共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic geochemical analysis, palynology, and PetroMod software for the organic matters of subsurface Tithonian to Valanginian Sulaiy formation of six wells in Basrah Region, South Iraq showed evidences for hydrocarbon generation potential. These analyses include quantitative studies such as pyrolysis, fluorescence spectroscopy, and total organic carbon (TOC), while the qualitative studies are the textural microscopy used in evaluating amorphous organic matter for palynofacies analysis leading to hydrocarbon assessments. High TOC content of up to 7.3 wt.%, kerogen type II of mesoliptinic type with hydrogen index of up to 466 mg HC/g TOC, and mature organic matter along with dysoxic–anoxic environment and stratigraphic framework have rated the succession as a source rock for oil with ordinate gas, not only in Iraq but also in neighboring Kuwait and Saudi Arabia. This case study is also inferred for hydrocarbon generation and expulsion by PetroMod software which confirmed the source potential. 相似文献
2.
3.
4.
We present results of geochemical studies of organic matter of the Jurassic–Cretaceous deposits in the west of the Yenisei–Khatanga regional trough. The studies were carried out on a representative set of well cores by a complex of modern organic-geochemistry methods (determination of organic-carbon content in rocks, pyrolysis, estimation of the carbon isotope composition in the kerogen of rocks, extraction, liquid and gas–liquid chromatography, and chromato-mass spectrometry). Based on the distribution of biomarkers in the studied bitumens and pyrolysis of rocks, two groups of the samples were recognized: with terrigenous (type III) and marine (type II) organic matter. The terrigenous bitumens are characterized by a low hydrogen index (HI) and a predominance of hydrocarbons C29 among steranes and C19 and C20 among tricyclanes. The marine bitumens, revealed in stratigraphic analogs of the Bazhenovo Formation and in the Malyshevka, Nizhnyaya Kheta, and Shuratovka Formations, show an even distribution of sterane homologues and a predominance of medium-molecular tricyclanes. The Pr/Ph and C35/C34 ratios and the presence of diahopanes testify to the burial of organic matter in suboxidizing sea coast environments. In the Yanov Stan (J3–K1), Gol’chikha (J2–K1), and, to a lesser extent, Malyshevka (J2), Nizhnyaya Kheta, and Shuratovka (K1) Formations, we have recognized widespread stratigraphic levels with marine organic matter of rocks. Its contents and degree of maturity permit these rocks to be considered oil-generating. 相似文献
5.
The stratigraphic section of the Upper Triassic–Lower Jurassic Whitmore Point Member of the Moenave Formation at Potter Canyon, Arizona, comprises c. 26 m of gray to black shales and red mudstones interbedded with mainly sheet-like siltstones and sandstones. These strata represent deposition from suspension and sheetflow processes in shallow, perennial meromictic to ephemeral lakes, and on dry mudflats of the terminal floodout of the northward-flowing Moenave stream system. The lakes were small, as indicated by the lack of shoreline features and limited evidence for deltas. Changes in base level, likely forced by climate change, drove the variations between mudflat and perennial lacustrine conditions. Lenticular sandstones that occur across the outcrop face in the same stratigraphic interval in the lower part of the sequence represent the bedload fill of channels incised into a coarsening-upward lacustrine sequence following a fall in base level. These sandstones are distinctive for the common presence of over-steepened bedding, dewatering structures, and less commonly, folding. Deformation of these sandstones is interpreted as aseismic due to the lack of features typically associated with seismicity, such as fault-graded bedding, diapirs, brecciated fabrics and clastic dikes. Rapid deposition of the sands on a fluid-rich substrate produced a reverse density gradient that destabilized, and potentially fluidized the underlying, finer-grained sediments. This destabilization allowed synsedimentary subsidence of most of the channel sands, accompanied by longitudinal rotation and/or ductile deformation of the sand bodies. 相似文献
6.
Doklady Earth Sciences - Based on the results of studying the lithological–geochemical features of the Upper Jurassic–Lower Cretaceous mudrocks and black shales in the Eastern Russian... 相似文献
7.
Well-preserved and abundant Jurassic–Early Cretaceous palynomorph assemblages were recorded from the Kabrit-1 well, north Eastern Desert, Egypt. Thirty-one rock-cutting samples were analyzed and six rock units were differentiated. Seventy-one palynomorph species were identified from the productive samples. Six palynozones were differentiated, and they covered all the studied succession except for a palynomorph barren interval present in the uppermost part. These palynozones arranged in ascending order are as follows: two palynozones were recorded from the Middle-Upper Jurassic (Gonyaulacysta jurassica – Lithodinia jurassica Assemblage Zone and Klukisporites pseudoreticulatus- Systematophora penicillata – Escharisphaeridia pocockii Assemblage Zone) and the other four palynozones characterize the Lower Cretaceous deposits (Pilosisporites trichopapillosus – Cribroperidinium orthoceras Assemblage Zone; Dicheiropollis etruscus Interval Zone; Murospora florida – Afropollis operculatus Assemblage Zone and Afropollis jardinus Range Zone). We infer open marine conditions during deposition of the lower part of the Khalig El Ayoun Formation (Oxfordian-Kimmeridgian) and within the Kharita Formation (Albian), and shallow marine or coastal environments during deposition of the remainder of the studied succession. Paleobiogeographically, Late Jurassic index terrestrial palynomorph species documented here are in common with those previously recorded from North Africa, while marine dinocyst species are common to those documented from the West European and North American province. During the Early Cretaceous, the recorded terrestrial microfloral species were similar to those previously recorded from the West African-South American Province, while the marine dinocyst species were still related to the West European and North American marine palynofloral province. 相似文献
8.
Two incomplete bones referred to ankylosaur scapulocoracoid and humerus are described, which were discovered from the Early Cretaceous Jiufotang Formation of Dachengzi Town, Kazuo County, Liaoning Province. Ankylosaur dinosaurs have ever been found in the Lower Cretaceous Yixian, Fuxin and Sunjiawan Formations of western Liaoning. The occurrence of ankylosaurs within Jiufotang Formation improves our knowledge on the ankylosaur stratigraphic distribution. Based on the length of scapulocoracoid, the new dinosaur is estimated to exceed 6.0 meters long, representing the largest ankylosaur in western Liaoning. 相似文献
9.
10.
A systematic sedimentologic and paleomagnetic study was carried out in the Vaca Muerta Formation, cropping out in the northern Neuquén Basin, west-central Argentina. The studied section is c. 280 m-thick and represents a carbonate ramp system bearing ammonites that indicate Late Jurassic–Early Cretaceous ages. The Vaca Muerta Formation is one of the most important unconventional hydrocarbon reservoirs in the world and its thorough study has become a relevant target in Argentina. The J-K boundary is comprised within this unit, and although it is well-dated through biostratigraphy (mainly ammonites), the position of particularly the boundary is yet a matter of hot debate. Therefore, the systematic paleomagnetic and cyclostratigraphic study in the Vaca Muerta Formation was considered relevant in order to obtain the first Upper Jurassic–Lower Cretaceous magnetostratigraphy of the southern hemisphere on the first place and to precise the position of the J-K boundary in the Neuquén Basin, on the other. Biostratigraphy is well studied in the area, so that paleomagnetic sampling horizons were reliably tied, particularly through ammonites. Almost 450 standard specimens have been processed for this study distributed along 56 paleomagnetic sampling horizons that were dated using ammonites. Paleomagnetic behaviours showed to be very stable, and their quality and primary origin have been proved through several paleomagnetic field tests The resultant magnetostratigraphic scale is made up of 11 reverse and 10 normal polarity zones, spanning the Andean Virgatosphinctes mendozanus (lower Tithonian) to Spiticeras damesi Zones (upper Berriasian). These polarity zones were correlated with those of the International Geomagnetic Polarity Time Scale 2012 and 2016 through the correlation between Andean and Tethyan ammonite zones. Cyclostratigraphy on the other hand, proved to be quite consistent with the magnetostratigraphy. Through the correlation of the resultant paleomagnetic and cyclostratigraphic data, it was possible to date the section with unprecedented precision, and therefore, to establish the position of the Jurassic-Cretaceous boundary. The paleomagnetic pole calculated from the primary magnetization is located at: Lon = 191.6°E, Lat = 76.2°S, A95 = 3.5°, indicating a c. 24° clockwise rotation for the studied section, which is consistent with structural data of the region. 相似文献
11.
S. A. Medvedeva 《Russian Journal of Pacific Geology》2016,10(4):299-316
The first data on the whole-rock chemical composition of Jurassic–Lower Cretaceous sedimentary rocks cropping out in the Soloni–Umal’ta river interfluve (Bureya sedimentary basin) are used for revealing the distribution of their rock-forming elements. It is shown that the clastic material originated mostly from acid igneous rocks, while their intermediate varieties, as well as quartz-rich sedimentary and metamorphic rocks, played a subordinate role. It is assumed that the bulk of the clastic material was transported from the west and southwest (Bureya massif) and a smaller share from the east. The most significant differences between the Lower–Middle Jurassic and Upper Jurassic–Lower Cretaceous rocks mark a break in sedimentation. 相似文献
12.
Upper Jurassic and Lower Cretaceous sedimentary layers are represented in the Brazilian Paraná Basin by the fluvio–aeolian Guará Formation and the Botucatu Formation palaeoerg, respectively, overlapped by the volcanic Serra Geral Formation. In Uruguay, the corresponding sedimentary units are named Batoví and Rivera Members (both from the Tacuarembó Formation), and the lava flows constitute the Arapey Formation (also in Paraná Basin). Despite the lack of body fossils in the mentioned Brazilian formations, Guará/Batoví dinosaur fauna is composed of theropod, ornithopod and wide–gauge sauropod tracks and isolated footprints, as well as theropod teeth. In turn, the Botucatu/Rivera dinosaur fauna is represented by theropod and ornithopod ichnofossils smaller than those from the underlying units. The analysis of these dinosaur ichnological records and comparisons with other global Mesozoic ichnofauna indicates that there is a size reduction in dinosaur fauna in the more arid Botucatu/Rivera environment, which is dominated by aeolian dunes. The absence of sauropod trackways in the Botucatu Sandstone fits with the increasingly arid conditions because it is difficult for heavy animals to walk on sandy dunes, as well as to obtain the required amount of food resources. This comparison between the Upper Jurassic and Lower Cretaceous dinosaur fauna in south Brazil and Uruguay demonstrates the influence of aridization on the size of animals occupying each habitat. 相似文献
13.
14.
XU Xing CHENG Yennien WANG Xiaolin CHANG Chunhsiang Institute of Vertebrate Paleontology Paleoanthropology Chinese Academy of Sciences Beijing Chin E-mail: xu.xing@ivpp.ac.cn Division of Geology National Museum of Natural Science Taichung China Wang Si''en Xie Guanglian 《《地质学报》英文版》2003,77(3):294-298
Pygostyle was previously considered as a unique structure of ornithothoracine birds, used to maneuver tail feathers. A similar structure from an oviraptorosaurian dinosaur was considered functionally associated with the rectrices as in birds. We report a pygostyle-like structure from a therizinosauroid dinosaur. The presence of filamentous integuments, but absence of rectrices, on the tail of this therizinosauroid, combined with other lines of evidence, suggests that the initial function of the pygostyle was not related to the rectrices. 相似文献
15.
Tolstykh N. D. Bortnikov N. S. Shapovalova M. O. Shaparenko E. O. 《Doklady Earth Sciences》2022,507(2):994-1000
Doklady Earth Sciences - Data on the mineralogical and geochemical features of three epithermal gold deposits in Kamchatka, as well as on the compositions and physicochemical parameters of... 相似文献
16.
The Barents Sea shelf is an attractive target as a prospective large petroleum province. Further development of geological and geophysical exploration in the area requires high-resolution biostratigraphic constraints and update stratigraphic charts. The zonal succession of Lower and Middle Jurassic assemblages of foraminifers and ostracodes of the Barents Sea fits well the division for northern Siberia based on correlated independent Jurassic and Cretaceous zonal scales on all main microfossil groups, of which some scales were suggested as the Boreal Zonal Standard. The stratigraphic range of the Barents Sea microfossil assemblages has been updated through correlation with their counterparts from northern Siberia constrained by ammonite and bivalve data. Joint analysis of foraminiferal and ostracode biostratigraphy and lithostratigraphy of the sections allowed a revision to the stratigraphic position and extent of lithological and seismic units. The discovered similarity in the Lower and Middle Jurassic lithostratigraphy in the sections of the Barents Sea shelf and northern Siberia, along with their almost identical microfossil taxonomy, prompts similarity in the Early and Middle Jurassic deposition and geological histories of the two areas. 相似文献
17.
N. Yu. Bragin 《Stratigraphy and Geological Correlation》2018,26(3):333-343
The assemblages of the Early Jurassic (Hettangian–Pliensbachian) and Late Jurassic–Early Cretaceous (Tithonian–Berriasian) radiolarians were described for the first time in the eastern part of the Ekonai Zone of the Koryak Highland. The Hettangian–Pliensbachian assemblage was found in siliceous rocks of the Ionai Nappe and this finding expands the stratigraphic interval of its siliceous sequences from the Carboniferous to the Early Jurassic. The Tithonian–Berriasian assemblage was found in volcanosiliceous rocks of the Yanranai accretionary complex. Both assemblages contain taxa abundant in the Tethyan regions. 相似文献
18.
An-Bo Luo Jian-Jun Fan Bo-Chuan Zhang Jian-Zhen Zhang Hang Li Meng-Long Duan 《地学前缘(英文版)》2021,12(5):309-326
One of most hotly debated topics concerning the Late Mesozoic evolution of Tethyan and the Tibetan Plateau is the timing of the closure of the Meso-Tethys ocean, which is represented by the Bangong–Nujiang suture zone. The Upper Jurassic–Lower Cretaceous Shamuluo Formation, which unconformably overlies the older Mugagangri Group accretionary complex, provides important information on the closure of the Meso-Tethys Ocean. This paper precisely confines the depositional age of the Shamuluo Formation in the western segment of the Bangong–Nujiang suture zone, extending it from the Late Jurassic to the Albian. Combined with the results of previous studies, we suggest that the Shamuluo Formation in the Awengco–Baerqiong region mainly contains a bathyal Berriasian–Hauterivian subunit and a shallow-marine Albian subunit. Provenance analysis indicates that the Berriasian–Hauterivian subunit was mainly derived from the Jurassic southern Qiangtang magmatic arc, while the Albian subunit was derived from the coeval volcanic rocks and the Upper Carboniferous–Upper Permian strata in the southern Qiangtang terrane. Thus, the two subunits of the Shamuluo Formation have significant distinct sedimentary facies and provenances, indicating that they were deposited in different tectonic settings.Based on the regional geological data, we suggest that the bathyal Berriasian–Hauterivian subunit and the shallow-marine Albian subunit of the Shamuluo Formation should be interpreted as a record of the oceanic arc-continent collision and the Lhasa–Qiangtang soft-collision, respectively. Thus, the closure time of the Meso-Tethys Ocean is at least limited to the Albian. 相似文献
19.
Wood fossil charcoal is identified from the upper Lower Cretaceous (Serra do Tucano Formation, Aptian–Albian) of Roraima (North Brazil). The presence of charcoal demonstrates the occurrence of Early Cretaceous palaeo-wildfires for the first time in this region and only the third time for the entirety of South America. A gymnospermous taxonomic affinity can be established for the charred woods and a relationship with conifers is likely, thus providing additional evidence for the taxonomic composition of Early Cretaceous floras in this region. 相似文献
20.
The Zapug–Duobuza magmatic arc (ZDMA), located along the southern edge of the south Qiangtang terrane in western Tibet, extends east–west for ~ 400 km. Small scattered granite and porphyry intrusions crop out in the ZDMA, but a large amount of granite may be buried by Late Cretaceous to Paleogene thrusting. Two stages of magmatism have been identified, at 170–150 Ma and 130–110 Ma. The widely distributed Middle–Late Jurassic granite intrusions in the ZDMA exhibit SrNd isotopic characteristics similar to those of ore-bearing porphyries in the Duolong giant CuAu deposit, and their εHf(t) values mostly overlap those of other porphyry CuMo deposits in the ZDMA and the Gangdese zone. The SrNdHf isotopic geochemistry suggests variable contributions of mantle and Qiangtang crustal sources, and indicates the presence of two new ore districts with potentials for CuAu, Fe, and PbZn ores, located in the Jiacuo–Liqunshan and Larelaxin–Caima areas. Except for the Duolong ore-forming porphyries, which show significant contributions of mantle components intruded into an accretionary mélange setting, the Early Cretaceous granites in other areas of the belt are of mostly crustal origin, from sources in Qiangtang felsic basement and Permo-Carboniferous strata, indicating the weak ore-forming potential of skarn-type Fe and PbZn deposits. The ephemeral but deep Bangong Co–Nujiang ocean in the Early Jurassic evolved into a shallow compressional marine basin in the Middle–Late Jurassic, possibly transitioning to northward flat subduction of oceanic crust at this time. The subducted slab broke off in the Early Cretaceous, initiating a peak in arc magmatism and metallogenesis at 125–110 Ma. 相似文献