首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The concentration of heavy metals such as Ba, Co, Cr, Cu, Ni, Pb, Rb, Sr, V, Y, Zn, Zr were studied in soils of Balanagar industrial area, Hyderabad to understand heavy metal contamination due to industrialization and urbanization. This area is affected by the industrial activities like steel, petrochemicals, automobiles, refineries, and battery manufacturing generating hazardous wastes. The assessment of the contamination of the soils was based on the geoaccumulation index, enrichment factor (EF), contamination factor, and degree of contamination. Soil samples were collected from Balanagar industrial area from top 10–50 cm layer of soil. The samples were analyzed using X-ray fluorescence spectrometer for heavy metals. The data revealed that the soils in the study area are significantly contaminated, showing high level of toxic elements than normal distribution. The ranges of concentration of Cr (82.2–2,264 mg/kg), Cu (31.3–1,040 mg/kg), Ni (34.3–289.4 mg/kg), Pb (57.5–1,274 mg/kg), Zn (67.5–5819.5 mg/kg), Co (8.6–54.8 mg/kg), and V (66.6–297 mg/kg). The concentration of above-mentioned other elements was similar to the levels in the earth’s crust pointed to metal depletion in the soil as the EF was <1. Some heavy metals showed high EF in the soil samples indicating that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. A contamination site poses significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may results in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems.  相似文献   

2.
This study is aimed at determining the level of environmental degradation as well as the concentration of trace elements in soil and stream sediments in order to evaluate the environmental impact of the mining operation. Twenty-five (25) soils and ten (10) stream sediment samples were collected from the study area. The physicochemical parameters were determined using appropriate instrumentation with the aid of a digital pH meter (Milwaukee meter) to measure the pH and electrical conductivity, total dissolved solids, moisture content and loss on ignition of the soil and stream sediment samples. The pH of the soil sample ranged from (6.10 to 7.19); Electrical conductivity ranged from (21.3 to 279.4 µS/cm), moisture content varied from (0.60% to 7.20%), and the LOI ranged from (2.03% to 18.62%). The results of the analysis showed that the concentrations of the trace elements in the soils and stream sediment samples were slightly higher than the background values. Plots of the trace elements in stream sediment samples show moderate, consistent decrease downstream except at points where there was mine water discharge into the main river. The pollution levels of heavy metals were examined in stream sediment and soil samples using different assessable indices, such as the enrichment factor, which showed significant-moderate enrichment for Cr, Th, Nb, Zn, Pb, Y and Zr and the geo-accumulation index, which showed practically moderate contamination with Cr, Ni and Sr based on regional background reference values. Geo-accumulation index and contamination index for soils and stream sediment revealed uncontaminated to moderate contamination. Likewise, elements with moderate contamination were Cr, Ni and Sr. The Pearson correlation showed that there were significant positive associations among selected metals in soil and stream sediment samples.  相似文献   

3.
The concentrations of heavy metals (As, Ba, Co, Cr, Cu, Ni, Mo, Pb, Sr, V and Zn) were studied in soils to understand metal contamination due to industrialization and urbanization around Manali industrial area in Chennai, Southern India. This area is affected by the industrial activity and saturated by industries like petrochemicals, refineries, and fertilizers generating hazardous wastes. The contamination of the soils was assessed on the basis of geoaccumulation index, enrichment factor (EF), contamination factor and degree of contamination. Soil samples were collected from the industrial area of Manali from the top 10-cm-layer of the soil. Soil samples were analyzed for heavy metals by using Philips MagiX PRO-2440 Wavelength dispersive X-ray fluorescence spectrometry. The data revealed elevated concentrations of Chromium (149.8–418.0 mg/kg), Copper (22.4–372.0 mg/kg), Nickel (11.8–78.8 mg/kg), Zinc (63.5–213.6 mg/kg) and Molybdenum (2.3–15.3 mg/kg). The concentrations of other elements were similar to the levels in the earth’s crust or pointed to metal depletion in the soil (EF < 1). The high-EFs for some heavy metals obtained in the soil samples show that there is a considerable heavy metal pollution, which could be correlated with the industries in the area. Contamination sites pose significant environmental hazards for terrestrial and aquatic ecosystems. They are important sources of pollution and may result in ecotoxicological effects on terrestrial, groundwater and aquatic ecosystems. In this perspective there is need for a safe dumping of waste disposal in order to minimize environmental pollution.  相似文献   

4.
Abstract: The present study demonstrates distribution and chemical forms of heavy metals in soils of the Almalyk mining and smelting industrial area along five transects. The study area is located in Almalyk, Uzbekistan, where the intensification of industrial enterprises negatively impacts the environment. The distribution of 17 heavy metals (Cu, Zn, Pb, Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th, and U) were studied in 21 sampling locations (21×3=63 soil samples) along five radial transects with a total length of 60?km downwind deposition gradient. Soil samples were collected from the upper layer (0–10?cm) at 4–6?km intervals. As a result of X-ray fluorescence spectrometry analyses by using X-ray fluorescence spectroscopy (XRF, Philips Analytical Ink, USA ), a significant decrease in heavy metal (Cu, Zn, Pb) deposition was found going from the source in a downwind direction. Soil samples taken from the first location (near the pollution sources) showed higher concentrations of Cu, Zn and Pb, and lower concentrations with increasing distance from the source. Obtained data showed different impact of pollution sources to heavy metal deposition and distribution in soils. The Almalyk mining and smelting complex is the major source of Pb, Zn and Cu enrichment in soils. Distribution of other trace elements does not exceed background content and suggests lithogenic background. This allowed us to divide these elements into two groups: (1) technogenic (Cu, Zn and Pb); and (2) lithogenic (Sc, V, Cr, Co, Ni, Ga, Rb, Sr, Y, Zr, Nb, Ba, Th and U) origins.  相似文献   

5.
Environmental geochemical studies were carried out to find out the extent of contamination in sediments due to heavy metals in Balanagar industrial area, Hyderabad, Andhra Pradesh, India. The industrial area consisting of 350 small and large industries manufacturing battery, steel planting, pharmaceutical chemicals, metal plating, etc. The present study was undertaken on sediment contamination in Balanagar industrial area, to determine extent and distribution of heavy metals (Cu, Cr, Ni, Pb, Zn, As) and to delineate the source. There is no treatment plant in the industrial area, and many industries release the effluents into nearby nalas and lakes. Solid waste from the industries is also being dumped along the roads and near the open grounds due to which heavy metals migrate from solid waste to the groundwater. The sediments samples were collected from the study area in clean polythene covers and were analyzed for their heavy metals by X-ray fluorescence spectrometry. The concentration ranges of different heavy metals were Cr, 96.2–439.6 mg/kg; Cu, 95.7–810 mg/kg; Ni, 32.3–13,068.2 mg/kg; Pb, 59.2–512 mg/kg; Zn, 157.1–4,630.5 mg/kg; Co, 1.8–48.3 mg/kg; and V, 35.2–308.5 mg/kg. High concentration of heavy metals in sediments can be attributed to some pharmaceutical and metal industries in the study area. Based on the results obtained, suitable remedial measures can be adopted such as phytoremediation and bio-remediation for reduction of heavy metals in sediments.  相似文献   

6.
Regional-scale variations in soil geochemistry were investigated with special reference to differences among soil groups and lithology in an area of 9,699 km2 in Medak district, Andhra Pradesh, India. The concentrations of 29 elements (major: Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P and trace: As, Ba, Cd, Co, Cr, Cu, F, Mo, Ni, Pb, Rb, Se, Sr, Th, U, V, Y, Zn, Zr) in 878 soil samples collected (557-topsoil, 321-subsoil) at a sampling density of 1 site/17 km2 from 557 sites representative of all the soil types present in studied area were determined, and their elemental composition are discussed. The baseline levels of these elements in soils are determined over different lithological units for the identification of anomalous values relative to these. For the first time, geochemical maps for Medak district are prepared on 1:50,000 scale and the lithogeochemical database generated provides information on the lateral and vertical distribution of elements in soil. The spatial variations in the distribution of elements reflect underlying geologic characteristics. Box-plots reveal that the concentration of most of the elements in soils were not strongly dependent on the soil group but the soil-geochemistry abruptly changes with the change in the soil parent materials indicating that the distribution of elements is mostly influenced by the bedrock lithology and other natural processes acting on them. For instance, the concentrations of Co, Cu, Fe, Mn, Ti, V and Zn are high in soils developed on basaltic terrain while the soils developed on granitic and gneissic terrain exhibit high elemental concentrations of K, Pb, Rb, Si, Th and Y. Alfisols had relatively high contents of elements while entisols had lower concentrations of most of the elements. The database can be used in the chemical characterisation of different geological units as well as applications in various environmental and agricultural fields. The results indicate that regional geology is an important determinant of soil geochemical baselines for soil pollution assessment and further emphasizes the importance of determining background levels locally. The defined baselines can be used to establish background values for future soil surveys.  相似文献   

7.
Urban soil nitrogen and phosphorus have significant implications for the soil and water quality in urban areas. The concentrations of total nitrogen (TN) and total phosphorus (TP) of soil samples collected from six types of land use, which included residential area (RA), business area (BA), classical garden (CG), culture and education area (CEA), public green space (PGS) and roadside area (RSA) of Beijing urban area, were investigated. Results showed that the geometric mean of TP (857 mg/kg) in urban soils was slightly higher than that (745 mg/kg) in rural soils of Beijing. The concentration of soil TP was higher in the center of the city, and showed an increasing trend with the age of the urban area. The TP concentrations in the six types of land use followed the sequence of CG > BA > RSA > RA > CEA > PGS, which were affected by the use and disposal of phosphorus-containing materials in each type of land use. However, the geometric mean of TN (753.8 mg/kg) in urban soils was much lower than that (1,933.3 mg/kg) in rural soils. TN level in urban soils of Beijing had no correlation with the city’s urbanization history, and was influenced by the coverage of natural vegetation and human activities in each type of land use. This study suggested that the city’s urbanization history and land use were the main factors affecting the distribution of nitrogen and phosphorus in urban soils.  相似文献   

8.
The impact of waste disposal on trace metal contamination was investigated in eleven wetlands in the Lake Victoria Basin. Samples of soil, water and plants were analysed for total Zn, Cu, Pb and Ni concentrations using flame atomic absorption spectrophotometry. The trace metal concentrations in soil were the highest in Katanga wetland with the highest mean concentrations of 387.5±86.5 mg/kg Zn, 171.5±36.2 mg/kg Pb, 51.20±6.69 mg/kg Cu and 21.33±2.23 mg/kg Ni compared to the lowest levels observed at Butabika (30.7±3.2 mg/kg Zn, 15.3±1.7 mg/kg Pb, 12.77±1.35 mg/kg Cu and 6.97±1.49 mg/kg Ni). Katanga receives waste from multiple industrial sources including a major referral city hospital while Butabika is a former solid waste dumpsite. Wetland soil near a copper smelter had a Cu concentration of 5936.3±56.2 mg/kg. Trace metal concentrations in industrial effluents were above international limits for irrigation water with the highest concentrations of 357,000 μg/L Cu and 1480 μg/L Zn at a Cu smelter and 5600 μg/L Pb at a battery assembling facility compared to the lowest of 50 μg/L Cu and 50 μg/L Zn in water discharged from Wakaliga dumpsite. Uptake of trace metals from soil differed from plant to plant and site to site. Higher levels of trace metals accumulated in the root rather than in the rhizome and the least amount was in the leaf. The study identifies industry as a potential source of trace metal contamination of water and the environment pent-up need for policy intervention in industrial waste management.  相似文献   

9.
Aljustrel mine is located in SW Portugal, in the western sector of the Iberian Pyrite Belt. The Aljustrel village was developed around the exploitations of massive polymetallic sulphides that occur in the area (4 orebodies mined, 2 in exploration phase). The pyrite ore was extensively exploited from 1850 to 1993, when production was discontinued. A mining restart occurred in 2008, only during a few months. The objectives of the study were to assess the levels of soil contamination, to determine associations between the different chemical elements and their spatial distribution, as well as to identify possible sources of contamination that can explain the spatial patterns of soil pollution in the area. Principal component analysis combined with spatial interpretation successfully grouped the elements according to their sources and provided evidence about their geogenic or anthropogenic origin. From this study, it is possible to conclude that soils around Algares/Feitais tailing deposits, Estéreis and Águas Claras mine dams and S. João mine show severe contamination. The highest concentrations of As (up to 3,936 mg kg?1) and certain heavy metals (up to 321.7 mg kg?1 for Bi, 5,414 mg kg?1 for Cu, 20,000 mg kg?1 for Pb, 980.6 mg kg?1 for Sb, and 22 mg kg?1 Cd) were obtained near Algares area while the highest concentration of Cd (up to 61.6 mg kg?1) and Zn (up to 20,000 mg kg?1) were registered in samples collected in the S. João area. The highest pollution load index (>4.0) was recorded at the Algares area where the metal concentrations exceed typical soil background levels by as much as two orders of magnitude.  相似文献   

10.
The present study attempted to identify the efficient hazardous metal-removing sorbent from specific types of soil, upper and middle layer shirasu, shell fossil, tuff, akadama and kanuma soils of Japan by physico-chemical and metal (arsenic, cadmium and lead) removal characterizations. The physico-chemical characteristics of soil were evaluated using X-ray diffraction and scanning electron microscopy with energy dispersive spectroscopy techniques, whereas metal removal properties of soil were characterized by analyzing removal capacity and sorption kinetics of potential metal-removing soils. The chemical characteristics revealed that all soils are prevalently constituted of silicon dioxide (21.83–78.58 %), aluminum oxide (4.13–38 %) and ferrous oxide (0.835–7.7 %), whereas calcium oxide showed the highest percentage (65.36 %) followed by silicon dioxide (21.83 %) in tuff soil. The results demonstrated that arsenic removal efficiency was higher in elevated aluminum oxide-containing akadama (0.00452 mg/L/g/h) and kanuma (0.00225 mg/L/g/h) soils, whereas cadmium (0.00634 mg/L/g/h) and lead (0.00693 mg/L/g/h) removal efficiencies were maximum in elevated calcium oxide-containing tuff soil. Physico-chemical sorption and ion exchange processes are the metal removal mechanisms. The critical appraisal of three metal removal data also clearly revealed cadmium > lead > arsenic order of removal efficiency in different soils, except in tuff and akadama soils followed by lead > cadmium > arsenic. It clearly signified that each type of soil had a specific metal adsorption affinity which was regulated by the specific chemical composition. It may be concluded that akadama would be potential arsenic-removing and tuff would be efficient cadmium and lead-removing soil sorbents.  相似文献   

11.
Soil samples from 0 to 100 cm depth were collected in four sampling sites (Sites A, B, C and D) along a 250-m length of sampling zone from the Yellow River channel to a tidal creek in a seasonal flooding wetland of the Yellow River Delta of China in fall of 2007 and spring of 2008 to investigate spatial and seasonal distribution patterns of total phosphorous (TP) and available phosphorus (AP) and their influencing factors. Our results showed that TP contents in spring and AP contents in both seasons in surface soils increased with increasing distances away from the Yellow River channel. TP contents in surface soils (0–10 cm) followed the order Site A (698.6 mg/kg) > Site B (688.0 mg/kg) > Site C (638.8 mg/kg) > Site D (599.2 mg/kg) in fall, while Site C (699.6 mg/kg) > Site D (651.7 mg/kg) > Site B (593.6 mg/kg) > Site A (577.5 mg/kg) in spring. Generally, lower TP content (630.6 mg/kg) and higher AP level (6.2 mg/kg) in surface soils were observed in spring compared to fall (656.2 mg/kg for TP and 5.2 mg/kg for AP). Both TP and AP exhibited similar profile distribution patterns and decreased with depth along soil profiles with one or two accumulation peaks at the depth of 40–80 cm. Although the mean TP content in soil profiles was slightly higher in spring (635.7 mg/kg) than that in fall (628.0 mg/kg), the mean TP stock was obviously lower in spring (959.9 g/m2) with an obvious accumulation at the 60–80 cm soil depth compared to fall (1124.6 g/m2). Topsoil concentration factors also indicated that TP and AP had shallower distribution in soil profiles. Correlation analysis showed that AP had significant and positive correlation with these soil properties such as soil organic matter, salinity, total nitrogen and Al (p < 0.01), but TP was just significantly correlated with TN and Al (p < 0.05).  相似文献   

12.
Pollution load and contamination levels of phthalate esters (PAEs) in agricultural soils throughout China were studied in this work. The usage amount and residual rates of plastic film were the main factors explaining the variation among regions and leading to higher pollution load and contamination levels in agricultural big provinces. However, higher pollution loads and contamination levels frequently occurred under non-recycling than recycling scenarios during calculation. Extremely high loads (more than 10 kg/ha/year) of PAEs were estimated in five areas including Beijing city, Tibet, Liaoning Province, Jilin Province and Fujian Province and the high contamination levels in agricultural soil were presented in these places with more than 4.0 mg/kg under non-recycling scenarios. The predicted concentrations of PAEs in soils exceed the target value for soils from Netherlands (ΣPAEs = 0.1 mg/kg), indicating very high contamination of most Chinese agricultural soils. Significant differences in estimation results after plastic film utilization suggest that decreasing plastic film residue after application is an effective measure to control PAE pollution in soils. However, the comparison between contamination levels of PAEs estimated by the model and the previous detections of PAEs pollution levels in agricultural soils showed that there were presented wide range of PAE sources indicated to agricultural soils.  相似文献   

13.
Analysis of the total heavy metal (Cr, Cd, Pb, As, Cu, Ni, Zn, Co) concentration was performed on 33 soil samples taken from different profiles and soil types in a highly urbanized and industrial sector of Addis Ababa, central Ethiopia. They were analyzed using aqua regia extraction coupled with a four-stage sequential extraction (SE) procedure. The objectives of the analysis were to investigate the degree of soil heavy metal contamination, its binding forms, mobility and the implications for the groundwater resource. The results show a relatively high content of the analyzed trace metals in the soil attributed to anthropogenic and geogenic sources. Although most of the trace metals are found in the upper few centimeters of the residual soils, because of churning processes within the black cotton soils, vertical distribution of the trace metals is complex. According to the heavy metal SE analysis, the major heavy metal contribution is from the residual followed by the hydroxide phases. Groundwater heavy metal contamination is present with more than 90 and 50% of the analyzed groundwater samples exceeding WHO guidelines for Cr and Cd, respectively. Since the degree of soil heavy metal contamination has apparently not surpassed the soil’s buffering capacity, it appears that the transport path of these toxic metals to the groundwater is through fractures, joints, and related preferential flow paths.  相似文献   

14.
An increase in heavy metal pollution in the soils of Hassi Messaoud (Algeria) due to intense industrialization and urbanization has become a serious environmental problem. There are three large industrial complexes that have been established in the region of Hassi Messaoud for petroleum extraction field and refinery. The region hosts several industrial facilities which are the main sources for hazardous wastes. Surface soil samples from 58 sampling sites (systematically sampled; 1 × 1 km regular grid), including different functional areas in Hassi Messaoud, were collected and analyzed. The results showed that the average concentrations of Cu, Ni, Mn, Pb and Zn in soil of Hassi Messaoud were up to 13.17, 35.78, 121.21, 130.97 and 61.08 mg/kg, respectively. Ni concentrations were comparable to background values, while Cu, Mn, Pb and Zn concentrations were higher than their corresponding background values. Among the functional areas, the industrial regions displayed the highest metal concentrations, while the lowest concentrations occurred in rural soil. Principal component analysis coupled with cluster analysis showed that: (1) Pb and Zn had anthropogenic sources; and (2) Ni, Cu and Mn were associated with parent materials. Contaminations in soils were classified as geoaccumulation index and enrichment factor. Pollution index values of Cu, Ni, Mn, Pb and Zn varied in the range of 0.04–5.41, 0.46–2.49, 0.01–5.73, 0.62–152.9 and 0.09–53.01, with mean values of 1.32, 1.08, 1.26, 5.64 and 3.1, respectively. The integrated pollution index (IPI) of all the analyzed samples varied from 0.42 to 31.59, with a mean of 2.48, and more than 5.45 % of samples are extremely contaminated; 18.18 % are heavily contaminated; 60 % are moderately contaminated; and others are low contaminated. The spatial distribution of IPI showed that desert and rural areas displayed relatively lower heavy metal contamination in comparison with other areas.  相似文献   

15.
This study investigated the status and distribution patterns of selected heavy metals in roadside soils along Irbid-North Shooneh Highway, Jordan. This highway has experienced a growing number of vehicles that are likely to influence the levels of heavy metals in the surrounding agricultural lands. The average concentrations of Cr, Co, Cd, Cu, Pb, Zn, and Ni were 16.0, 36.0, 11.0, 4.0, 79.0, 122.0, and 60.0 mg/kg, respectively. Cd, Pb, and Co showed average levels that are higher than the average world soil background values. Elevated levels of heavy metals were measured in surface soil layer which decreased with depth, and with distance from the roadway. The contamination factor (CF), pollution load index (PLI), single ecological risk (Ei), potential ecological risk index (PERI), and geo-accumulation index (Igeo) generally indicated that the roadside soils are contaminated with Cd, Pb, and Ni. Heavy metals in soils are of geogenic and anthropogenic origins. Weathering of parent rocks in Wadi Al-Arab catchment is the primary natural source, whereas agrochemicals, vehicle exhausts, degradation of surface wear and paint of vehicles, vehicle wear debris of tire, and brake lining are the main anthropogenic sources of heavy metals.  相似文献   

16.
The Vinto Sb–Sn smelter (Oruro, Bolivia) has been linked to arsenic and heavy metal pollution in air, soils, residual waters of the smelter, and hair and urine of workers, but crop concentrations had not been assessed previously. In this article, alfalfa, onions, and carrots, separated into roots and shoots, were analyzed for As and Pb, together with corresponding soil samples. The aim was to assess the environmental distribution and potential health impacts of these toxic elements and to compare them to levels observed at other sites around the world. As and Pb concentrations in all analyzed crop samples exceed the FAO/WHO, UK or Chilean limits by 1.5–2 orders of magnitude and As health risk indices were 286 (carrot) and 651 (onion), showing that the potential health risk due to consumption of these products is extremely high. As and Pb soil–plant transfer factors are similar to other contaminated sites around the world, but daily intake and health risk index for As are much higher in Vinto area due to very high concentrations in soils. Arsenic and lead soil and crop concentrations suggest increasing trends toward VMC. Correlations are significant for Pb in some crop fractions, but not for As, possibly due to considerable geogenic contributions to soil As in the area. In future surveys, larger numbers of soil and crop samples should be analyzed, and additional analyses should be carried out to distinguish anthropogenic and geogenic sources of As and Pb in soils and crops in the area.  相似文献   

17.
The present study was carried out in the Mulaylih area which forms a part of Wadi Al Hamad in the Madinah Province of Saudi Arabia. Thirty groundwater samples from agricultural farms were collected and analyzed for various physio-chemical parameters including trace elements. The area is occupied by the Quaternary alluvium deposits which form shallow unconfined aquifers. Evaporation and ion exchange are the major processes which control the major ion chemistry of the area. The extreme aridity has results in high total dissolved solid values (average of 9793.47 mg/l). Trace element concentrations are low and are mainly attributed to geogenic sources (silicate weathering). Na-Cl groundwater type is the main hydrochemical facies found in the area. The waters are found to be oversaturated with calcite/aragonite and dolomite. The average nitrate concentration was found to be 134.10 mg/l and is much higher than the WHO recommended limit of 50 mg/l in drinking water. Their high values are mainly associated with the application of N-fertilizers on the agricultural farms. The average fluoride concentration in the study was found to be 1.54 mg/l. The relation between F and Cl and Cl and Na reveals that the fluoride concentrations are mainly attributed to geogenic sources. A comparison of the groundwater quality with the Saudi drinking water standards shows that the water is unfit for drinking. The high salinity and sodicity of the groundwater make it unfit for irrigation. Principal component analysis resulted in extraction of four principal components accounting for 79.5% of the total data variability and supports the fact that the natural hydrochemical processes (evaporation and ion exchange) control the overall groundwater chemistry.  相似文献   

18.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic pollutants in urban environments including urban soils. Elevated concentrations of PAHs in urban soils are caused by incomplete combustion of petroleum and coal. This study assesses 16 individual PAH compounds in a total of 112 surficial soil samples. The objective was to assess and compare the levels of contamination as well as examine the main sources of PAHs in four urban agricultural soils using molecular ratios of some specific hydrocarbons. The study showed that PAH levels in soil ranged from 1.23 ng/kg in soil collected from Dzorwulu to 2.95 ng/kg in soil collected from Ghana Broadcasting Cooperation (GBC) vegetable irrigation site. Of the total PAHs, the more water soluble PAHs (2–4 rings), which tend to be concentrated in the vapour phase were found to dominate the soils. The percentage dominance were Dzorwulu (52.8 %), Marine Drive (62.5 %), CSIR (53.2 %) and GBC (49.2 %). However, there were significant levels of the more carcinogenic PAHs (5–6 rings) present with percentages as 47.1, 37.5 46.8 and 50.8 % for Dzorwulu, Marine Drive, CSIR and GBC vegetable irrigation sites, respectively, and therefore, may impact negatively on public health. Based on the classification by the Institute of Soil Science and Plant Cultivation in Pulawy, Poland, urban soils in Accra could be classified as contaminated to different levels. Molecular ratios of Flu/pyr and PA/Ant were calculated to determine the main sources of PAHs. Results showed that PAHs could originate mainly from incomplete combustion of petroleum products, especially from atmospheric fallout from automobile exhausts. The study further showed that B(a)P concentration of 0.05 ng/kg in soil from GBC urban vegetable irrigation site requires immediate clean-up exercise and monitoring to mitigate human health impact.  相似文献   

19.
Human activities have progressively increased in recent years. Consequently, significant environment deterioration resulted. Soils have a particularly varied vulnerability to heavy metal pollution, especially in the vicinity of industrial areas. Heavy metal contamination of soil may induce risks and hazards to humans and the ecosystem, while toxic metals in soil can severely inhibit the biodegradation of organic contaminants. This paper is focused on human health risk assessment from extremely contaminated soil with heavy metals, mainly with carcinogenic elements. The study refers to an agricultural area in the vicinity of an old metallurgical processing industrial facility. The contaminants evaluated in the present paper are beryllium (Be), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb). Contamination level is pointed out through laboratory analysis results of soil samples taken from 0–0.2 m, 0.2–0.4 m soil layers and up to 2.1 m soil depth. Some heavy metal concentrations (Cd, Cr and Pb) exceed the intervention thresholds for sensitive areas, as they are stipulated in the national regulation in Romania. The identified average concentration levels of Cd, CrVI and Pb in the first layer of the investigated land are 23.83, 7.71 and 704.22 mg/kgd.w, respectively. The results show that the potential risk of human health is relevant (higher than the acceptable one after World Health Organization) and a possible solution for the remediation should become a major concern for the investigated area.  相似文献   

20.
This study investigates the concentration and spatial distribution of Cu, Zn, Hg and Pb in the surface (0–2 cm) soils of a regional city in Australia. Surface soils were collected from road sides and analysed for their total Cu, Zn, Hg and Pb concentrations in the <180 μm and <2 mm grain size fractions. The average metal concentration of surface soils, relative to local background soils at 40–50 cm depth, are twice as enriched in Hg, more than three times enriched in Cu and Zn, and nearly six times as enriched in Pb. Median surface soil metal concentration values were Cu – 39 mg/kg (682 mg/kg max), Zn – 120 mg/kg (4950 mg/kg max), Hg – 44 μg/kg (14,900 μg/kg max) and Pb – 46 mg/kg (3490 mg/kg max). Five sites exceeded the Australian NEPC (1999) 300 mg/kg guideline for Pb in residential soils. Strong positive correlations between Cu, Zn and Pb, coupled with the spatial distribution of elevated soil concentrations towards the city centre and main roads suggest traffic and older housing as major sources of contamination. No spatial relationships were identified between elevated metal loadings and locations of past or present industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号