首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the Solomon Islands and New Britain subduction zones, the largest earthquakes commonly occur as pairs with small separation in time, space and magnitude. This doublet behavior has been attributed to a pattern of fault plane heterogeneity consisting of closely spaced asperities such that the failure of one asperity triggers slip in adjacent asperities. We analyzed body waves of the January 31, 1974,M w =7.3, February 1, 1974,M w =7.4, July 20, 1975 (1437)M w =7.6 and July 20, 1975 (1945),M w =7.3 doublet events using an iterative, multiple station inversion technique to determine the spatio-temporal distribution of seismic moment release associated with these events. Although the 1974 doublet has smaller body wave moments than the 1975 events, their source histories are more complicated, lasting over 40 seconds and consisting of several subevents located near the epicentral regions. The second 1975 event is well modeled by a simple point source initiating at a depth of 15 km and rupturing an approximate 20 km region about the epicenter. The source history of the first 1975 event reveals a westerly propagating rupture, extending about 50 km from its hypocenter at a depth of 25 km. The asperities of the 1975 events are of comparable size and do not overlap one another, consistent with the asperity triggering hypothesis. The relatively large source areas and small seismic moments of the 1974 doublet events indicate failure of weaker portions of the fault plane in their epicentral regions. Variations in the roughness of the bathymetry of the subducting plate, accompanying subduction of the Woodlark Rise, may be responsible for changes in the mechanical properties of the plate interface.To understand how variations in fault plane coupling and strength affect the interplate seismicity pattern, we relocated 85 underthrusting earthquakes in the northern Solomon Islands Are since 1964. Relatively few smaller magnitude underthrusting events overlap the Solomon Islands doublet asperity regions, where fault coupling and strength are inferred to be the greatest. However, these asperity regions have been the sites of several previous earthquakes withM s 7.0. The source regions of the 1974 doublet events, which we infer to be mechanically weak, contain many smaller magnitude events but have not generated any otherM s 7.0 earthquakes in the historic past. The central portion of the northern Solomon Islands Arc between the two largest doublet events in 1971 (studied in detail bySchwartz et al., 1989a) and 1975 contains the greatest number of smaller magnitude underthrusting earthquakes. The location of this small region sandwiched between two strongly coupled portions of the plate interface suggest that it may be the site of the next large northern Solomon Islands earthquake. However, this region has experienced no known earthquakes withM s 7.0 and may represent a relatively aseismic portion of the subduction zone.  相似文献   

2.
— I studied crustal deformation in the Kanto district, central Japan, based on continuous GPS data. Horizontal as well as vertical displacement rate demonstrate significant interaction between the landward Kanto block and the Philippine Sea plate. Although the subduction effect of the Pacific plate is not apparent, it is reasonable to consider the entire Kanto district is displaced westward due to the interaction with the Pacific plate. The GPS velocity data were inverted to estimate the slip deficit distribution on the Sagami Trough subduction zone. The result delineates a strongly coupled region on the plate interface, part of which corresponds to the 1923 Kanto earthquake. The strongly coupled region is located shallower than 20 km. In addition, the plate interaction is laterally heterogeneous even in the same depth range, implying thermal structure is not the only factor controlling interplate coupling. The GPS data also detected a silent earthquake event on the interface of the Philippine Sea slab east of the Boso Peninsula in the middle of May, 1996. The silent rupture propagated over a 50 km * 50 km wide area during about a week. The maximum slip was approximately 50 mm and the released seismic moment was 4.7*1018Nm (M w 6.4). There was a small seismicity triggered by this silent event. The silent slip was located in the peripheral of the strongly coupled area, suggesting that frictional properties and/or stress conditions are inhomogeneous on the plate boundary interface.  相似文献   

3.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

4.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

5.
—By rupturing more than half of the shallow subduction interface of the Nazca Ridge, the great November 12, 1996 Peruvian earthquake contradicts the hypothesis that oceanic ridges subduct aseismically. The mainshock’s rupture has a length of about 200 km and has an average slip of about 1.4 m. Its moment is 1.5 × 1028 dyne-cm and the corresponding M w is 8.0. The mainshock registered three major episodes of moment release as shown by a finite fault inversion of teleseismically recorded broadband body waves. About 55% of the mainshock’s total moment release occurred south of the Nazca Ridge, and the remaining moment release occurred at the southern half of the subduction interface of the Nazca Ridge. The rupture south of the Nazca Ridge was elongated parallel to the ridge axis and extended from a shallow depth to about 65 km depth. Because the axis of the Nazca Ridge is at a high angle to the plate convergence direction, the subducting Nazca Ridge has a large southwards component of motion, 5 cm/yr parallel to the coast. The 900–1200 m relief of the southwards sweeping Nazca Ridge is interpreted to act as a "rigid indenter," causing the greatest coupling south of the ridge’s leading edge and leading to the large observed slip. The mainshock and aftershock hypocenters were relocated using a new procedure that simultaneously inverts local and teleseismic data. Most aftershocks were within the outline of the Nazca Ridge. A three-month delayed aftershock cluster occurred at the northern part of the subducting Nazca Ridge. Aftershocks were notably lacking at the zone of greatest moment release, to the south of the Nazca Ridge. However, a lone foreshock at the southern end of this zone, some 140 km downstrike of the mainshock’s epicenter, implies that conditions existed for rupture into that zone. The 1996 earthquake ruptured much of the inferred source zone of the M w 7.9–8.2 earthquake of 1942, although the latter was a slightly larger earthquake. The rupture zone of the 1996 earthquake is immediately north of the seismic gap left by the great earthquakes (M w 8.8–9.1) of 1868 and 1877. The M w 8.0 Antofagasta earthquake of 1995 occurred at the southern end of this great seismic gap. The M w 8.2 deep-focus Bolivian earthquake of 1994 occurred directly downdip of the 1868 portion of that gap. The recent occurrence of three significant earthquakes on the periphery of the great seismic gap of the 1868 and 1877 events, among other factors, may signal an increased seismic potential for that zone.  相似文献   

6.
The 1963 great Kurile earthquake was an underthrust earthquake occurred in the Kurile?CKamchatka subduction zone. The slip distribution of the 1963 earthquake was estimated using 21 tsunami waveforms recorded at tide gauges along the Pacific and Okhotsk Sea coasts. The extended rupture area was divided into 24 subfaults, and the slip on each subfault was determined by the tsunami waveform inversion. The result shows that the largest slip amount of 2.8?m was found at the shallow part and intermediate depth of the rupture area. Large slip amounts were found at the shallow part of the rupture area. The total seismic moment was estimated to be 3.9?×?1021?Nm (Mw 8.3). The 2006 Kurile earthquake occurred right next to the location of the 1963 earthquake, and no seismic gap exists between the source areas of the 1963 and 2006 earthquakes.  相似文献   

7.
The tsunami caused by the 2007 Peru earthquake (Mw 8.0) provoked less damage than by the seismic shaking itself (numerous casualties due to the earthquake in the vicinity of Pisco). However, it propagated across the Pacific Ocean and small waves were observed on one tide gauge in Taiohae Bay (Nuku Hiva, Marquesas, French Polynesia). We invert seismological data to recover the rupture pattern in two steps. The first step uses surface waves to find a solution for the moment tensor, and the second step uses body waves to compute the slip distribution in the source area. We find the slip distribution to consist of two main slip patches in the source area. The inversion of surface waves yields a scalar moment of 8.9 1020 Nm, and body-wave inversion gives 1.4 1021 Nm. The inversion of tsunami data recorded on a single deep ocean sensor also can be used to compute a fault slip pattern (yielding a scalar moment of 1.1 1021 Nm). We then use these different sources to model the tsunami propagation across the Pacific Ocean, especially towards Nuku Hiva. While the source model taken from the body-wave inversion yields computed tsunami waves systematically too low with respect to observations (on the central Pacific Ocean DART buoy as on the Polynesian tide gauge), the source model established from the surface-wave inversion is more efficient to fit the observations, confirming that the tsunami is sensitive to the low frequency component of the source. Finally we also discuss the modeling of the late tsunami arrivals in Taiohae Bay using several friction coefficients for the sea bottom.  相似文献   

8.
主要研究2009年7月24日西藏尼玛西南MS5.6地震的基本参数、地震序列特征、震源参数、发震构造等;利用震中附近600km范围内台站测定参数研究地震的震源机制解,与哈佛大学给出的震源机制解较一致,且与通过现场考察的发震断层走向具有一致性。研究认为本次地震发生在冈底斯山—拉萨块体内部,断裂为NNW向,主要受张应力作用产生左旋走滑正断层活动。此外还分析了震前地震学条带异常特征,结束表明,震前1年出现NW向条带非常显著,研究结论为该地区今后地震预测提供科学依据。  相似文献   

9.
Wave-form modelling of body waves has been done to study the seismic source parameters of three earthquakes which occurred on October 21, 1964 (M b =5.9), September 26, 1966 (M b =5.8) and March 14, 1967 (M b =5.8). These events occurred in the Indochina border region where a low-angle thrust fault accommodates motion between the underthrusting Indian plate and overlying Himalaya. The focal depths of all these earthquakes are between 12–37 km. The total range in dip for the three events is 5°–20°. TheT axes are NE-SW directed whereas the strikes of the northward dipping nodal planes are generally parallel to the local structural trend. The total source durations have been found to vary between 5–6 seconds. The average values of seismic moment, fault radius and dislocation are 1.0–11.0×1025 dyne-cm, 7.7–8.4km and 9.4–47.4 cm, respectively whereas stress drop, apparent stress and strain energy are found to be 16–76 bars, 8.2–37.9 bars and 0.1–1.7×1021 ergs, respectively. These earthquakes possibly resulted due to the tension caused by the bending of the lithospheric plate into a region of former subduction which is now a zone of thrusting and crustal shortening.  相似文献   

10.
On 25 April 2015, an M w 7.8 earthquake occurred on the Main Himalaya Thrust fault with a dip angle of ~ 7° about 77 km northwest of Kathmandu, Nepal. This Nepal Gorkha event is the largest one on the Himalayan thrust belt since 1950. Here we use the compressive sensing method in the frequency domain to track the seismic radiation and rupture process of this event using teleseismic P waves recorded by array stations in North America. We also compute the distribution of static shear stress changes on the fault plane from a coseismic slip model. Our results indicate a dominant east-southeastward unilateral rupture process from the epicenter with an average rupture speed of ~3 km s?1. Coseismic radiation of this earthquake shows clear frequency-dependent features. The lower frequency (0.05–0.3 Hz) radiation mainly originates from large coseismic slip regions with negative coseismic shear stress changes. In comparison, higher frequency (0.3–0.6 Hz) radiation appears to be from the down-dip part around the margin of large slip areas, which has been loaded and presents positive coseismic shear stress changes. We propose an asperity model to interpret this Nepal earthquake sequence and compare the frequency-dependent coseismic radiation with that in subduction zones. Such frequency-dependent radiation indicates the depth-varying frictional properties on the plate interface of the Nepal section in the main Himalaya thrust system, similar to previous findings in oceanic subduction zones. Our findings provide further evidence of the spatial correlation between changes of static stress status on the fault plane and the observed frequency-dependent coseismic radiation during large earthquakes. Our results show that the frequency-dependent coseismic radiation is not only found for megathrust earthquakes in the oceanic subduction environment, but also holds true for thrust events in the continental collision zone.  相似文献   

11.
Upper mantle low anisotropy channels below the Pacific Plate   总被引:1,自引:0,他引:1  
A new 3D anisotropic model has been obtained at a global scale by using a massive dataset of seismic surface waves. Though seismic heterogeneities are usually interpreted in terms of heterogeneous temperature field, a large part of lateral variations are also induced by seismic anisotropy of upper mantle minerals. New insight into convection processes can be gained by taking seismic anisotropy into account in the inversion procedure. The model is best resolved in the Pacific Plate, the largest and the most active tectonic plate. Superimposed on the large-scale radial (ξ parameter) and azimuthal anisotropy (of VSV velocity) within and below the lithosphere, correlated with present or past Pacific Plate motions, are smaller-scale (<1000 km) lateral variations of anisotropy not predicted by plate tectonics. Channels of low anisotropy down to a depth of 200 km (hereafter referred to as LAC) are observed and are the best resolved anomalies: one east-west channel between Easter Island and the Tonga-Kermadec subduction zones (observed on both radial and azimuthal anisotropies) and a second one (only observed on azimuthal anisotropy) extending from the south-west Pacific up to south-east Hawaii, and passing through the Polynesia hotspot group for plate older than about 40 Ma. These features provide strong constraints on the decoupling between the plate and asthenosphere. They are presumably related to cracking within the Pacific Plate and/or to secondary convection below the rigid lithosphere, predicted by numerical and analog experiments. The existence and location of these LACs might be related to the current active volcanoes and hotspots (possibly plumes) in the Central Pacific. LACs, which are dividing the Pacific Plate into smaller units, might indicate a future reorganization of plates with ridge migrations in the Pacific Ocean.  相似文献   

12.
基于南北地震带北段94个固定地震台站2013年1-9月的连续波形资料,利用背景噪声方法和层析成像技术反演该地区在2013年7月22日甘肃岷县漳县MS6.6地震前后不同时间段、两个月相同时间窗长的瑞利面波速度结构与波速演化。相速度成像结果表明:岷县漳县地震前5-6月相对于3-4月,临潭-宕昌断裂带及周边地区出现了波速降低的现象,而震后8-9月相对于5-6月波速逐渐恢复升高,这说明在岷县漳县地震前两个月出现了波速低值异常,并且在低速异常区域的边界处发生了此次地震。  相似文献   

13.
Parameters of seismic waves from clusters of local weak earthquakes that occurred at the upper boundary of the seismofocal zone in depth intervals of 40–60 and 70–90 km along eastern Hokkaido are investigated for the period 1998–2003, including the strong (M = 8.0) Tokachi-Oki earthquake of September 26, 2003. Analysis of data indicates that the distribution of anisotropic properties along Hokkaido is inhomogeneous and parameters of split waves (the azimuth of the fast S wave and the time delay between split S waves) are sensitive to variations in the stress-strain state of the medium. Unstable behavior of split wave parameters and increased values of the ratio V P /V S for clusters of events in the areas of the Hidaka Mountains and Nemuro Peninsula imply that the medium is in a mechanically weakened state (in the regime of intense dilatant deformation). On the contrary, the regions beneath the Tokachi and Kushiro plains are more rigid and are characterized by lower V P /V S values and comparatively stable behavior of wave parameters. Anomalous parameters of split waves from events of clusters in areas of different stations correlate with each other and are related to occurrence times of large earthquakes around Hokkaido, which may point to a redistribution of stresses and strains and fluid migration in the subduction zone.  相似文献   

14.
The source mechanism of a large (Ms ? 7.2) earthquake that occurred in the oceanic plate at the junction of the Tonga—Kermadec trench systems with the aseismic Louisville ridge is found by inverting long-period vertical-component Rayleigh waves recorded by the IDA network. The solution is an almost-pure normal fault, on a plane striking roughly parallel to the trench axis, with seismic moment of 1.7 × 1027 dyn cm, and thus is among the ten largest documented shallow normal-fault earthquakes. A point-source depth of 20 km for the event is resolved by modeling teleseismic body waves; the actual rupture may have extended deeper, to 30 or 40 km. The earthquake was a multiple event, consisting of two sources separated by 16 s. A rupture velocity of 3.5 km s?1 is inferred. The earthquake can be interpreted as tensional failure in the shallow portion of the downgoing plate caused by the gravitational pull of the slab. The Louisville ridge may be creating a local degree of decoupling of the oceanic plate from the overriding plate, and/or a zone of extension within the slab, which could enhance the effect of the gravitational forces in the shallower part of the downgoing plate. In particular, the earthquake could be associated with the break-up of the leading seamount of the ridge, which is currently right at the trench. Alternatively, the earthquake may have been caused by stresses associated with the bending of the plate prior to subduction.  相似文献   

15.
The seismogenic fault and the dynamic mechanism of the Ning’er, Yunnan Province MS6.4 earthquake of June 3, 2007 are studied on the basis of the observation data of the surface fissures, sand blow and water eruption, landslide and collapse associated with the earthquake, incorporating with the data of geologic structures, focal mechanism solutions and aftershock distribution for the earthquake area. The observation of the surface fissures reveals that the Banhai segment of the NW-trending Ning’er fault is dominated by right-lateral strike-slip, while the NNE-trending fault is dominated by left-lateral strike-slip. The seismo-geologic hazards are concentrated mainly within a 330°-extending zone of 13.5 km in length and 4 km in width. The major axis of the isoseismal is also oriented in 330° direction, and the major axis of the seismic intensity VIII area is 13.5 km long. The focal mechanism solutions indicate that the NW-trending nodal plane of the Ning’er MS6.4 earthquake is dominated by right-lateral slip, while the NE-trending nodal plane is dominated by left-lateral slip. The preferred distribution orientation of the aftershocks of MS≥2 is 330°, and the focal depths are within the range of 3~12 km, predominantly within 3~10 km. The distribution of the aftershocks is consistent with the distribution zone of the seismo-geologic hazards. All the above-mentioned data indicate that the Banhai segment of the Ning’er fault is the seismogenic fault of this earthquake. Moreover, the driving force of the Ning’er earthquake is discussed in the light of the active block theory. It is believed that the northward pushing of the Indian plate has caused the eastward slipping of the Qinghai-Tibetan Plateau, which has been transformed into the southeastern-southernward squeezing of the southwest Yunnan region. As a result, the NW-trending faults in the vicinity of the Ning’er area are dominated by right-lateral strike-slip, while the NE-trending faults are dominated by left-lateral strike-slip. This tectonic framework might be the main cause of the frequent occurrence of MS6.0~6.9 earthquakes in the area.  相似文献   

16.
The December 26, 2004 Sumatra–Andaman Island earthquake, which ruptured the Sunda Trench subduction zone, is one of the three largest earthquakes to occur since global monitoring began in the 1890s. Its seismic moment was M 0 = 1.00 × 1023–1.15 × 1023 Nm, corresponding to a moment-magnitude of M w = 9.3. The rupture propagated from south to north, with the southerly part of fault rupturing at a speed of 2.8 km/s. Rupture propagation appears to have slowed in the northern section, possibly to ∼2.1 km/s, although published estimates have considerable scatter. The average slip is ∼5 m along a shallowly dipping (8°), N31°W striking thrust fault. The majority of slip and moment release appears to have been concentrated in the southern part of the rupture zone, where slip locally exceeded 30 m. Stress loading from this earthquake caused the section of the plate boundary immediately to the south to rupture in a second, somewhat smaller earthquake. This second earthquake occurred on March 28, 2005 and had a moment-magnitude of M w = 8.5.  相似文献   

17.
18.
—In order to study both the interplate seismic loading cycle and the distribution of intraplate deformation of the Andes, a 215 site GPS network covering Chile and the western part of Argentina was selected, monumented and observed in 1993 and 1994. A dense part of the network in northern Chile and northwest Argentina, comprising some 70 sites, was re-observed after two years in October/November, 1995. The M w = 8.0 Antofagasta (North Chile) earthquake of 30th July, 1995 took place between the two observations. The city of Antofagasta shifted 80 cm westwards by this event and the displacement still reached 10 cm at locations 300 km from the trench. Three different deformation processes have been considered for modeling the measured displacements (1) interseismic accumulation of elastic strain due to subduction coupling, (2) coseismic strain release during the Antofagasta earthquake and (3) crustal shortening in the Sub-Andes.¶Eastward displacement of the sites to the north and to the south of the area affected by the earthquake is due to the interseismic accumulation of elastic deformation. Assuming a uniform slip model of interseismic coupling, the observed displacements at the coast require a fully locked subduction interface and a depth of seismic coupling of 50 km. The geodetically derived fault plane parameters of the Antofagasta earthquake are consistent with results derived from wave-form modeling of seismolog ical data. The coseismic slip predicted by the variable slip model reaches values of 3.2 m in the dip-slip and 1.4 m in the strike-slip directions. The derived rake is 66°. Our geodetic results suggest that the oblique Nazca–South American plate convergence is accommodated by oblique earthquake slip with no slip partitioning. The observed displacements in the back-arc indicate a present-day crustal shortening rate of 3–4 mm/year which is significantly slower than the average of 10 mm/year experienced during the evolution of the Andean plateau.  相似文献   

19.
We present a comprehensive study of the seismicity of the Antarctic plate for the period 1925–1980. The total seismic energy released during this period in the interior of the plate, 3.2 × 1022 ergs, is compared to figures for the African plate, of similar kinematics and size, and to the neighboring Nazca plate. We conclude that Antarctic seismicity is comparable to that of other plates, thus refuting the claim that a surrounding ring of spreading ridges hampers transmission of tectonic stress and leaves it stress-free, and clearly showing the importance of ridge-push as a driving mechanism for the plates. In the souteastern Pacific Basin, it is shown that the line of maximum age in the plate, which is the locus of previous positions of the triple junction, is a line of preferential stress release, along with more conventional features, e.g. fracture zones. In the Indian Ocean, we study a 1973 earthquake northeast of Kerguelen (Ms = 5.5): its depth (45 km), tensional mechanism, and low stress suggest that it represents a magmatic process related to the nearby hotspot, and possibly involving the pipeline structure proposed by Morgan.  相似文献   

20.
To evaluate the tectonic significance of the October 20, 1986 Kermadec earthquake (M w =7.7), we performed a comprehensive analysis of source parameters using surface waves, body waves, and relocated aftershocks. Amplitude and phase spectra from up to 93 Rayleigh waves were inverted for centroid time, depth, and moment tensor in a two-step algorithm. In some of the inversions, the time function was parameterized to include information from the body-wave time function. The resulting source parameters were stable with respect to variations in the velocity and attenuation models assumed, the parameterization of the time function, and the set of Rayleigh waves included. The surface wave focal mechanism derived (=275°, =61°, =156°) is an oblique-compressional mechanism that is not easy to interpret in terms of subduction tectonics. A seismic moment of 4.5×1020 N-m, a centroid depth of 45±5 km, and a centroid time of 13±3 s were obtained. Directivity was not resolvable from the surface waves. The short source duration is in significant contrast to many large earthquakes.We performed a simultaneous inversion ofP andSH body waves for focal mechanism and time function. The focal mechanism agreed roughly with the surface wave mechanism. Multiple focal mechanisms remain a possibility, but could not be resolved. The body waves indicate a short duration of slip (15 to 20 s), with secondary moment release 60s later. Seismically radiated energy was computed from the body-wave source spectrum. The stress drop computed from the seismic energy is about 30 bars. Sixty aftershocks that occurred within three months of the mainshock were relocated using the method of Joint Hypocentral Determination (JHD). Most of the aftershocks have underthrusting focal mechanisms and appear to represent triggered slip on the main thrust interface. The depth, relatively high stress drop, short duration of slip, and paucity of true aftershocks are consistent with intraplate faulting within the downgoing plate. Although it is not clear on which nodal plane slip occurred, several factors favor the roughly E-W trending plane. The event occurred near a major segmentation in the downgoing plate at depth, near a bend in the trench, and near a right-lateral offset of the volcanic are by 80 km along an E-W direction. Also, all events in the region from 1977 to 1991 with CMT focal mechanisms similar to that of the Mainshock occurred near the mainshock epicenter, rather than forming an elongate zone parallel to the trench as did the aftershock activity. We interpret this event as part of the process of segmentation or tearing of the subducting slab. This segmentation appears to be related to the subduction of the Louisville Ridge, which may act as an obstacle to subduction through its buoyancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号