首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents the results of an application of Ground Penetrating Radar (GPR) method for localizing fractures, unloading or exfoliation joints, massive blocks, and identifying the top of fresh granite. The reason for this work was to orient the mining operation in a way to optimize the extraction costs of large blocks of ornamental granite from a quarry in Capão Bonito region of São Paulo State, southern Brazil. Five GPR profiles using antennae of 25, 50, and 100 MHz were made, as well as six velocity soundings. The work was done in three distinct locations in the quarry: on the land surface above the quarry, along a road crossing the quarry, and in front or below the active quarry face.The results led to the definition of planes of structural discontinuity extending to 25 m depth, including inclined fractures and low-angle unloading joints; as well as the localization of massive blocks surrounded by weathered material. The inclined fractures and unloading joints appear as strong reflectors (high energy), and constitute excellent basal planes for the cutting and removal of standard-sized blocks. The location of these planes is important in the exploration process, as designing the quarrying to take advantage of these structural breaks can minimize the use of explosives and greatly facilitate the extraction of commercial-sized blocks. In addition, it was possible to delineate the regions of the quarry, where high-quality homogeneous granite was located, by the absence of strong internal radar reflectors.Knowledge of the spatial distribution of the joints and structural discontinuities, and mapping the localities of high-quality granite were fundamental for the mining engineer. This information served as the basis, and as a guide for planning the advance of the quarry front to minimize the extraction costs, resulting in significant economies for the company.  相似文献   

2.
Field experiments show ground penetrating radar (GPR) can be used to image shallow carbonate stratigraphy effectively in a variety of settings. In south Florida, the position and structure of cap rock cover on limestone can be an important control on surface water flow and vegetation, but larger scale outcrops (tens of meters) of cap rock are sparse. GPR mapping through south Florida prairie, cypress swamp and hardwood hammock resolves variations in thickness and structure of cap rock to 3 m and holds the potential to test theories for cap rock–vegetation relationships. In other settings, carbonate strata are mapped to test models for the formation of local structural anomalies. A test of GPR imaging capabilities on an arid caliche (calcrete) horizon in southeastern Nevada shows depth penetration to 2 m with resolution of the base of caliche. GPR profiling also succeeds in resolving more deeply buried (5 m) limestone discontinuity surfaces that record subaerial exposure in south Florida.  相似文献   

3.
Vertical fractures with openings of less than one centimetre and irregular karst cause abundant diffractions in Ground‐Penetrating Radar (GPR) records. GPR data acquired with half‐wavelength trace spacing are uninterpretable as they are dominated by spatially undersampled scattered energy. To evaluate the potential of high‐density 3D GPR diffraction imaging a 200 MHz survey with less than a quarter wavelength grid spacing (0.05 m × 0.1 m) was acquired at a fractured and karstified limestone quarry near the village of Cassis in Southern France. After 3D migration processing, diffraction apices line up in sub‐vertical fracture planes and cluster in locations of karstic dissolution features. The majority of karst is developed at intersections of two or more fractures and is limited in depth by a stratigraphic boundary. Such high‐resolution 3D GPR imaging offers an unprecedented internal view of a complex fractured carbonate reservoir model analogue. As seismic and GPR wave kinematics are similar, improvements in the imaging of steep fractures and irregular voids at the resolution limit can also be expected from high‐density seismic diffraction imaging.  相似文献   

4.
Rock-masses are divided into many closed blocks by deterministic and stochastic discontinuities and engineering interfaces in complex rock-mass engineering. Determining the sizes, shapes, and adjacent relations of blocks is important for stability analysis of fractured rock masses. Here we propose an algorithm for identifying spatial blocks based on a hierarchical 3D Rock-mass Structure Model (RSM). First, a model is built composed of deterministic discontinuities, engineering interfaces, and the earth’s su...  相似文献   

5.
6.
During the 1944 eruption of Vesuvius different types of xenoliths were ejected. They represent fragments of the walls of a low volume (<0.5 km3) shallow (3–4 km depth) magma chamber. The study of these xenoliths enables us to estimate the amount of contamination occurring at the boundary of a high-T alkaline magma chamber hosted in carbonate rocks. The process of contamination of the magma by carbonates can be modelled, using isotopic and chemical data, as a mixing between magma and marbles. Mass exchanges occur at the boundary between the crystallizing magma and marble wall rocks, where endoskarn forms. The contamination of the solidification front of the chamber is very limited. The solidification front and the skarn shell effectively isolate the interior of the magma chamber from new inputs of contaminants from the carbonate wall rocks. Therefore, the main volume of magma, hosted in the magma chamber, did not undergo any significant mass exchange with the wall rocks.  相似文献   

7.
Hlöðufell is a familiar 1186 m high landmark, located about 80 km northeast of Reykjavík, and 9 km south of the Langkjökull ice-cap in south-west Iceland. This is the first detailed study of this well-exposed and easily accessible subglacial to emergent basaltic volcano. Eight coherent and eleven volcaniclastic lithofacies are described and interpreted, and its evolution subdivided into four growth stages (I–IV) on the basis of facies architecture. Vents for stages I, II, and IV lie along the same fissure zone, which trends parallel to the dominant NNE–SSW volcano-tectonic axis of the Western Volcanic Zone in this part of Iceland, but the stage III vent lies to the north, and is probably responsible for the present N–S elongation of the volcano. The basal stage (I) is dominated by subglacially erupted lava mounds and ridges, which are of 240 m maximum thickness, were fed from short fissures and locally display lava tubes. Some of the stage I lavas preserve laterally extensive flat to bulbous, steep, glassy surfaces that are interpreted to have formed by direct contact with surrounding ice, and are termed ice-contact lava confinement surfaces. These surfaces preserve several distinctive structures, such as lava shelves, pillows that have one flat surface and mini-pillow (< 10 cm across) breakouts, which are interpreted to have formed by the interplay of lava chilling and confinement against ice, ice melting and ice fracture. The ice-contact lava confinement surfaces are also associated with zones of distinctive open cavities in the lavas that range from about 1 m to several metres across. The cavities are interpreted as having arisen by lava engulfing blocks of ice, that had become trapped in a narrow zone of meltwater between the lava and the surrounding ice, and are termed ice-block meltout cavities. The same areas of the lavas also display included and sometimes clearly rotated blocks of massive to planar to cross-stratified hyaloclastite lapilli tuffs and tuff–breccias, termed hyaloclastite inclusions, which are interpreted as engulfed blocks of hyaloclastite/pillow breccia carapace and talus, or their equivalents reworked by meltwater. Some of the stage I lavas are mantled at the southern end of the mountain by up to 35 m thickness of well-bedded vitric lapilli tuffs (stage II), of phreatomagmatic origin, which were erupted from a now dissected cone, preserved in this area. The tephra was deposited dominantly by subaqueous sediment gravity flows (density currents) in an ice-bound lake (or less likely a sub-ice water vault), and was also transported to the south by sub-ice meltwater traction currents. This cone is onlapped by a subaerial pahoehoe lava-fed delta sequence, formed during stage III, and which was most likely fed from a now buried vent(s), located somewhere in the north-central part of the mountain. A 150 m rise in lake level submerged the capping lavas, and was associated with progradation of a new pahoehoe lava-fed delta sequence, produced during stage IV, and which was fed from the present summit cone vent. The water level rise and onset of stage IV eruptions were not associated with any obviously exposed phreatomagmatic deposits, but they are most likely buried beneath stage IV delta deposits. Stage IV lava-fed deltas display steep benches, which do not appear to be due to syn- or post-depositional mass wasting, but were probably generated during later erosion by ice. The possibility that they are due to shorter progradation distances than the underlying stage III deltas, due to ice-confinement or lower volumes of supplied lava is also considered.  相似文献   

8.
The 4.3-m.y.-old medium-volume low-aspect-ratio Kizilkaya ignimbrite (50–100 km3 DRE) is one of the most widespread in the Cappadocian Volcanic Province covering about 8500–10,600 km2. The ignimbrite rests on a relatively fine-grained fan of Plinian pumice-fall deposit (Md of 1.0–1.80 mm in proximal locations). The eruptive center was located in the Misli plain northeast of Nigde, as deduced from thickness and grain-size variations of the fall deposit, flow direction indicators, welding patterns of the ignimbrite and the distribution of certain types ofxenoliths. The massive ignimbrite, generally about 15 m thick, covers a paleoplain throughout at least two thirds of its areal extent. It comprizes two flow units, identified by local pumice enrichment in the upper part of the lower unit. The ignimbrite is completely welded in many places. In other places, the lower flow unit is non-welded, particularly where the initial pumice-fall deposit was eroded, a fine-grained ground layer was deposited, and undulating or cross-laminations with antidunes were developed. The ground layer was derived from the ignimbrite ground-mass by loss of fines < 250–500 μm.Depositional characteristics indicate that the ignimbrite was emplaced as high-concentration flows with relatively low velocity and low heat loss during runout. Local development of a ground layer and internal bedding structures indicate local increased turbulence only within individual flow portions due to agitated fluidization from engulfed air. The degree of welding of the lower flow unit was controlled by this turbulence and is not related to thickness variations.  相似文献   

9.
δ87Sr values and Ca/Sr ratios were employed to quantify solute inputs from atmospheric and lithogenic sources to a catchment in NW Germany. The aquifer consists primarily of unconsolidated Pleistocene eolian and fluviatile deposits predominated by >90% quartz sand. Accessory minerals include feldspar, glauconite, and mica, as well as disperse calcium carbonate in deeper levels. Decalcification of near-surface sediment induces groundwater pH values up to 4.4 that lead to enhanced silicate weathering. Consequently, low mineralized Ca–Na–Cl- and Ca–Cl-groundwater types are common in shallow depths, while in deeper located calcareous sediment Ca–HCO3-type groundwater prevails. δ87Sr values and Ca/Sr ratios of the dissolved pool range from 7.3 to −2.6 and 88 to 493, respectively. Positive δ87Sr values and low Ca/Sr ratios indicate enhanced feldspar dissolution in shallow depths of less than 20 m below soil surface (BSS), while equilibrium with calcite governs negative δ87Sr values and elevated Ca/Sr ratios in deep groundwater (>30 m BSS). Both positive and negative δ87Sr values are evolved in intermediate depths (20–30 m BSS). For groundwater that is undersaturated with respect to calcite, atmospheric supplies range from 4% to 20%, while feldspar-weathering accounts for 8–26% and calcium carbonate for 62–90% of dissolved Sr2+. In contrast, more than 95% of Sr2+ is derived by calcium carbonate and less than 5% by feldspar dissolution in Ca–HCO3-type groundwater. The surprisingly high content of carbonate-derived Sr2+ in groundwater of the decalcified portion of the aquifer may account for considerable contributions from Ca-containing fertilizers. Complementary tritium analyses show that equilibrium with calcite is restricted to old groundwater sources.  相似文献   

10.
The gravitational deformation of volcanoes is largely controlled by ductile layers of substrata. Using numerical finite-element modelling we investigate the role of ductile layer thickness and viscosity on such deformation. To characterise the deformation we introduce two dimensionless ratios; Πa (volcano radius/ductile layer thickness) and Πb (viscosity of ductile substratum/failure strength of volcano). We find that the volcanic edifice spreads laterally when underlain by thin ductile layers (Πa>1), while thicker ductile layers lead to inward flexure (Πa<1). The deformation style is related to the switch from predominantly horizontal to vertical flow in the ductile layer with increasing thickness (increasing Πa). Structures produced by lateral spreading include concentric thrust belts around the volcano base and radial normal faulting in the cone itself. In contrast, flexure on thick ductile substrata leads to concentric normal faults around the base and compression in the cone. In addition, we show that lower viscosities in the ductile layer (low Πb) lead to faster rates of movement, and also affect the deformation style. Considering a thin ductile layer, if viscosity is high compared to the failure strength of the volcano (high Πb) then deformation is coupled and spreading is produced. However, if the viscosity is low (low Πb) substratum is effectively decoupled from the volcano and extrudes from underneath it. In this latter case evidence is likely to be found for basement compression, but corresponding spreading features in the volcano will be absent, as the cone is subject to a compressive stress regime similar to that produced by flexure. At volcanoes where basement extrusion is operating, high volcano stresses and outward substratum movement may combine to produce catastrophic sector collapse. An analysis of deformation features at a volcano can provide information about the type of basement below it, a useful tool for remote sensing and planetary geology. Also, knowledge of substratum geology can be used to predict styles of deformation operating at volcanoes, where features have not yet become well developed, or are obscured.  相似文献   

11.
Faulting and weathering can endanger quarry operations by decreasing the total reserve, quarry’s useful life and production value. We investigated weathering and faulting problems in the Çatalca granite quarry at Istanbul in Turkey, using the Very Low Frequency (VLF) method. VLF method is an electromagnetic method which is very successful in locating vertical discontinuities such as faults and fracture zones. This method measures the apparent resistivity of the rocks in the region, besides the electromagnetic parameters such as tilt angle and ellipcity. Apparent resistivity is a very sensitive parameter to water presence inside the pores and fractures of the rocks. This feature enables the VLF method to map the boundaries between the fresh and cracked granite and altered zones in the quarry. In this work we mapped the faults and weathered zones within the granite in Çatalca quarry and found a high resistivity zone at the central part of the survey area which may be suitable for production. This study also shows the efficiency of the VLF method in understanding the structural and textural features of a quarry and estimating zones with high quality rocks for production planning.  相似文献   

12.
Geology-based methods for Probabilistic Seismic Hazard Assessment (PSHA) have been developing in Italy. These methods require information on the geometric, kinematic and energetic parameters of the major seismogenic faults. In this paper, we define a model of 3D seismogenic sources in the central Apennines of Italy. Our approach is mainly structural-seismotectonic: we integrate surface geology data (trace of active faults, i.e. 2D features) with seismicity and subsurface geological–geophysical data (3D approach). A fundamental step is to fix constraints on the thickness of the seismogenic layer and deep geometry of faults: we use constraints from the depth distribution of aftershock zones and background seismicity; we also use information on the structural style of the extensional deformation at crustal scale (mainly from seismic reflection data), as well as on the strength and behaviour (brittle versus plastic) of the crust by rheological profiling. Geological observations allow us to define a segmentation model consisting of major fault structures separated by first-order (kilometric scale) structural-geometric complexities considered as likely barriers to the propagation of major earthquake ruptures. Once defined the 3D fault features and the segmentation model, the step onward is the computation of the maximum magnitude of the expected earthquake (M max). We compare three different estimates of M max: (1) from association of past earthquakes to faults; (2) from 3D fault geometry and (3) from geometrical estimate corrected by earthquake scaling laws. By integrating all the data, we define a model of seismogenic sources (seismogenic boxes), which can be directly used for regional-scale PSHA. Preliminary applications of PSHA indicate that the 3D approach may allow to hazard scenarios more realistic than those previously proposed.  相似文献   

13.
Summary In August 1955 a series of specially arranged quarry blasts in the Kiruna iron ore mines was recorded with a refraction apparatus at approx. 10 km distance. The experiments are the first seismic investigations of the deeper crustal structure in Fennoscandia and were mainly undertaken in order to study near-vertical reflections from crustal discontinuities. The records show clear directP waves with sharp onsets and a velocity of 5.65±0.13 km/sec (in porphyry), furthermoreS waves of less definite onsets and sound waves through the atmosphere.P waves reflected from crustal discontinuities are weak and of erratic occurrence, in agreement with theoretical expectation for near-vertical reflections. Approx. depths to the Conrad and the Mohorovii'c discontinuities are calculated as 19 km and 33–34 km. There is general agreement with the explosion records written by the Grenet seismograph at Kiruna, and the differences which exist can be explained by the different frequency response of the two instruments.
Zusammenfassung Im August 1955 wurde eine Reihe speziell angeordneten Steinbruchsprengungen in den Eisenerzgruben bei Kiruna mittels einer Refraktionsapparatur in rund 10 km Entfernung registriert. Diese Versuche sind die ersten seismischen Untersuchungen der tieferen Krustenstruktur in Fennoskandien und wurden hauptsächlich wegen eines Studiums von Reflexionen an krustalen Diskontinuitäten bei nahe vertikalem Einfall der Wellen vorgenommen. Deutliche, direkteP-Wellen mit scharfen Einsätzen und einer Geschwindigkeit von 5.65±0.13 km/sec (Porphyr) wurden registriert, ausserdemS-Wellen mit weniger scharfen Einsätzen und Schallwellen durch die Atmosphäre. An krustalen Diskontinuitäten reflektierteP-Wellen sind schwach und unregelmässig, im Einklang mit theoretischen Erwartungen für Reflexionen bei nahe vertikalem Einfall. Die Tiefen der Conrad- und der Mohorovii-Diskontinuitäten wurden annähernd zu 19 km bzw. 33–34 km berechnet. Es besteht allgemeine Übereinstimmung mit den Explosionsregistrierungen des Grenet-Seismographen in Kiruna, und die Unterschiede können lediglich durch die unterschiedliche Frequenzempfindlichkeit der Instrumente erklärt werden.
  相似文献   

14.
Ground-penetrating radar (GPR) is a non-destructive geophysical technique to obtain information about shallow subsurface by transmitting electromagnetic waves into the ground and registering signals reflected from objects or layers with different dielectric properties. The present GPR study was conducted in Võhmuta limestone quarry in Estonia in order to describe the relationship between GRP responses to the variations in petrophysical properties. Sub-horizontally oriented cores for petrophysical measurements were drilled from the side wall of the quarry. The GPR profiles were run at the sloped trench floor and on the top of side wall in order to correlate traceable reflections with physical properties. Based on three techniques: (i) hyperbola fitting, (ii) wide angle reflection and refraction (WARR), and (iii) topographic, a mean electromagnetic wave velocity value of 9.25 cm ns?1 (corresponding to relative dielectric permittivity of 10.5) was found to describe the sequence and was used for time-to-depth conversion. Examination of radar images against petrophysical properties revealed that major reflections appear in levels where the changes in porosity occur.  相似文献   

15.
探地雷达时域多分辨法(MRTD)三维正演模拟   总被引:4,自引:2,他引:2       下载免费PDF全文
应用小波伽略金方法,对Maxwell方程进行离散化,导出了DB2-MRTD算法的探地雷达3D差分公式、数值稳定性条件.在此基础上,开发了探地雷达MRTD(multi-resolution time domain)法正演模拟程序,该程序极大地提高了运算速度,改善了三维探地雷达正演方法,并利用该自制程序,对三角形金属体模型进行了正演模拟,得到了其相应的正演合成三维剖视图及切片图,通过对这些模拟结果进行分析,可以加深对三维雷达反射特征的认识,提高探地雷达探测的可靠性、准确度,同时也说明时域多分辨率法在探地雷达三维正演模拟中的有效性.  相似文献   

16.
From an analysis of many seismic profiles across the stable continental regions of North America and northern Europe, the crustal and upper mantle velocity structure is determined. Analysis procedures include ray theory calculations and synthetic seismograms computed using reflectivity techniques. TheP wave velocity structure beneath the Canadian Shield is virtually identical to that beneath the Baltic Shield to a depth of at least 800 km. Two major layers with a total thickness of about 42 km characterize the crust of these shield regions. Features of the upper mantle of these region include velocity discontinuities at depths of about 74 km, 330 km, 430 km and 700 km. A 13 km thickP wave low velocity channel beginning at a depth of about 94 km is also present.A number of problems associated with record section interpretation are identified and a generalized approach to seismic profile analysis using many record sections is described. TheS wave velocity structure beneath the Canadian Shield is derived from constrained surface wave data. The thickness of the lithosphere beneath the Canadian and Baltic Shields is determined to be 95–100 km. The continental plate thickness may be the same as the lithospheric thickness, although available data do not exclude the possibility of the continental plate being thicker than the lithosphere.  相似文献   

17.
Geomorphic and trench investigations are used toanalyze the seismic potential of the Aremogna-CinqueMiglia fault, an active N- to NW-trending, W-facingnormal fault located in Central Apennines. Wereconstructed a complex 16 km-long, as much as 6m-high, fault scarp that displaces late Holocenesediments in the Aremogna and Cinque Miglia basins.The complex surface expression of the fault, withdouble sub-parallel scarp sections, a change in strikeof about 40° and local complexity showingimportant horizontal component, appears to becontrolled by the presence of older tectoniclineaments. We opened two trenches across the faultscarp, used a quarry exposure, and reinterpreted atrench opened by Frezzotti and Giraudi (1989), to findthe geological evidence for three Holocene surfacefaulting earthquakes on the Aremogna-Cinque Migliafault. Based on radiocarbon dating and stratigraphicand climatic considerations timing of the events isconstrained between 800 B.C. and 1030 A.D., between3735 and 2940 B.C., and between 3540 and 5000 B.C.. The most recent event is not reported in the twomillennia-long Italian Catalogues of HistoricalSeismicity. We suggest that the most recent eventcould be one of the Middle Age earthquakes of unknownorigin for which several felt reports exist in Rome.Moreover, we also consider the hypothesis that one ofthe shocks of the ambiguous September 1349 earthquakesequence could be the Aremogna-Cinque Miglia mostrecent event. Anyway, based on historicalconsideration we indicate A.D. 1349 as the youngestpossible age for this event. Finally, we suggest theAremogna-Cinque Miglia fault is part of the easternsecondary Apennines seismogenic belt. The faultparameters we obtain for this fault (i.e., recurrence interval longer than 2000 yr, verticallong-term slip rate of 0.3–0.5 mm/yr and m 6.5–6.8 forthe event) can be used as a first hand reference tocharacterize the seismic behavior of other faultsalong this section of the Apennines.  相似文献   

18.
A two-dimensional analysis is applied to examine the effect that a sloping bedrock half-space has on the amplification of an anti-plane shear wave. The direct boundary integral equation method is used for the two-dimensional analysis. The particular soil–rock configuration investigated includes a homogeneous soil layer underlain by a sloping rock half-space. The rock half-space dips for a horizontal distance L and then becomes horizontal so that the overlying soil layer has a thickness H that remains constant from this point to infinity. The materials in the soil–rock configuration are considered viscoelastic except in the rock half-space below soil layer thickness H, which is considered elastic. This limitation in damping is due to the correction used for the truncation of the half-space boundary. Four cases are used to study the relationship between rock slope and surface displacement, vertical, 1:2, 1:4, 1:8. Surface displacements are determined for each of these cases for half-space incidence angles of 90, 75, and 60°. To allow for applicability to a wide range of problems, results are determined as a function of dimensionless parameters. In addition, solutions from a one-dimensional analysis are compared with the results of the two-dimensional analysis to establish limits outside of which a one-dimensional analysis suffices.  相似文献   

19.
Transient electromagnetic (TEM), self-potential (SP) and geoelectrical mapping measurements were carried out at the Chernorud-Mukhor site in the Priolkhonje area on the western shore of the Lake Baikal. All measurements were made along several profiles across the main strike of the regional Primorsky fault. TEM measurements were carried out in a time range from a few tens of microseconds to several tens of milliseconds. The most important result of the 1D modelling of TEM soundings is the discovery of nearly horizontal boundaries that divide high resistive overlying and well conducting underlying rocks. The resistivity of the former is in the range from 100 Ωm to 1000 Ωm, while the resistivity of the latter varies from less than 1 Ωm to several tens of Ωm. This good conductive zone could also be verified by geoelectrical mapping using Schlumberger array (AB/2=100 m). Due to high conductivity of the underlying rocks only the upper boundary of the conductive layer could be determined by TEM soundings. A regional SP anomaly with amplitude of about −450 mV has also been observed above the low resistivity zone indicating the electron nature of its conductance. Geologically, the conductive zone is represented by a graphite-bearing layer within the region of archean rocks. Since that layer extends over a large area, it may be used as a key in studying structures and tectonics of the Priolkhonje area. A 1D TEM geoelectric section shows a wide, gently sloping syncline as a probable base structure of the Chernorud-Mukhor site. Neotectonic faults divide the syncline into vertically displaced blocks that form a wide complicated graben with a total amplitude of about 250 m.  相似文献   

20.
The initial phase of the eruption forming Ukinrek Maars during March and April 1977 were explosions from the site of West Maar. These were mainly phreatomagmatic and initially transitional to strombolian. Activity at West Maar ceased after three days upon the initiation of the East Maar. The crater quickly grew by strong phreatomagmatic explosions. During the first phases of phreatomagmatic activity at East Maar, large exotic blocks derived from a subsurface till were ejected. Ballistic studies indicate muzzle velocities for these blocks of 80–90 m s−1.Phreatomagmatic explosions ejected both juvenile and non-juvenile material which formed a low rim of ejecta (< 26 mhigh) around the crater and a localized, coarse, wellsorted (σφ = 1−1.5) juvenile and lithic fall deposit. Other fine ash beds, interstratified with the coarse beds, are more poorly sorted (σφ = 2−3) and are interpreted as fallout of wet, cohesive ash from probably milder phases of activity in the crater. Minor base surge activity damaged trees and deposited fine ash, including layers plastered on vertical surfaces. Viscous basalt lava appeared in the center of the East Maar crater almost immediately and a lava dome gradually grew in the crater despite phreatomagmatic eruptions adjacent to it.The development of these maars appears to be mainly controlled by gradual collapse of crater and conduit walls, and blasting-out of the slumped debris by phreatomagmatic explosions when rising magma contacted groundwater beneath the regional water table and a local perched aquifer.Ballistic analysis on the ejected blocks indicates a maximum muzzle velocity of 100–150 m s-1, values similar to those obtained from other ballistic studies on maar ejecta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号