首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Many physico-chemical variables like rock-type, climate, topography and exposure age affect weathering environments. In the present study, an attempt is made to understand how the nature of clay minerals formed due to weathering differs in tropical regions receiving high and low rainfall. Clay mineralogy of weathering profiles in west coast of India, which receives about 3 m rainfall through two monsoons and those from the inland rain-shadow zones (<200 cm rainfall) are studied using X-ray diffraction technique. In the west coast, 1:1 clays (kaolinite) and Fe—Al oxides (gibbsite/goethite) are dominant clay minerals in the weathering profiles while 2:1 clay minerals are absent or found only in trace amounts. Weathering profiles in the rain shadow region have more complex clay mineralogy and are dominated by 2:1 clays and kaolinite. Fe—Al oxides are either less or absent in clay fraction. The kaolinite—smectite interstratified mineral in Banasandra profiles are formed due to transformation of smectites to kaolinite, which is indicative of a humid paleoclimate. In tropical regions receiving high rainfall the clay mineral assemblage remains the same irrespective of the parent rock type. Rainfall and availability of water apart from temperature, are the most important factors that determine kinetics of chemical weathering. Mineral alteration reactions proceed through different pathways in water rich and water poor environments.  相似文献   

2.
The aim of this study is to characterize the pedogenic clay minerals by using simple approach: mixing mineralogical and geochemical findings.The fine clay fractions (< 0.1 μm) of a Vertic Cambisol profile were studied by means of X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity (CEC).Qualitative and quantitative mineralogical compositions of the clay mixture were determined.Moreover, chemical equilibria and thermodynamic stabilities of minerals (calcite, gypsum, kaolinite, smectites and illites) were studied using results of ionic activities obtained from total concentration of various aqueous species in water extracts from soil-saturated pastes.XRD analysis shows a good homogeneity in the mineralogical composition of the soil material, with depth of soil profiles. The identified clay minerals are mainly illite–smectite mixed layers (I/S) and kaolinite. The chemical analysis of saturated paste extracts with clay minerals shows a slight undersaturation of the illitic phase while smectites and also calcite and gypsum reach the thermodynamic equilibrium along the soil profile.  相似文献   

3.
《Geochimica et cosmochimica acta》1999,63(23-24):3939-3957
A simple geochemical balance of lateritization processes governing the development of several tens of meters of weathering profiles overlain by ferricretes is estimated on the basis of detailed mineralogical and geochemical data. The lateritic weathering mantle of the “Haut–Mbomou” area in Central Africa is composed of different weathering layers described from the base to the top of vertical profiles as a saprolite, a mottled clay layer, a soft nodular layer, a soft ferricrete, and a ferricrete in which kaolinite, gibbsite, goethite, and hematite occur in various quantities. Incongruent dissolution of kaolinite leads to the formation of gibbsite in the upper saprolite, whereas the hematite does not clearly replace the kaolinite according to an epigene process in the upper ferruginous layers of the profiles. Instead, that kaolinite is also transformed into gibbsite according to an incongruent dissolution under hydrated and reducing conditions induced by a relatively humid climatic pattern. The respective relations of the silica, iron, and aluminum balances and the Al substitution rate of the hematite on the one hand, and of RHG [RHG = 100 (hematite/hematite + goethite)] and the kaolinite on the other hand, to the consumption or the release of protons H+ permit differentiation of aggrading ferruginization and degradation processes operating in the different lateritic weathering profiles. The Al substitution rate of the Fe–oxyhydroxides varies according to the nature of lateritization processes, e.g., saprolitic weathering and aggrading ferruginization vs. degradation. The observations and results indicate that the ferruginization process of the weathering materials of parent rocks is not a simple ongoing process as often thought. This suggests that the actual lateritic weathering mantle of the Haut–Mbomou area may result from different stages of weathering and erosion during climatic changes.  相似文献   

4.
The detection of phyllosilicates and sulfates on Mars has revealed a complex aqueous history which suggests distinct geochemical environments separated temporally and spatially. Recent observations by MRO CRISM in Mawrth Vallis have shown that phyllosilicate deposits exhibit a specific stratigraphy, which remains incompletely understood. Moreover, MER Spirit has evidenced association between phyllosilicates, amorphous silica and sulfates. We investigated the hypothesis that these parageneses resulted from the acidic weathering of older phyllosilicate deposits. We exposed nontronite (Fe-rich smectite), montmorillonite (Al-rich smectite) and kaolinite to H2SO4 solutions at pH 0, 2 and 4, and at a temperature of 60 °C. After the acid treatment, a combination of mineralogical techniques was used to assess the degree of alteration of the three phyllosilicate minerals. XRF, XRD and ESEM measurements show that nontronite was the most unstable when acid leached, followed by montmorillonite and then kaolinite. Progressive acidic leaching of nontronite leads to alteration of the phyllosilicate to amorphous silica, along with Fe-sulfate and anatase, and the formation of an acidic Al,Fe-rich solution. Alteration of montmorillonite resulted in the formation of Fe-, Al-, Ca- and Mg-sulfates, and a Al-rich leaching solution. Comparatively, leaching of kaolinite resulted in the formation of Al-sulfates and a Al-rich solution as well, with only slight alteration of the primary mineralogical features. The effects of acid leaching of the phyllosilicates were also observed in NIR reflectance spectra, allowing a comparison with CRISM spectra from Mawrth Vallis. Based on our results, we propose a new model where acid leaching of mixed phyllosilicate deposits leads to kaolinite overlaying montmorillonite, which in turn caps Fe,Mg-smectites. Leaching of cations and subsequent evaporation leads to sulfate deposits, as supported by geochemical modeling, while amorphous silica remains as a residue. Depending on the intensity (pH) and length of exposure of acidic leaching, our model can explain the stratigraphic distribution of phyllosilicates, and the association of sulfates, silica and smectites.  相似文献   

5.
Effective exploration for polymetallic ore deposits in the Cobar region is hampered by incomplete knowledge of the mineralogical controls on element dispersion in the different regolith-landform settings throughout the area. A detailed mineralogical and geochemical study of regolith profiles over two major mineralised shear zones in a strongly weathered but dominantly erosional setting has delineated the important host minerals for a range of base metal cations. Iron oxides/oxyhydroxides, particularly goethite and to a much lesser extent hematite, are major hosts for Pb, Cu, and Zn as substituted/adsorbed cations and as constituents of associated or intergrown minerals, probably including members of the jarosite–alunite group. Correlations between elements and major regolith minerals suggest that goethite is also a host phase for As, Bi and Sb. Minor manganese minerals, including lithiophorite and cryptomelane group minerals, also host base metals in appreciable amounts. No clear association was found between gold and any particular secondary mineral. It is likely that gold is present largely as elemental gold particles associated with a range of minerals.Sampling strategies for geochemical exploration in variably leached and stripped regolith in the Cobar area should take into account the relative abundance of goethite and manganese oxides/oxyhydroxides within the profiles and overlying lag. Goethite would appear to be the preferred sampling medium for base metals. Highly ferruginous lag has a high proportion of hematite with variable maghemite and very low manganese oxide contents. Most of the base metal content in this surface material is strongly bound to the crystalline oxides/oxyhydroxides. More work is required to understand the effects of surface transformation of goethite to hematite and maghemite on the mobility and distribution of base metal cations in soil and ferruginous lags.  相似文献   

6.
《Applied Geochemistry》2002,17(3):321-336
Mineralogical, petrographical, and geochemical studies of the weathering profile have been carried out at Omai Au mine, Guyana. The area is underlain by felsic to mafic volcanic and sedimentary rocks of the Barama-Mazaruni Supergroup, part of the Paleoproterozoic greenstone belts of the Guiana Shield. Tropical rainy climate has favoured extensive lateritization processes and formation of a deeply weathered regolith. The top of the weathering profile consists of lateritic gravel or is masked by the Pleistocene continental-deltaic Berbice Formation. Mineralogical composition of regolith consists mainly of kaolinite, goethite and quartz, and subordinately sericite, feldspar, hematite, pyrite, smectite, heavy minerals, and uncommon mineral phases (nacrite, ephesite, corrensite, guyanaite). A specific feature of the weathering profile at Omai is the preservation of fresh hydrothermal pyrite in the saprolith horizon. Chemical changes during the weathering processes depend on various physicochemical and structural parameters. Consequently, the depth should not be the principal criterion for comparison purposes of the geochemical behavior within the weathering profile, but rather an index that measures the degree of supergene alteration that has affected each analyzed sample, independently of the depth of sampling. Thus, the mineralogical index of alteration (MIA) can provide more accurate information about the behavior of major and trace elements in regolith as opposed to unweathered bedrock. It can also aid in establishing a quantitative relationship between intensity of weathering and mobility (leaching or accumulation) of each element in each analyzed sample. At Omai, some major and trace elements that are commonly considered as immobile (ex: TiO2, Zr, etc.) during weathering could become mobile in several rock types and cannot be used to calculate the mass and volume balance. In addition, due to higher “immobile element” ratios, the weathered felsic volcanic rocks plotted in identification diagrams are shifted towards more mafic rock types and a negative adjustment of ∼20 units is necessary for correct classification. In contrast, these elements could aid in defining the material source in sedimentary rocks affected by weathering. Generally, the rare-earth element (REE) patterns of the bedrock are preserved in the saprolith horizon. This can represent a potentially useful tool for geochemical exploration in tropical terrains. Strong negative Ce and Tb anomalies are displayed by weathered pillowed andesites, which are explained by the influence of the water/rock ratio.  相似文献   

7.
Oxidation of sulfide- and carbonate-rich vein gold deposits under semiarid conditions can be represented as a three-stage process, each creating supergene environments conducive to dissolution and reprecipitation of gold-silver alloys. The three-stage weathering process of sulfide-carbonate gold veins is depth-dependent, and develops from the relatively young, lowermost weathering horizon just below the water table, through an intermediate weathering horizon in the oxidation zone above the water table, and culminating in the oxide-rich upper saprolite and oxisol.Neoformed gold crystals in the weathering profile have distinct composition and morphologic characteristics from the hypogene gold crystals associated with the sulfide- and carbonate-rich ores. Two distinct types of secondary gold are present in the weathering profile: (1) gold crystals associated with sulfates and arsenates; and (2) gold crystals associated with iron and aluminum oxides/hydroxides, or with kaolinite. The distinct crystal morphologies and mineralogical associations of primary and secondary gold are useful in prospecting for gold deposits in weathered terrains.  相似文献   

8.
Clay minerals, byproducts of chemical weathering, are important group of minerals found in rivers, estuaries, and marine sedimentary environments, which include mudstones, clay stones, and shales. In the present study, FTIR and SEM investigation on the clay minerals in Sundarban mangrove core sediments collected from Moipith Matla and Belamati Island are carried out. The study indicated the dominant association of kaolinite with subordinate amount of quartz, illite and chlorite. The abundance of kaolinite, illite chlorite and clay with quartz helps in increasing sediment in the islands region. The geochemical and mineralogical evolution of mangrove sediments are results of the interaction of biotic and abiotic parameters, whose balance is conditioned by the climate that governs the hydrologic regime, the sedimentation dynamics and the organic matter. This study on the charaterstation of clay provides us with substantial impact in the water holding capacity, productivity and mineralogical and chemical transformation in order to establish much more and intermediate equilibrium between marine influence and continental contribution, as part of the estuarine environment, than to the tropical climate conditions.  相似文献   

9.
Clay mineral found in rivers, estuaries, and marine sedimentary environments is an important group of minerals which is the by-product of chemical weathering. The main constituents of this fine-grained sediment include mudstones, clay stones, and shales. This is probably the first report of a Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) investigation on the clay minerals to characterize them in the Sundarban mangrove core sediments of Moipith Matla and Belamati Island. This study was carried out in the selected stretch for FTIR and SEM analyses. The study reveals the dominant association of kaolinite with subordinate amount of quartz, illite, and chlorite. The abundance of kaolinite, illite, chlorite, and clay with quartz helps in increasing the sediment in the island region. The geochemical and mineralogical evolution of mangrove sediment results in the interaction of biotic and abiotic parameters, whose balance is conditioned by the climate that governs the hydrologic regime, the sedimentation dynamics, and of the organic matter. This study on the characterization of clay provides substantial impact in the water-holding capacity, productivity, and mineralogical and chemical transformation in order to establish much more and intermediate equilibrium between marine influence and continental contribution, as a part of the estuarine environment.  相似文献   

10.
This work focuses on developing multidisciplinary research on weathering profiles of granitoid rocks related to the tectonic and landscape evolution of the Capo Vaticano area, Calabria, southern Italy. During the Pleistocene, the Mediterranean climate plays, on the already decomposed plutonic rocks, important processes of alteration, on both the highest and inland areas and the coastal areas of the Calabrian region, such as the studied area. Field observations coupled to chemical, minero‐petrographical features and geochemical modelling are used to characterize the weathering processes affecting the granitoid complex. The granitoid cut slopes show a generally simple weathering profile characterized by a progressive increase in weathering towards the top of the slopes. The completely weathered rocks (class V) and residual soil (class VI) contain a high percentage of altered minerals, microfractures, and voids. The main mineralogical changes are the partial transformation of biotite and the partial destruction of feldspars (mainly plagioclase) that are associated with the neoformation of secondary clay minerals and ferruginous products during the most advanced stage of weathering. These transformations produce a substitution of the original rock fabric. Geochemical modelling showing the precipitation of kaolinite, illite, vermiculite, ferrihydrite and calcite. These secondary solid phases are similar to those found in this natural system. Thus, the final results of the weathering process is a soil‐like material mainly characterized by mostly a sand to gravel grain‐size fractions related to microfabric changes and mineralogical and chemical variations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
《Geochimica et cosmochimica acta》1999,63(23-24):4013-4035
The effect of organic matter during soil/water interaction is still a debated issue on the controls of chemical weathering in a tropical environment. In order to study this effect in detail, we focused on the weathering processes occurring in a small tropical watershed (Nsimi-Zoetélé, South Cameroon). This site offers an unique opportunity to study weathering mechanisms in a lateritic system within a small basin by coupling soil and water chemistry.The lateritic cover in this site can reach up to 40 m in depth and show two pedological distinct zones: unsaturated slope soils on the hills and/or elevated areas; and water-saturated soils in the swamp zone which represent 20% of the basin surface. The study present chemical analysis performed on water samples collected monthly from different localities between 1994–1997 and on soil samples taken during a well drilling in December 1997. The results suggest the existence of chemical and spatial heterogeneities of waters in the basin: colored waters flooding the swamp zone have much higher concentrations of both organic matter (i.e., DOC) and inorganic ions (e.g., Ca, Mg, Al, Fe, Th, Zr) than those from springs and groundwater from the hills. Nevertheless, these organic-rich waters present cation concentrations (Na, Ca, Mg, K) which are among the lowest compared to that of most world rivers. The main minerals in the soils are secondary kaolinite, iron oxi-hydroxides, quartz, and accessory minerals (e.g., zircon, rutile). We mainly focused on the mineralogical and geochemical study of the swamp zone soils and showed through SEM observations the textural characterization of weathered minerals such as kaolinite, zircon, rutile, and the secondary recrystallization of kaolinite microcrystals within the soil profile. Water chemistry and mineralogical observations suggest that hydromorphic soils of the swamp zone are responsible for almost all chemical weathering in the basin. Thus, in order to explain the increase of element concentration in the organic-rich waters, we suggest that organic acids enhance dissolution of minerals such as kaolinite, goethite, and zircon and also favors the transport of insoluble elements such as Al, Fe, Ti, Zr, and REE by chemical complexation. SiO2(aq) concentrations in these waters are above saturation with respect to quartz. Dissolution of phytholithes (amorphous silica) may be responsible for this relatively high SiO2(aq.) concentration. Al/Mg ratios obtained for the soil and the Mengong river waters show that a significant amount of Al does not leave the system due to kaolinite recrystallisation in the swamp zone soils. Geochemical data obtained for this watershed show the important contribution of vegetation and organic matter on chemical weathering in the swamp zone. Quantitatively we propose that the increasing amount in total dissolved solid (TDS) due to organic matter and vegetation effect is about 35%. In summary, this interaction between soils and waters occurs mostly in soils that are very depleted in soluble elements. Thus, the low concentration of major elements in these water is a direct consequence of the depleted nature of the soils.  相似文献   

12.
Laterites are ubiquitous in Kerala and are developed over different rock types. The laterite profiles developed over gabbro, granophyre of the Ezhimala Complex are discussed here.

The principal mineral assemblages of the laterites are kaolinite, gibbsite, goethite, hematite and quartz with minor amounts of zircon. Amorphous ferric hydroxide, Al-hydroxide and Al-silicate are also present. Samples from various units of the weathering profile have been analysed for major and trace elements. Major-element data show a steady depletion of Si and enrichment of sesquioxides and TiO2 during weathering. It is also observed that the more the content of the mobile elements (Si, Mg, Ca, K, Na) in the parent rock, the greater is its depletion during lateritisation. The trace elements Co, Cr, V, Cu and Ni show an enrichment while Zn and Ba show depletion over both the rock types. Pb shows almost a consistent behaviour.  相似文献   


13.
X-ray diffraction (XRD), X-ray Fluorescence (XRF), optical microscopy, Scanning Electron Microscopy coupled with Energy Dispersive Spectrometry (SEM-EDS) and Electron Probe micro-analyser (EPMA) and Wavelength-Dispersive Spectroscopy (WDS) were conducted on charnockite from the Caparaó Suite and its alteration cortex to determine the mineralogical, micromorphological and geochemical transformations resulting from the weathering process. The hydrolysis of the charnockite occurred in different stages, in accordance with the order of stability of the minerals with respect to weathering: andesine/orthopyroxene, pargasite and alkali feldspar. The rock modifications had begun with the formation of a layer of incipient alteration due to the percolation of weathering solutions first in the pressure relief fractures and then in cleavage and mineral edges. The iron exuded from ferromagnesian minerals precipitated in the intermineral and intramineral discontinuities. The layer of incipient alteration evolves into an inner cortex where the plagioclase changes into gibbsite by direct alitisation, the ferromagnesian minerals initiate the formation of goethitic boxworks with kaolinitic cores, and the alkali feldspar initiates indirect transformation into gibbsite, forming an intermediate phase of illite and kaolinite. In the outer cortex, mostly traces of alkali feldspar remain, and they are surrounded by goethite and gibbsite as alteromorphics, characterising the formation of the isalteritic horizon that occurs along the slope and explains the bauxitization process at the Caparaó Range, SE Brazil.  相似文献   

14.
The mineralogical composition of soil horizons in different soil types of different ages was estimated by applying the NORMA software, which was developed originally for calculating the normative mineralogical composition of young podsols. Ten soil profiles from six sites in NW Russia, two in Finland, and one in NE Norway were sampled in 1999 as a part of the pilot phase of a large geochemical mapping project. Total element concentrations were determined from the <2 mm fraction by XRF from powdered pellets for Al, Ca, Cr, Fe, K, Mg, Mn, Na, P, S, Si, Ti, and Zr, and for Ba by ICP-AES after HF+HClO4 extraction. Extractable concentrations for Al, Ca, Cr, Fe, K, Mn, Mg, Na, P, S, Ti, Zr, and Ba were determined by ICP-MS or ICP-AES after aqua regia (a 1:3 mixture of strong HCl and HNO3) extraction. Total C was determined using a thermal conductivity detector from a sample burned in an O2 stream. The NORMA software was used to calculate the percentage of normative soluble minerals pyrite, apatite, titanite, calcite, biotite, chlorite, weathered albite, hydrous Al-silicate, goethite and soluble residue. The percentages of non-soluble normative minerals rutile, hornblende, K-feldspar, albite, anorthite, tremolite, wollastonite, kaolinite, magnetite, zircon, quartz, carbon (graphite), and non-soluble residue were calculated after soluble minerals.The calculated mineralogical composition of C-horizon samples in each profile reflected the known geological composition of the bedrock from which the soil parent material was derived during geological processes. Secondary minerals including goethite and hydrous Al-silicates, were detected in upper soil horizons reflecting the development of soils. Rather than age, the local bedrock geology together with the mineralogical composition and chemical properties of the parent material proved to be the controlling factor in the formation of secondary minerals. The results showed that the NORMA method can be used in defining the mineralogy of soil horizons in a large variety of soil types.  相似文献   

15.
开展热带岩溶地区红色风化壳元素地球化学演化规律研究,有助于丰富碳酸盐岩风化成土理论的认识。在越南北部选取典型的碳酸盐岩风化剖面,分析热带气候条件下碳酸盐岩上覆红色风化壳中主量元素的物质来源和演化特征。结果表明:无论Ti/Zr的元素比值分析,Hf-Zr、Nb-Ta及Sm-Nd的元素对协变分析,还是上地壳元素平均值(UCC)标准化分析,两个剖面的上覆风化壳均显示原地残积的特征,即两个剖面是碳酸盐岩的原位风化产物。碳酸盐岩风化成土过程中,CaO、MgO淋失明显,Al_2O_3和Fe_2O_3发生富集,显示两个剖面均经历较强的风化过程,但是白云岩和灰岩剖面有一定的分异特征。越南北部白云岩风化剖面从基岩到上部土层显示出稳定的Ti-Fe元素共富集特征,而灰岩剖面中Fe的增长速率明显超过Ti。白云岩上覆风化壳经历了强烈的风化作用,其脱硅作用弱于灰岩风化剖面,而富集铝的作用强于灰岩。迁移系数的演化规律说明两个剖面中长石成分(钾长石、钠长石等)或次生矿物(伊利石等)在风化成土过程中逐渐分解,同时Al、Fe、Si等稳定元素的在风化剖面中不断富集。  相似文献   

16.
广东小良水土保持科学研究观测站位于北回归线上,是联合国“人与生物圈”定点观察站。本文在野外考察和系统采样的基础上,分别分析了同一花岗岩风化壳上光板地(生态破坏)剖面和生态恢复剖面样品的矿物学、磁化率特征,探讨它们与生态环境演替的关系。结果表明,在不同生态环境下的两剖面,其磁性矿物类型与粒度均不同,磁化率变化规律差异显著。其中,光板地剖面主要载磁矿物为赤铁矿、针铁矿等矿物,磁化率值很低,与含水量之间相关性较差,基本无超顺磁矿物的存在;生态恢复剖面主要载磁矿物为磁铁矿和磁赤铁矿,低频磁化率值较高且与含水量之间具有良好的相关性,频率磁化率随剖面深度增加而递减,表明超顺磁矿物浓度的变化趋势,反映了生物因素对风化壳剖面的影响和改造。通过两剖面的对比研究说明生态系统的参与对风化壳结构的改变非常显著,磁化率特征可以作为表征这种改变的良好的替代指标。  相似文献   

17.
在吉林东部花岗岩区地下水化学成分和化学类型研究的基础上,以Na作为参比元素,确定了花岗岩风化过程中22种主量元素和微量元素的相对活动顺序。花岗岩区地下水的地球化学类型属低矿化度(变化范围为69.51×10-6~386.49×10-6,平均值为199.48×10-6)的HCO3-Ca和HCO3-Na-Ca型。花岗岩风化过程中元素的活动性顺序(RM)从大到小依次为:B、Ca、Mo、Zn、Sr、Na、Mg、Cr、Cu、Ni、K、Co、Li、V、As、Ba、Si、Y、Fe、Ti、Al、Mn。风化产物中的粘土矿物主要为高岭土、蒙脱石,反映出本区花岗岩的风化淋滤程度较弱的特点。  相似文献   

18.
Mineralogy, major, trace and rare earth elements of a weathering profile developed on tertiary greenstone belt in the extreme North Cameroon are reported. The aim of which was to investigate mineralogical evolution and element mobilization and redistribution during weathering under dry tropical climate. The weathering profile consists of four main horizons: (1) a spheroidal weathering zone constituted by a corestone–shell complex, (2) a C horizon, (3) a Bw horizon and an Ah horizon. The results indicate that nontronite, a Fe-rich smectite, is the exclusive clay mineral formed in the exfoliated shells and the C horizon. It is associated with kaolinite in the upper horizons. The coexistence of these two clay minerals induced a decrease of CEC and pH which becomes neutral. The weathering index (WI) values reveal that weathering becomes more and more intensive from the corestone up to Bw horizon, which is the most weathered horizon in the weathering profile. Mass balance calculations, using Th as immobile element, indicate that Ti is quite mobile and that Al and Fe are relatively enriched at the bottom and strongly leached at the top of the profile. Alkalis and alkaline earth elements are strong leached through out the profile, except Ca which displays similar trend as Al and Fe. The same goes for LILE (Cs, Sr), TTE (Cr, Co, Ni) and HSFE (Y, Nb, Hf). In opposite, REE are depleted at the bottom and enriched in the upper horizons, with more enrichment for LREE than for HREE. It appears that weathering of greenstone belt causes a fractionation of HREE and induces a concentration of LREEs. Ce and Eu anomalies display opposite behaviour.  相似文献   

19.
Oxidation of the relatively iron sulfide-poor Dugald River zinc-lead lode in northwest Queensland and reaction of the acid solutions with carbonate has resulted in an undifferentiated gossan profile. The gossan is composed predominantly of quartz, goethite, hematite, barite, adularia, plumbian jarosite, plumbogummite and minor mica, chlorite, kaolinite and montmorillonite. Barite and adularia are formed by the breakdown of the barium feldspar hyalophane (K, Na, Ba)[(Al, Si)4O8] which occurs in the lode.Lead in the gossan is contained within the secondary minerals plumbogummite and plumbian jarosite, and in traces of anglesite and cerussite, whereas Zn occurs in the barite, secondary lead minerals and coronadite structures, and is adsorbed by iron oxides, phyllosilicates and carbonaceous matter. Only traces of zinc minerals smithsonite, goslarite and hemimorphite were detected.Use of Gresens' general metasomatic equation has enabled quantitative determination of compositional changes resulting from the oxidation of the ore. Silicon, Al, Ti and Ba are essentially immobile under the mildly acidic oxidizing conditions. In decreasing order of mobility Cd, Ca, S, Na, K, Mn, Mg, Zn, Ni and Cu, together with CO2 and Tl, have been leached from the gossan profile, while Ag, Sb, Se, As, Fe and Pb appear to have been added to the gossan, notably in a zone of solution-deposited secondary minerals where they have been concentrated, possibly as a result of leaching from the surface gossan.  相似文献   

20.
Four outcrops of Lower Cretaceous (Barremian) karst bauxites located in Teruel (NE Spain) were analysed to determine their mineral associations and genesis related to climatic palaeoweathering events and late superimposed kaolinization processes. The materials comprise metric‐sized pisolitic blocks embedded in a clay‐rich red groundmass. Fourteen samples were examined by X‐ray diffraction, optical microscopy, scanning and transmission electron microscopy and the major elements were analysed by inductively‐coupled plasma mass spectroscopy (ICPMS). The samples are composed of kaolinite, gibbsite, goethite, and hematite as the main phases, with diaspore, boehmite, anatase, and rutile as accessory minerals. The results show a complex sequence of mineralogical and geochemical processes that transformed the parent rock into the current bauxite materials. The clay‐rich groundmass constitutes the lateritic parent material of the pisolitic bauxites. In the parent material authigenic kaolinite (e.g. vermicular kaolinite and kaolinite between cleavage sheets of pre‐existing mica) has been observed; Fe oxides formed subsequent to kaolinite. In the pisolitic bauxites, mineralogical and textural evidence indicates that bauxitization took place at the expense of previous kaolinite, with gibbsite post‐dating the other Al hydroxides. The pisolitic bauxites also show a more homogeneous chemical composition and a relative Ti, Al and Zr enrichment. The data are consistent with an intense palaeoweathering event during the Lower Cretaceous (Barremian) under tropical climatic conditions (warm and humid). Several stages probably took place during the bauxitization process, suggesting variations in water saturation conditions. Subsequent karst reactivation stages and related collapses were responsible for the present lithostructure of the deposits and allowed late kaolinization not related to climate to take place. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号