid. Most of the variation in the apatite composition is in the halogen site. The XApF and XApCl are inversely correlated defining trends at near constant XApOH with EPR XApOH=0.25, MAR XApOH=0.45, and SWIR XApOH=0.65. These trends are defined both by sample averages and by the range of individual analyses in samples with large ranges in their F/Cl ratio. These trends are interpreted to reflect the reequilibration of apatite from variably evolved liquids/fluids that moved through the crystal mush. Comparison of the F–Cl–OH contents of apatite with the F–Cl–OH contents of glasses recovered from the same ridges show approximate correspondence: apatite and glasses from the EPR have the highest halogen contents while apatite and glasses from the MAR and SWIR have more OH. Some of the higher Cl contents in the apatite are interpreted to be produced by degassing of the cumulus pile while others reflect the assimilation of a seawater component. We suggest that systematic analysis of apatite from oceanic cumulates might allow cumulates that crystallized at shallow depths and assimilated seawater-derived components to be distinguished from those that crystallized below the level of seawater interaction.  相似文献   

17.
The 1973 eruption of Eldfell volcano, Iceland, appears to have been a short, simple event, but textural and geochemical evidence suggest that it may have had three different magmatic components. The first-erupted fissure magmas were chemically evolved, rich in plagioclase (∼ 18%) and had shallow, straight crystal size distribution (CSD) curves. The early lavas were less evolved chemically, had lower plagioclase contents (∼ 13%) and steeper, slightly concave up CSDs. The late lavas were chemically similar to the early lavas, but even richer in plagioclase than the initial magmas (∼ 24%) and had the steepest CSDs. There was no chemical evidence for plagioclase fractionation, but compositional diversity could be produced by clinopyroxene fractionation which must have occurred at depth. We propose that the eruption started with old, coarsened (Ostwald ripened) magma left over from a previous eruption, possibly that which produced Surtsey Island ten years earlier. The early flows may be mixtures of small amounts of this old magma with a new, low crystallinity, uncoarsened magma or a completely new magma. The late flows are another new magma from depth, chemically similar to the early flows, but which has grown plagioclase under increasing saturation (undercooling) perhaps during its ascent. All three magmatic components may have originated from the same parent, but had varying degrees of clinopyroxene fractionation, plagioclase nucleation and growth, and coarsening.  相似文献   

18.
Published gravity data on active volcanoes generally reflecteither the low density scoriaceous/pumiceous deposits that are localized within ring-fracture collapse depressions, such as the calderas of mature silicic volcanoes,or the high density frozen magma conduits that occur beneath basaltic shields and cones. The intensive gravity surveys reported here over three complex andesite volcanoes reveal features of both types. Their multi-component gravity fields have crater-centred positive anomalies (1–2 km diameter) surrounded by broader zones of negative gravity with similar amplitudes but greater width (5–10 km). The former are thought to reflect sub-crater magma pipes ofnormal density (ca. 2.5–2.6 Mg m−3) surrounded by pyroclastic scoria, ashes and occasional lava flows of muchlower net density (1.8–2.4 Mg m−3) which, in turn, account for the negative anomalous zones because the deeper, more consolidated and older parts of these andesite volcano edifices have more normal densities (2.3–2.6 Mg m−3).The low density materials are particularly interesting because they appear to have filled topographic depressions to depths of several hundred metres, especially where old caldera-like structures have been postulated from the steep gravity gradients over perimeter ring faults. A model is developed whereby short periods of caldera collapse, associated with intermittent, large high level magma bodies, are interspersed by normal crater-like activity with narrow sub-surface magma pipes. Dominantly pyroclastic activity from summit craters generates the materials that gradually fill earlier-formed topographic depressions. This study demonstrates the unique value of detailed gravity surveys, combined with surface geological information, for modelling and understanding the evolution of active volcano summit regions.  相似文献   

19.
Ubinas volcano has had 23 degassing and ashfall episodes since A.D. 1550, making it the historically most active volcano in southern Peru. Based on fieldwork, on interpretation of aerial photographs and satellite images, and on radiometric ages, the eruptive history of Ubinas is divided into two major periods. Ubinas I (Middle Pleistocene >376 ka) is characterized by lava flow activity that formed the lower part of the edifice. This edifice collapsed and resulted in a debris-avalanche deposit distributed as far as 12 km downstream the Rio Ubinas. Non-welded ignimbrites were erupted subsequently and ponded to a thickness of 150 m as far as 7 km south of the summit. These eruptions probably left a small collapse caldera on the summit of Ubinas I. A 100-m-thick sequence of ash-and-pumice flow deposits followed, filling paleo-valleys 6 km from the summit. Ubinas II, 376 ky to present comprises several stages. The summit cone was built by andesite and dacite flows between 376 and 142 ky. A series of domes grew on the southern flank and the largest one was dated at 250 ky; block-and-ash flow deposits from these domes filled the upper Rio Ubinas valley 10 km to the south. The summit caldera was formed between 25 and 9.7 ky. Ash-flow deposits and two Plinian deposits reflect explosive eruptions of more differentiated magmas. A debris-avalanche deposit (about 1.2 km3) formed hummocks at the base of the 1,000-m-high, fractured and unstable south flank before 3.6 ka. Countless explosive events took place inside the summit caldera during the last 9.7 ky. The last Plinian eruption, dated A.D.1000–1160, produced an andesitic pumice-fall deposit, which achieved a thickness of 25 cm 40 km SE of the summit. Minor eruptions since then show phreatomagmatic characteristics and a wide range in composition (mafic to rhyolitic): the events reported since A.D. 1550 include many degassing episodes, four moderate (VEI 2–3) eruptions, and one VEI 3 eruption in A.D. 1667. Ubinas erupted high-K, calc-alkaline magmas (SiO2=56 to 71%). Magmatic processes include fractional crystallization and mixing of deeply derived mafic andesites in a shallow magma chamber. Parent magmas have been relatively homogeneous through time but reflect variable conditions of deep-crustal assimilation, as shown in the large variations in Sr/Y and LREE/HREE. Depleted HREE and Y values in some lavas, mostly late mafic rocks, suggest contamination of magmas near the base of the >60-km-thick continental crust. The most recently erupted products (mostly scoria) show a wide range in composition and a trend towards more mafic magmas.Recent eruptions indicate that Ubinas poses a severe threat to at least 5,000 people living in the valley of the Rio Ubinas, and within a 15-km radius of the summit. The threat includes thick tephra falls, phreatomagmatic ejecta, failure of the unstable south flank with subsequent debris avalanches, rain-triggered lahars, and pyroclastic flows. Should Plinian eruptions of the size of the Holocene events recur at Ubinas, tephra fall would affect about one million people living in the Arequipa area 60 km west of the summit.Editorial responsibility: D Dingwell  相似文献   

20.
Gases, condensates and silica tube precipitates were collected from 400°C (Z2) and 800°C (Z3) fumaroles at Colima volcano, Mexico, in 1996–1998. Volcanic gases at Colima were very oxidized and contain up to 98% air due to mixing with air inside the dome interior, close to the hot magmatic body. An alkaline trap method was used to collect gas samples, therefore only acidic species were analysed. Colima volcanic gases are water-rich (95–98 mol%) and have typical S/C/Cl/F ratios for a subduction type volcano. δD-values for the high-temperature Z3 fumarolic vapour vary from −26 to −57‰. A negative δD–Cl correlation for the Z3 high-temperature fumarole may result from magma degassing: enrichment in D and decrease in the Cl concentration in condensates are likely a consequence of input of “fresh” batches of magma and an increasing of volcanic activity, respectively.The trace element composition of Colima condensates generally does not differ from that of other volcanoes (e.g. Merapi, Kudryavy) except for some enrichment in V, Cu and Zn. Variations in chemical composition of precipitates along the silica tube from the high-temperature fumarole (Colima 1, fumarole Z3), in contrast to other volcanoes, are characterized by high concentrations of Ca and V, low concentration of Mo and a lack of Cd. Mineralogy of precipitates differs significantly from that described for silica tube experiments at other volcanoes with reduced volcanic gas. Thermochemical modelling was used to explain why very oxidized gas at Colima does not precipitate halite, sylvite, and Mo- and Cd-minerals, but does precipitate V-minerals and native gold, which have not been observed before in mineral precipitates from reduced volcanic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号