首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Summary Platinum-group minerals have been identified in chromitites from the Troodos ophiolitic complex of Cyprus. The host chromitites occur as podiform bodies within the basal harzburgite of the ophiolite, as occasional discontinuous layers in the dunites at the base of the overlying cumulate sequence and rarely as minor schlieren in clinopyroxene dunites at higher levels. Podiform chromitites are generally highly deformed and frequently brecciated while those from the cumulate sequence are well-preserved and display cumulate textures. Chromite grains from bodies at all levels host a broad and mineralogically complex assemblage of inclusions including silicates, platinum-group minerals, base metal sulphides and fluid inclusions, all of which have been studied in detail. The platinum-group minerals (PGM) and base metal sulphides (BMS), which are described here, are modally much less abundant than the silicate inclusions and generally small in size (< 50 µm). PGM comprise sulphides and alloys and are dominated by laurite (RuS2). Other sulphides are Ru-poor. Alloys include iridosmine, osmian ruthenium and Ru-Fe alloys. Two generations of PGM are believed to be present, the first having been trapped during chromite formation, the second (including most of the alloys) having been formed during serpentinization. The base metal sulphides include common small Ni-Fe sulphides, sometimes associated with silicate inclusions, and larger Cu-rich inclusions, some of which are almost pure chalcopyrite. The origin of the latter is of genetic significance.
Minerale der Platin-Gruppe aus denn Troodos-Ophiolith, Zypern
Zusammenfassung Minerale der Platin-Gruppe wurden in verschiedenen Chromititen des Troodos Ophiolithes, Zypern, nachgewiesen. Die Chromitite kommen als podiforme Körper in den basalen Harzburgiten, als gelegentlich unregelmäßige Lagen in den Duniten an der Basis der Kumulat-Abfolge, und selten als Schlieren in den Klinopyroxen-Duniten in höheren Bereichen vor. Podiforme Chromitite sind im allgemeinen intensiv deformiert und häufig brekziiert, während jene aus der Kumulat-Abfolge gut erhalten sind und Kumulat-Texturen zeigen. In Chromiten aus allen Niveaus des Ophiolithes kommt eine umfangreiche, und mineralogisch komplexe Assoziation von Einschlüssen vor; diese umfassen Silikate, Platingruppen-Minerale, Buntmetallsulfide und FlüssigkeitsEinschlüsse. Die Platingruppen-Minerale (PGM) und Buntmetallsulfide (BMS) die hier beschrieben werden, sind modal weniger verbreitet als die Silikateinschlüsse, und sind meist sehr feinkörnig ( < 50 µm). Die PGM umfassen Sulfide, einerseits dominiert von Laurit (RuS2), aber auch Ruthenium-arme Sulfide, und Legierungen, bestehend aus Iridosmin, Osmium-führendes Ruthenium und Ruthenium-Eisenlegierungen. Die PGM können zwei Generationen zugeordnet werden. Die erste wurde während der Bildung der Chromite eingeschlossen, die zweite (und hierzu gehören die meisten Legierungen) wurden während der Serpentinisierung gebildet. Die Buntmetallsulfide unfassen die bekannten Nickel-Eisen-Sulfide, die manchmal mit Silikateinschlüssen vergesellschaftet sind, und größere Kupfer-reiche Einschlüsse, die zum Teil reiner Kupferkies sind. Die Entstehung dieser Einschlüsse ist von Bedeutung für die Genese.


With 13 Figures  相似文献   

2.
Summary The distribution of platinum group elements (PGE) within individual lithological units of the dismembered ophiolite of the Great Serpentinite Belt in New South Wales displays distinctive patterns. Within the ophiolite the PGE are mainly magmatic in origin, although the whole sequence has been extensively metamorphosed and deformed. The PGE in this ophiolite demonstrate fractionation resulting from magmatic processes.Harzburgite is characterised by a flat normalised PGE pattern, with only a slight depletion in PPGE. The minor PGE differentiation in the residual mantle rocks is probably due to the control on the PGE distribution by residual alloys and sulfides. This implies that the primary magma, generated from partial melting, was S-saturated.Cumulates of the overlying magmatic sequence show a positively sloped PGE pattern, favouring PPGE enrichment. PGE distribution in the cumulate sequence was controlled by immiscible sulfides, resulting in a similar PGE pattern for individual members of the cumulates. The highest PGE content in the magmatic section is recorded in the banded chromitite where the PGE enrichment probably results from upward-migrating magmatic fluids.Podiform chromitite is the earliest fractionated product from ascending partial melts within narrow magma conduits that channeled melts from the mantle source up to the overlying magma chamber. Such a process operated at high temperatures, hence the high melting-point IPGE was preferentially crystallised along with the chromites so that podiform chromitite displays a negatively sloped PGE pattern. Normally, sulfide saturation in the ascending melt does not take place until the melt enters the crustal magma chamber. However, immiscible sulfide liquids might have been present temporarily in some high-level podiform chromitite to generate a Pt- and Pd-enriched pod. Chromite in this pod is less in both Cr/(Al + Cr) and Mg/(Mg + F2+) than in those of other podiform chromitites that are dominated by IPGE and, therefore, the composition of chromite is of significance in identifying the potential Pt- and Pd-rich chromitites in this ophiolite belt.
Verteilung der Platingruppen-Elemente im Great Serpentinite Belt von New South Wales, Ost-Australien
Zusammenfassung Die Verteilung der Platingruppen-Elemente (PGE) innerhalb der einzelnen lithologischen Einheiten des zerbrochenen Ophiolites des Great Serpentinite Belt in New South Wales zeigt charakteristische Verteilungsmuster. Die PGE sind überwiegend magmatischen Ursprungs, obwohl der gesamte Komplex intensiv metamorphosiert und deformiert worden ist. Innerhalb des Ophiolites zeigen die PGE Fraktionierung, die das Resultat magmatischer Prozesse ist.Der Harzburgit ist durch flache, normierte PGE Verteilungskurven charakterisiert, die lediglich eine schwache Verarmung an PPGE zeigen. Die geringe PGE Differenzierung in den residualen Mantelgesteinen wird durch die Steuerung der PGE Verteilung durch residuale Legierungen und Sulfide kontrolliert. Dies bedeutet, daß das durch Teilaufschmelzung entstandene Magma S-gesättigt gewesen ist.Die Kumulate der hangenden, magmatischen Abfolge zeigen positive PGE Verteilungskurven, die auf eine Anreicherung der PPGE hinweisen. Die PGE Verteilung in der Kumulat-Sequenz wurde durch entmischte Sulfide kontrolliert, weshalb die einzelnen Schichtglieder der Kumulat-Abfolge ähnliche PGE Verteilungsmuster aufweisen. Die gebänderten Chromitite zeigen die höchsten PGE Gehalte der magmatischen Abfolge, die Anreicherung der PGE ist vermutlich auf aufsteigende, magmatische Fluida zurückzuführen.Der podiforme Chromitit ist das früheste Fraktionierungsprodukt der vom Mantel durch enge Kanäle in die Magmakammer aufsteigenden Teilschmelzen. Ein derartiger Prozeß findet bei hohen Temperaturen statt, weshalb die IPGE, die hohe Schmelzpunkte aufweisen, zusammen mit dem Chromit zur Kristallisation gelangten, podiforme Chromitite zeigen daher negative PGE Verteilungskurven. Normalerweise findet eine Schwefel-Sättigung der aufsteigenden Schmelze nicht vor dem Eintritt in die krustale Magmenkammer statt. Temporär könnte jedoch eine entmischte Schwefel-Schmelze bereits in einigen high level podiformen Chromititen existiert haben, sodaß ein Pt- und Pd-angereicherter Pod entsteht. Der Chromit in diesem Pod zeigt niedere Cr/(Al + Cr) und Mg/(Mg + Fe2+) Verhältnisse als jene in anderen podiformen Chromititen, die von IPGE dominiert sind. Die Zusammensetzung des Chromites ist daher signifikant, um Pt-und Pd-reiche Chromitite innerhalb dieses Ophiolit-Gürtels zu identifizieren.


With 9 Figures  相似文献   

3.
Summary The podiform chromitites investigated in the course of this study occur in intensely serpentinized dunites and peridotites of unknown age (paleozoic or older) within a metamorphic complex consisting of gneisses, amphibolites and marbles. Concentrations of platinum group elements (PGE) and the distribution of platinum group minerals (PGM) have been investigated in the chromitite occurrences of Dobromirci and Pletene.PGE concentrations in chromitites vary from 787 to 891 ppb (Dobromirci). The highest value was recorded in chromite ore from Pletene (1274 ppb). The enrichment is due to high contents of Os, Ir and Ru, whereas the contents of Rh, Pt and Pd are relatively low. The Ru-contents (480-600 ppb) are remarkable and correspond to the average content in chondrite Cl. Chondrite-normalized PGE distribution patterns of chromitites of both localities reveal a distinctly negative trend from Ru to Pd, which is typical for chromites from ophiolites.Irrespective of their chemical composition, most chromites carry numerous PGM inclusions which have formed during the magmatic stage at high sulphur fugacity (fs2). In addition to laurite, the main mineral, there are sulpharsenides of Ru-Ir-Os (ruarsite, irarsite, osarsite).Textural aspects and the results of chemical analyses show that the concentration of PGE is not caused by substitution in the lattice of chromite, but by magmatic formation of discrete PGM before or contemporaneously with chromite. All PGM apparently remained unaltered. No evidence for remobilization or redistribution of PGE by serpentinization has been found.
Minerale der Platinggruppe in Chromititen des Ultramafit-Komplexes des Ost-Rhodopen Massivs, Bulgarien
Zusammenfassung Die untersuchten podiformen Chromite tretey in stark serpentinisierten Duniten und Peridotiten unbekannten Alters (paläozoisch oder älter) innerhalb eines hochmetamorphen Komplexes auf, der aus Gneisen, Amphiboliten und Marmoren besteht. In den Chromitit-Vorkommen von Dobromirci und Pletene wurden Konzentrationen der Elemente der Platingruppe (PGE) und die Verteilung der Minerale der Platingruppe (PGM) untersucht.Die PGE-Konzentration der Chromitite variiert zwischen 787 und 891 ppb (Dobromirci). Die höchste Konzentration wurde im Chromiterz aus Pletene (1274 ppb) gefunden. Die Anreicherung geht auf hohe Beteiligung von Os, Ir und Ru zurück, da die Gehalte an Rh, Pt und Pd relativ niedrig sind. Auffallend hoch sind die Ru-Gehalte (480-600 ppb), die dem mittleren Gehalt im Chondrit Cl entsprechen. Chondritnormalisierte PGE-Verteilungsmuster von Chromititen beider Lokalitäten zeigen einen stark negativen Trend von Ru zu Pd, der für Ophiolith-Chromite typisch ist.Unabhängig von ihrem Chemismus führen die meisten Chromite zahlreiche PGME-Einschlüsse, die sich magmatisch bei hoher Schwefelfugazität (fS2) gebildet haben. Neben dem Hauptmineral Laurit, wurden Sulfarsenide von Ru-Ir-Os (Ruarsit, Irarsit, Osarsit) festgestellt.Texturelle Merkmale der PGM und Ergebnisse der chemischen Analysen führen zu der Schlußfolgerung, daß die Konzentration der PGE nicht auf eine Substitution in Chromit, sondern auf die Frühbildung der selbständigen PGM vor oder gleichzeitig mit den Chromiten zurückzuführen ist. Die PGM zeigen keine Alterationserscheinungen. Es wurden keine Hinweise für eine Remobilisation oder Umsetzung der PGE durch Serpentinisierung gefunden.


With 7 Figures  相似文献   

4.
Summary Chromitites (Cr ores) of the Ojen lherzolite massif (Serranía de Ronda, Betic Cordillera, Southern Spain) were found to contain platinum-group minerals (PGM) as discrete inclusions in the chromite and in the associated silicates. The PGM mineralogy consists of sulfides [laurite, erlichmanite, malanite, unnamed (Ni-Fe-Cu)2 (Ir, Rh) S3, unidentified Pd-S], sulfarsenides (irarsite, hollingworthite, ruarsite, and osarsite), arsenides [sperrylite, unidentified (Pd, Ni)-As], one unidentified Pd-Bi compound, and native platinum group elements (PGE) consisting of Ru and Pt-Fe alloys. Textural considerations suggest that the PGE chalcogenides with S and As were formed in the high-temperature magmatic stages, as part of the chromite precipitation event (primary PGM), in contrast with the native PGE, which originated during the low-temperature serpentinization of the ultramafic host of the chromitites (secondary PGM).The primary PGM inclusions in the Ojen chromite are unusual compared with PGM inclusions in chromitites from tectonitic upper-mantle of ophiolites and other alpine-type complexes in that i) they display a great variety of mineral species sulfides, sulfarsenides and arsenides, and ii) comprise specific phases of all six PGE. The singularity of the primary PGM mineralization probably reflects high activities of both S and As during chromite precipitation at Serrania de Ronda to be related with particular physico-chemical conditions during uplifting of sub-continental, astenospheric mantle.The nature, composition, and paragenetic association of secondary PGM at Ojen confirm the relatively-high mobility of the PGE at low temperature, and indicate that remobilization can be selective under appropriate redox conditions causing separation and redistribution of the PGE in the rocks as a result of the alteration process.
Platingruppen-Minerale in chromititen aus dem ojen-lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien)
Zusammenfassung Platingruppen-Minerale in Chromititen aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) In den Chromititen (Cr-Erzen) aus dem Ojen-Lherzolithmassiv (Serranía de Ronda, Betische Kordillere, Süd-Spanien) warden Platingruppen-Minerale (PGM) als einzelne Einschlüsse im Chromit and in den begleitenden Silikaten gefunden. Die Mineralogie der PGM setzt sich aus Sulfiden [Laurit, Erlichmanit, Malanit, einem unbenannten (Ni-Fe-Cu)2 (Ir, Rh)S3 und einem nicht identifizierten Pd-S], Sulfarseniden (Irarsit, Hollingworthit, Ruarsit und Osarsit), Arseniden [Sperrylit, einem nicht identifizierten (Pd, Ni)-As], einer nicht identifizierten Pd-Bi-Verbindung sowie gediegenen Platingruppen-Elementen (PGE) bestchend aus Ru and Pt-Fe-Legierungen, zusammen. Texturelle Untersuchungen haben ergeben, daß die PGE-Chalkogenide mit S und As im Zuge der Chromitfällung (primäre PGM) in den hochtemperierten, magmatischen Stadien gebildet warden, während die gediegenen PGE während der niedriggradigen Serpentini sierung des ultramafischen Nebengesteins der Chromitite (sekundäre PGM) gebildet warden.Die primären PGM-Einschlüsse in den Ojen-Chromiten sind im Vergleich zu PGM-Einschlüssen in Chromititen aus dem tektonisierten oberen Mantel in Ophiolithen und anderen alpinotypen Komplexen ungewöhnlich: i) Einerseits zeigen sie eine große Vielfalt an Mineralarten aus der Gruppe der Sulfide, Sulfarsenide und Arsenide. ii) Andererseits enthalten sie spezifische Phasen aller sechs PGE. Die Einzigartigkeit der primären PGM-Mineralisation könnte hohe Aktivitäten von S and As während der Chromit-Fällung in Serranía de Ronda widerspiegeln, die mit besonderen physiko-chemischen Bedingungen während der Hebung des subkontinentalen, asthenosphärischen Mantels zusammenhängen.Die Art, die Zusammensetzung and die paragenetische Vergesellschaftung von sekundären PGM in Ojen bestätigen die relativ hohe Mobilität der PGE bei niedriger Temperatur und zeigen, daß die Remobilisierung unter geeigneten Redox-Bedingungen selektiv wirken kann, wodurch eine Trennung und Neuverteilung der PGE in den Gesteinen als Ergebnis des Alterationsprozesses bewirkt wird.


With 7 Figures  相似文献   

5.
Summary Many small podiform chromitite deposits occur within two alpine-type serpentinite belts (of uncertain age) in southern NSW. Most of these deposits are enclosed in massive serpentinised chromite-rich dunite which cross-cuts primary layering within the main harzburgite body. In the western belt, the chromitites are all Cr-rich, whereas in the eastern belt there is a spectrum from Cr-rich to highly Al-rich chromitites, all of which have a fairly Complex geographic distribution. All of the chromitites are ophiolitic in character and the chemistry of both the chromitites and discrete chromite grains is reasonably Constant within a deposit, but varies widely between deposits. The REE concentrations are very low and lack any systematic geographic distribution. Most of the hromitites have an opholitic PGE signature, although some exceptions do occur and this is ascribed to localised remobilisation during serpentinisation. PIXE proton probe results show that the chromite grains are enriched, relative to the. serpentine fracture-fill, in Mn, Ni, Zn and Ga and depleted in As and Cu. Inclusions Completely enclosed within the chromite grains include Al-rich chromite, PGE-bearing nickel sulphides, palladian gold, forsteritic olivine, pargasitic amphiboles and a member of the gedrite/anthophyllite group. PGE-bearing fracture-fill phases include millerite, heazlewoodite, polydymite, chalcopyrite, trevorite, native gold, ruthenium, palladium and Ni3Pt(?). Other fracture-fill phases include awaruite, magnetite, pentlandite, lizardite 6T, chrysotile 2M, antigorite, talc, clinochlore IIb, uvarovite garnet, diopside and ferritchromit. The chromitites were derived from a different magma than the peridotite and the present distribution of low Al, intermediate Al and high Al Chromitites reflects the spatial distribution of a progressively fractionating parental magma rather than different magmatic sources. Both the trace element and REE Chemistries of the chromitites yield little insight into the genesis of the chromitite pods and their distribution Could reflect either an inhomogeneous distribution in the parental magma or localised remobilisation during serpentinisation. During serpentinisation, PGE within the chromities and hostrock dunites and harzburgites were released, and precipitated within the crack seal breccia environment of the chromitites. Provided that the inclusions enclosed within the chromite grains formed in the presence of the same fluid as the chromite, this magmatic chromite and olivine forming liquid must have had a minor concentrated volatile-rich component. Subsequent serpentinisation of the chromitites was responsbile for the localised remobilisation of metals, PGE, S and the REE.
Chemismus und Mineralogie von podiformen Chromitlagerstätten, Süd-NSW, Australien: Ein Schlüssel zu ihrer Entstehung und Entwicklung
Zusammenfassung Zahlreiche kleinere podiforme Chromitlagerstätten treten in zwei alpinotypen Serpinitingürteln unsicherer Altersstellung im südlichen NSW auf. Die meisten dieser Lagerstätten sind an serpentinisierte chromitreiche Dunite, die den primären Lagenbau der Harzburgitkörper durchsetzen, gebunden. Im westlichen Gürtel sind die Chromite Cr-reich, im östlichen reicht das Spektrum von Cr- bis Al-reichen Chromititen mit komplexer geographischer Verbreitung. Alle Chromitite zeigen ophiolitischen Charakter und die Zusammensetzung der Chromitite aber auch einzelner Chromitkörner ist relativ konstant innerhalb einer Lagerstätte. Sie variiert allerdings von Lagerstätte zu Lagerstätte. Die SEE Gehalte sind sehr niedrig. Eine systematische geographische Verteilung ist nicht erkennbar. Die meisten Chromitite zeigen ophiolitische PGE Verteilungsmuster, obwohl es auch Ausnahmen, die lokaler Remobilisation im Zuge der Serpentinisierung zugeschrieben werden müssen, beobachtbar sind. Ergebnisse von PIXE Protonensondenanalysen zeigen, daß die Chromitkörner im Vegleich zu den Serpentinitrißfüllungen an Mn, Ni, Zn und Ga angereichert und an As und Cu angereichert sind. Al-reiche Chromite, PGE-führende Nickelsulfide, Gold mit Palladium, Forsterit und pargasitische Amphibole, sowie Gedrit/Antophyllit sind als Einschlüsse in Chromit nachgewiesen. In PGE-führenden Rissen kommen Millerit, Heazlewoodit, Polydymit, Kupferkies, Trevorit, gedigenes Gold, Ruthenium, Palladium und Ni3Pt(?) vor. Andere Phasen in diesen Rißfüllungen sind Awaruit, Magnetit, Pentlandit, Lizardit 6T, Chrysotil 2M, Antigorit, Talk, Klinochlor IIb, Uvarovit, Diopsid und Ferritchromit.Die Chromitite sind von einem anderen Magma als die Peridotite abzuleiten und die nunmehrige Verteilung von Al-armen bis Al-reichen Chromititen spiegelt die räumliche Verteilung eines fraktionierenden Ausgangsmagmas eher wider als unterschiedliche Magmenquellen. Spuren- und REE-Geochemie erlauben kaum Einblicke in die Genese der Chromititkörper. Ihre unregelmäßige Verteilung könnte entweder auf Inhomogenitäten des Ausgangsmagmas oder auf lokale Remobilisation im Zuge der Serpentinisierung zurückzuführen sein. Während der Serpentinisierung wurden PGEs in den Chromititen und dunitischen und harzburgitischen Nebengesteinen freigesetzt und in den ehromititischen crack-seal Brekzien wiederausgefällt. Unter der Annahme, daß sich die Einschlüsse in den Chromitkörnen in Gegenwart desselben Fluids wie die Chromite selbst gebildet haben, müssen die magmatischen Chromit- und olivinführenden Schmelzen mit einer volatilreichen Komponente koexistiert haben. Nachträgliche Serpentinisierung der Chromitite war für die lokale Remobilisation der Metalle, der PGEs, S und der REE verantwortlich.


With 4 Figures  相似文献   

6.
Summary The lower ultramafic part of the Chalkidiki Ophiolite Complex consists of a successive alternation of chromitite, dunite, and harzburgite, which is repeated periodically in a cyclic manner. This cyclic pattern is consistent with an origin as magmatic cumulates. However, the tectonic fabric superimposed on the cumulate texture of this sequence suggest a solid-state deformation at considerable depth.In the present study, the textural and chemical features of chromite are discussed. The interrelationships between the compositions of chromite, its mode of occurrence as well as the associated silicates are emphasized. It is found that the investigated chromites have properties in common with both podiforn and stratiform chromites. From a geometrical and structural point of view, they are of podiform type. On the other hand, their appreciably high iron content, the strong interdependence between the composition of chromite and the coexisting silicates together with the cryptic layering exhibited by the two mineral groups contrast markedly with podiform chromites.An alternative hypothesis is proposed involving fractional crystallization of an ultrabasic melt introduced to the magma chamber as periodic inflows of essentially the same composition. An upwelling upper-mantle that is subjected to stepwise partial fusion may fulfill these conditions.
Chemismus und Texturen von Chromiten in ultramafischen Gesteinen des Chalkidiki Komplexes, Nordost-Griechenland
Zusammenfassung Der untere, ultramafische Teil des Chalkidiki Komplexes besteht aus einer wechselnden Abfolge von Chromititen, Duniten und Harzburgiten, die sich zyklisch wiederholt. Diese zyklische Abfolge ist in guter Übereinstimmung mit einer Entstehung als magmatische Kumulate. Das tektonische Gefüge, das auf die Kumulat-Texturen überprägt wurde, weist jedoch auf Deformationen in festem Zustand in beträchtlicher Tiefe hin.Die vorliegende Untersuchung befaßt sich mit dem Chemismus und den Texturen der Chromite. Besonderes Interesse wendet sich dabei den Wechselbeziehungen zwischen den Zusammensetzungen, der Art des Vorkommens und den assoziierten Silikaten zu. Dabei zeigt sich, daß die untersuchten Chromite in vieler Hinsicht Ähnlichkeiten sowohl mit podiformen wie mit stratiformen Vorkommen erkennen lassen. Geometrisch und texturell gesehen gehören sie dem podiformen Typ an. Nicht in Einklang damit stehen jedoch die beträchtlichen Eisengehalte sowie die deutlichen Wechselbeziehungen zwischen der Zusammensetzung von Chromit und der koexistierenden Silikate, und schließlich auch der kryptische Lagenbau, den die zwel Mineralgruppen erkennen lassen. Ein genetisches Modell wird vorgeschlagen, das fraktionierte Kristallisation einer ultrabasischen Schmelze von im wesentlichen gleichmäßiger Zusammensetzung vorsieht, die in periodischen Abständen der Magmenkammer zugeführt wurde. Eine Aufwölbung des oberen Mantels, die schrittweiser, partieller Aufschmelzung ausgesetzt ist, könnte diesen Bedingungen entsprechen.


With 11 Figures  相似文献   

7.
Summary The cobalt-arsenide ores of Bou Azzer are located along the borders of serpentinite massifs (Upper Proterozoic ophiolite complex) in carbonate-quartz lenses resulting from hydrothermal carbonate alteration of serpentinite. The cobalt ores contain an average gold content of 5–20 ppm; gold is mainly located in skutterudite (120 ppm av.), whereas the Fe-arsenide (loellingite) contains < 1 ppm Au. Similarly the highest PGE contents are found in skutterudite (up to 2 ppm total PGE). All the arsenide ores of Bou Azzer exhibit the same chondrite normalized PGE pattern displaying positive Rh and negative Pt anomalies, and a slight positive slope (Pd/Ir = 1 to 2). This uncommon PGE pattern closely resembles to that of sulphides of komatiites.In serpentinite, the PGE patterns are typical of slightly depleted mantle rocks, and the associated podiform chromitites are within the range of ophiolitic chromitites, except for Pd and Au enrichment.Horizons of sulphide-bearing serpentinites show relatively high contents of noble metals and display PGE patterns which closely resemble those of the Co-arsenide ores, although an order of magnitude lower. These sulphides probably correspond to the remobilization during serpentinization of primary magmatic sulphides. The sulphiderich horizons are a possible source-rock for the noble metals of the Bou Azzer cobaltarsenide ores.
Gold und Platingruppen-Elemente in Kobalt-Arsenid Erzen: Hydrothermale Anreicherung aus einem Serpentinit (Bou Azzer, Marokko)
Zusammenfassung Die Kobalt-Arsenid Erze von Bou Azzer kommen entlang den Grenzen eines Serpentinit-Massifs (Oberproterozoischer Ophiolit-Komplex) in Karbonat-Quarz-Linsen vor, die auf hydrothermale Umwandlung des Serpentinits zurückgehen.Die Kobalt-Erze enthalten 5–20 ppm Gold; dieses kommt hauptsächlich in Skutterudit (120 ppm) vor, während die Fe-Arsenide (Loellingit) weniger als 1 ppm Gold enthalten. Die höchsten PGE Gehalte kommen ebenso in Skutterudit vor (bis zu 2 ppm PGE). Alle Arsenid-Erze zeigen das gleiche Verteilungsbild mit positiven Rh und negativen Pt Anomalien, und eine leicht positive Neigung (Pd/Ir = 1 bis 2). Diese ungewöhnlichen PGE Verteilungsbilder erinnern an die von Sulfiden aus Komatiiten.Die PGE Verteilung in Serpentiniten ist typisch für leicht verarmte Mantelgesteine, und die assoziierten podiformen Chromitite liegen innerhalb des Bereiches für ophiolitische Chromitite, mit Ausnahme der Anreicherung in Pd und Au.Lagen von Sulfid-führenden Serpentiniten zeigen relativ hohe Gehalte an Edelmetallen, und PGE-Verteilungsmuster die denen von Co-Arseniderzen sehr ähnlich sind, obwohl sie um eine Größenordnung niedriger liegen. Diese Sulfide dürften Produkte der Remobilisierung primärer magmatischer Sulfide während der Serpentinisierung sein. Die Sulfid-reichen Lagen sind als ein mögliches Ursprungsgestein für die Edelmetalle der Kobalt-Arsenid-Erze von Bou Azzer zu sehen.


With 8 Figures  相似文献   

8.
Summary The Fiîeld Platinum Province, New South Wales, Australia, contains Alaskan-type mafic-ultramafic complexes with notable PGE mineralization. This mineralization has evolved in several stages ranging from high- to low-temperature hydromagmatic, with weathering and latertic concentration followed by erosion and placer accumulation in alluvial channels. This last stage has furnished the largest quantity of platinum from the area. PGM nuggets were collected in a corridor, south and southeast of Fifield, joining the leads exploited in the past and continuing northwards.The following PGM association was observed in the nuggets: isoferroplatinum, native osmium, osmiridium, iridosmine, laurite and bowieite. Isoferroplatinum is the matrix mineral in the nuggets, while (It, Os, Pt) alloys occur as exsolutions. The nuggets sometimes carry inclusions of euhedral chromite. Two sulphidic phases-laurite and bowieite-are rare and occur embedded as trapped early formed crystals in isoferroplatinum.This PGM association is entirely different, when compared to the PGM in pegmatoid clinopyroxenites (P-units) described previously (Johan et al., 1989), both as to the nature of the mineral species and to the chemistry of isoferroplatinum common to both occurrences. This proves conclusively that the source for the alluvial nuggets must be of a different nature from the presently established hard rock mineralization.The co-existence of iridosmine and osmiridium exsolutions in isoferroplatinum proves a high temperature origin for the nuggets, and excludes a low temperature origin through in situ overgrowth from aqueous solutions in either the laterite or the erosive profile. The presence of chromite inclusions of a certain diagnostic composition indicates that the original host rock for the nuggets was a chromitite within dunite. The chemistry of the coexisting alloy phases provides a temperature estimate of about 800 °C, which is compatible with Alaskan complexes in Alaska and the Urals. The textural study of the nuggets shows different rates of cooling from nugget to nugget, with many textures relating to heterogeneous nucleation in metallurgical processes.
Platin-Mineralisation in Intrusiv-Komplexen des Alaska-Types bei Fifield, NSW, Australien. Teil 2. Platingruppen-Minerale in Seifenlagerstätten in Fifield
Zusammenfassung Die Platin-Provinz von Fifeld, New South Wales, Australien, enthält mafischultramafische Komplexe des Alaska-Typs mit beachtlicher PGE Mineralisation. Diese hat sich in verschiedenen Stadien entwickelt, die von hoch- bis tief- temperiert hydromagmatisch reichen, und von Verwitterungsbildungen, lateritischer Konzentration, Erosion und Seifenbildung in alluvialen Rinnen gefolgt wurde. Dieses letzte Stadium hat bisher die größte Menge an Platin produziert. PGM Nuggets wurden in einem Korridor südlich und südöstlich von Fifield gesammelt, und diese setzten sich in den Anreicherungen fort, die in der Vergangenheit ausgebeutet wurden.Die folgende PGM Paragenese wurde in den Nuggets beobachtet: Isoferroplatin, gediegen Osmium, Osmiridium, Iridosmin, Laurit und Bowieit. Isoferroplatin ist das Matrix-Mineral der Nuggets, während (Ir, Os, Pt)—Legierungen als Entmischungen erscheinen. Die Nuggets enthalten gelegentlich Einschlüsse von isomorphem Chromit. Zwei Sulfidphasen—Laurit und Bowieit-sind selten und kommen als früh gebildete Kristalle im Isoferroplatin vor.Diese PGM-Paragenese unterscheidet sich grundsätzlich von der in pegmatoiden Klinopyroxeniten (P-units;Johan et al., 1989). Dies betrifft sowohl die Art der Minerale wie auch die chemische Zusammensetzung von Isoferroplatin. Diese Beobachtungen zeigen in überzeugender Weise, daß die Quelle für die alluvialen Nuggets nicht in der jetzt nachgewiesenen Vererzung in Festgesteinen gesucht werden kann.Die Koexistenz von Iridosmin- und Osmiridium-Entmischungen in Isoferroplatin weist auf die hohe Bildungstemperatur der Nuggets hin und schließt eine Tieftemperatur-Bildung durch in situ Überwachsung aus wässerigen Lösungen entweder im Laterit oder im Erosionsprofil aus. Die Anwesenheit von Chromiteinschlüssen definierter Zusammensetzung zeigt, daß das ursprüngliche Muttergestein der Nuggets ein Chromitit innerhalb von Duniten war. Die chemische Zusammensetzung der koexistierenden Legierungen weist auf Temperaturen von ungefähr 800°C; das ist in guter übereinstimmung mit Daten von den Komplexen in Alaska und im Ural. Texturelle Untersuchungen lassen Abkühlungsraten erkennen, die von Nugget zu Nugget schwanken; viele der beobachteten Texturen lassen sich mit heterogener Nukleation in metallurgischen Prozessen vergleichen.


With 3 plates and 4 figures  相似文献   

9.
Summary All analysed massive chromitite layers of the Critical Zone of the Bushveld Complex are enriched in PGE's over their silicate host rocks. The concentration factor has been found to increase with stratigraphic height. The PGE-distribution of the Lower Group and Middle Group chromitites shows a systematic relationship to the chromite mineralogy of the chromitites. The LG1- to LG4-chromitite layers are characterized by the dominance of the Ru-group elements (Ru, Os, Ir). The LG5- to LG7-chromitite layers contain almost equal amounts of the two PGE-groups and in the MG-chromitites the elements of the Pt-group (Pt, Pd, Rh) are the most abundant. The chromite mineralogy subdivides the chromitites in a similar way.
PGE-Verteilung in den Lower und Middle Group Chromititen des westlichen Bushveld Complexes
Zusammenfassung Alle untersuchten massiven Chromitite der Critical Zone des Bushveld Complexes sind im Hangenden ihrer silikatischen Nebengesteine an PGE's angereichert. Es stellte sich heraus, dass der Konzentrationsfaktor innerhalb der stratigraphischen Abfolge zum Hangenden hin zunimmt.Die PGE Verteilung in den Lower und Middle Group Chromititen ändert sich systematisch mit der Mineralogie der Chromite in den Chromititen. Die LG 1 bis LG 4 Chromititlagen sind durch ein Vorherrschen der Elemente der Ru-Gruppe (Ru, Os, Ir) gekennzeichnet.Die LG 5 bis LG 7 Chromititlagen enthalten beinahe die gleichen Gehalte an Elementen beider PGE-Gruppen. In den MG-Chromititen sind die Elemente der Pt Gruppe (Pt, Pd, Rh) am weitesten verbreitet. Mit Hilfe der Mineralogie der Chromite können die Chromitite auf ähnliche Weise untergliedert werden.


With 11 Figures  相似文献   

10.
Summary In the serpentinizedophiolitic rocks from Skyros island, two distinct assemblages of base metal sulphides (BMS) and platinum-group minerals (PGM) occur. The first (early) generation is associated with chromitites which are enriched in platinum-group elements (PGE). The highest values were recorded in samples from Achladones (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; all values in ppb). Mineral inclusions in chromite consist of Ni-Fe sulphides and Os-rich laurite, and crystallized at high sulphur fugacity (fS2) during chromite formation. The second (late) generation is closely associated with Au-rich, PGE-poor magnetite ores which host a complex assemblage of inclusions consisting mainly of graphite, Cu-Fe- and pure Cu sulphides, sperrylite and tetraauricupride. Their accompanying hydrous silicates are Cl-bearing. It is assumed that this mineral assemblage was deposited by hydrothermal processes during serpentinization.
Minerale der Platingruppe und Tetraauricuprid in Ophiolithen der Insel Skyros, Griechenland
Zusammenfassung In den serpentinisierten Ophiolithen der Insel Skyros wurden zwei unterschiedliche Bildungsgenerationen von Sulfiden (BMS) und Platinmineralen (PGM) festgestellt. Die erste (frühere) Generation ist an Chromitite gebunden, die hohe Gehalte an Elementen der Platingruppe (PGE) aufweisen. Die höchsten PGE-Kontzentrationen wurden in den Proben der Lokalität Achladones gefunden (Ru 1210, Ir 780, Os 630, Rh 228, Pt 208, Pd 22; alle Gehalte in ppb). Die Einschlüsse in Chromit bestehen aus Ni-Fe Sulfiden und Os-reichem Laurit. Diese Minerale kristallisierten bei hoher Schwefelfugazität (fS2) während der Bildung der Chromite. Die zweite (spätere) Generation ist eng assoziiert mit Au-reichen und PGE-armen Magnetiten. Sie führen eine komplexe Einschluß-Paragenese bestehend aus Graphit, Cu-Fe- und reinen Cu Sulfiden sowie Sperrylith und Tetraauricuprid. Die begleitenden Hydrosilikate sind Cl-haltig. Die Bildung dieser Mineralparagenese wird durch hydrothermale Prozesse während der Serpentinisierung erklärt.


With 8 Figures  相似文献   

11.
Summary The Early Proterozoic Imandrovsky (Kola Peninsula) and Lukkulaisvaara (northern Karelia) layered intrusions host various platinum-group element (PGE) deposits. The PGE-bearing chromitite horizon is located in the Lower Zone of the Imandrovsky complex. Platinum-group minerals (PGM) are associated with rare base-metal sulfides and sulfarsenides, and predominantly present as minute (up to 25 ,um) grains enclosed by hydrosilicates and at chromite-silicate grain boundaries. The presence of Cl-bearing minerals in the vicinity of the chromitite layer is of genetic significance. Chlorapatite containing up to 100% of the chlorapatite end-member occurs in individual grains, small veinlets (25–30,m across) and rims around relatively Cl-poor apatite. Cl-bearing (0.5 wt.% Cl) allanite-(Ce) forms very small (up to 20m across) veinlets in Cl-poor apatite.The gabbroic sequence of the Lukkulaisvaara intrusion consists of sills and sill-like micro-gabbronorite bodies. A diverse PGM assemblage has been identified in the meta-anorthosite horizon located at the base of one sill. Most of PGM (>70% total PGM) are found enclosed by hydrosilicates. Chlorapatite (> 6.0 wt.% Cl) was recorded, as an intercumulus mineral only, in the lowermost Lukkulaisvaara cumulates, adjacent to a Cu-rich assemblage, which includes an unusual Cu-bearing (0.9–1.9 wt.% Cu) pyrrhotite (?), native copper, weissite and an unknown PtCu5. Deposition of PtCu5 alloy is interpreted as a result of interaction of a late reducing or low-oxidizing fluid with sufficiently oxidized environment.It is suggested that Cl-rich fluids affected the lower portions of both the Imandrovsky and Lukkulaisvaara intrusions similar to the Stillwater and Bushveld complexes. The PGE mineralogy of the Imandrovsky chromitite horizon was strongly influenced by Cl-rich fluids during a magmatic hydrothermal event. We suppose that the base-metal sulfide-PGM occurrences at the contacts of the sill within gabbronorite have been deposited by hydromagmatic H2S-Cl-rich fluids migrating upwards from the lowermost cumulates in the Lukkulaisvaara intrusion. The input of a new magma, from which the micro-gabbronorite sill had crystallized, formed transport channels for fluid migration.
Die Rolle der Fluid-Migration für die Bildung von Platingruppen-Mineralen: Neue Daten von den geschichteten Imandrovsky und Lukkulaisvaara Intrusionen, Rußland
Zusammenfassung Die frühproterozoischen geschichteten Intrusionen von Imandrovsky (Kola-Halbinsel) und Lukkulaisvaara (Nord-Karelien) führen eine Vielzahl von Lagerstätten der Platingruppenelemente (PGE). Der PGE-führende Chromitit-Horizont liegt in der unteren Zone des Imandrovsky-Komplexes. Hier sind Platingruppen-Minerale (PGM) mit seltenen Buntmetallsulphiden und Sulpharseniden assoziiert, und kommen vorzugsweise als kleine (max. 25 ,m) Körner in Hydrosilikaten und an Chromit- Silikatkorngrenzen vor. Das Vorkommen von Chlor-führenden Mineralen im Bereich der Chromitlagen ist von genetischer Bedeutung. Chlorapatit mit bis zu 100% des Chlorapatitendgliedes kommt in selbständigen Körnern, in kleinen Gängchen (25–30m Durchmesser) und Rändern um relativ Cl-armen Apatit vor. Chlor-führender (0.5 wt.% Cl) Allanit (Ce) bildet schmale (bis zu 20m Durchmesser) Gängchen in Cl-armen Apatit.Die gabbroische Abfolge der Lukkulaisvaara-Intrusion besteht aus Sills und Sill-artigen Mikrogabbronoritkörpern. Eine vielfältige PGM-Vergesellschaftung ist im Metaanorthosit-Horizont festgestellt worden, der an der Basis eines Sills liegt. Der Großteil der PGM (> 70%) kommen als Einschlüsse in Hydrosilikaten vor. Chlorapatit (> 6.0 wt.% CI) wurde nur als Intercumulus-Mineral in den tiefstgelegenen Kumulaten von Lukkulaisvaara; nachgewiesen und zwar in der Nähe einer Kupfer-reichen Mineralvergesellschaftung, welche auch seltenen Kupfer-führenden (0.9–1.9 w.t.% Cu) Magnetkies, gediegen Kupfer, Weissit und noch unbeschriebenes PtCu5 enthält. Die Bildung der PtCu5 Legierung wird als Ergebnis des Wechselwirkung eines späten reduzierenden oder nur im geringen Umfang oxidierenden Fluids mit einem hinreichend oxidierten Milieu interpretiert.Aus diesen Ergebnissen ist abzuleiten, daß Chlor-reiche Fluide die unteren Teile der Imandrovsky und Lukkulaisvaara-Intrusionen in ähnlicher Weise beeinflußt haben, wie dies im Stillwater und Bushveld-Komplex der Fall war. Die PGE-Mineralogie des Imandrovsky-Chromit-Horizontes war durch Cl-reiche Lösungen während eines magmatisch-hydrothermalen Ereignisses intensiv beeinflußt worden. Wir nehmen an, daß die Buntmetallsulphid-PGM-Vorkommen an den Kontakten des Sills innerhalb der Gabbronorite von hydromagmatischen H2S-Cl-reichen Fluiden, die von den tiefstgelegenen Kumulaten in der Lukkulaisvaara-Intrusion aufgestiegen sind, abgelagert wurden. Die Zufuhr neuen Magmas aus dem der Mikrogabbronorit-Sill kristallisiert war, machte auch Zufuhrkanäle für Fluid-Migration verfügbar.


With 3 Figures  相似文献   

12.
Zusammenfassung Kleine Chromititkörper wurden in Phlogopit-reichen Peridotiten des Finero-Komplexes (Ivrea Zone, Italien) entdeckt. Chromit enthdlt winzige (< 20 m) Einschlüsse von Platingruppen-Mineralen (PGM), sowie von Buntmetalsulfïden (BMS) and -legierungen (BMA); these führen Platin gruppen-Elemente (PGE) in Form von solid solutions.Als PGM wurden Laurit, gedigen Ir und Ir-Cu-Rh-Sulfide unterschiedlicher Zusammensetzung bestimmt.Die PGE-führenden BMS sind rhodiumführender Pentlandit und Millerit, iridium-führender Digenit und unbekannte Ir-reiche Ni-Fe-Cu Sulfide mit einem Metall/Schwefelverhältnis von etwa 1. Die BMA bestehen aus: Cu-Rh-Fe, Cu-Pt-Ag, Cu-Pb-Rh und Pb-Rh.Im Vergleich mit anderen untersuchten Vorkommen, in denen Ru-Os-Ir Legierungen und Laurit dominieren, zeigt die PGE-Mineralogie der Finero-Chromitite eine höhere Schwefelfugazität bei der Bildung an. Außerdem sind Cu und Rh in dieser Mineralgesellschaft weit verbreitet und auch Mikrosondenuntersuchungen belegen das Verhandensein von Ag und Pb in vielen der PGE-führenden Phasen.Dies ist für Chromit-bildende Systeme ungewöhnlich und wird mit der Aktivität einer alkali-reichen fluiden Phase, die auch für die Kristallisation des weitverbreiteten Phlogopits im Finero-Komplex verantwortlich ist, in Zusammenhang gebracht.
Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy)
Summary Small scale chromitites have been recently discovered in the phlogopite-rich peridotite of the Finero complex (Ivrea Zone, Italy). The chromite contains minute (<20 um) inclusions of platinum-group minerals (PGM), and base-metal sulfides (BMS) and alloys (BMA) which frequently bear platinum-group elements (PGE) in solid solution. The PGM are laurite, native Ir and Ir-Cu-Rh sulfides with variable compositions. The PGE-bearing BMS are rhodian pentlandite, rhodian millerite, iridian digenite, and unknown Ir-rich Ni-Fe-Cu sulfides with Metal/Sulfur ratio close to 1. The BMA's consist of the associations: Cu-Rh-Fe, Cu-Pt-Ag, Cu-Pb-Rh and Pb-Rh.Compared with other investigated occurrences dominated by Ru-Os-Ir alloys and laurite, the PGE-mineralogy of the Finero chromitites indicates a higher sulfur fugacity of formation. In addition, there is an overall abundance of Cu and Rh in the assemblage, and microprobe analyses revealed the presence of appreciable amounts of Ag and Pb in many of the PGE-bearing phases. These features are unusual for the chromite-forming system and are ascribed to the activity of the alkali-rich fluid phase responsible for the crystallization of abundant phlogopite in the Finero body.


With 7 Figures  相似文献   

13.
We report highly unusual platinum-group mineral (PGM) assemblages from geologically distinct chromitites (banded and podiform) of the Kraubath massif, the largest dismembered mantle relict in the Eastern Alps. The banded chromitite has a pronounced enrichment of Pt and Pd relative to the more refractory platinum-group elements (PGEs) of the IPGE group (Os, Ir, Ru), similar to crustal sections of ophiolites. On the contrary, the podiform chromitite displays a negatively sloping chondrite-normalised PGE pattern typical of ophiolitic podiform chromitite. The chemical composition of chromite varies from Cr# 73-77 in the banded type to 81-86 in the podiform chromitite. Thirteen different PGMs and one gold-rich mineral are first observed in the banded chromitite. The dominant PGM is sperrylite (53% of all PGMs), which occurs in polyphase assemblages with an unnamed Pt-base metal (BM) alloy and Pd-rich minerals such as stibiopalladinite, mayakite, mertieite II, unnamed Pd-Rh-As and Pd(Pt)-(As,Sb) minerals. This banded type also contains PGE sulphides (about 7%) represented by a wide compositional range of the laurite-erlichmanite series and irarsite (8%). Os-Ir alloy, geversite, an unnamed Pt-Pd-Bi-Cu phase and tetrauricupride are present in minor amounts. By contrast, the podiform chromitite, which yielded 21 different PGMs, is dominated by laurite (43% of all PGMs) which occurs in complex polyphase assemblages with PGE alloys (Ir-Os, Os-Ir, Pt-Fe), PGE sulphides (kashinite, bowieite, cuproiridsite, cuprorhodsite, unnamed (Fe,Cu)(Ir,Rh)2S4, braggite, unnamed BM-Ir and BM-Rh sulphides) and Pd telluride (keithconnite). A variety of PGE sulpharsenides (33%) including irarsite, hollingworthite, platarsite, ruarsite and a number of intermediate species have been identified, whereas sperrylite and stibiopalladinite are subordinate (2%). The occurrence of such a wide variety of PGMs from only two, 2.5-kg chromitite samples is highly unusual for an ophiolitic environment. Our novel sample treatment allowed to identify primary PGM assemblages containing all six PGEs in both laurite-dominated podiform chromitite as well as in uncommon sperrylite-dominated banded chromitite. We suggest that the geologically, geochemically and mineralogically distinct banded chromitite from Kraubath characterises the transition zone of an ophiolite, closely above the mantle section hosting podiform chromitite, rather than being representative of the crustal cumulate pile.  相似文献   

14.
Zusammenfassung Ausdehnung und Faunen der Meere des älteren Paläozoikums sowie Flora und Fauna auf den Festländern der Südhalbkugel an der Grenze von Paläozoikum zum Mesozoikum sprechen unzweideutig für das Bestehen eines einheitlichen Gondwanakontinents während des Paläozoikums und älteren Mesozoikums. Die weitgehende übereinstimmung in der Beschaffenheit der Sedimente und der Art der Fauna der unterdevonischen Transgression in Südafrika und Südamerika weist auf einen ganzrandigen Verlauf der Südküste dieses Kontinents und ist leichter zu verstehen, wenn wir für diese Zeit einen geringeren Abstand zwischen den beiden Kontinenten annehmen, als wie er heute ist. Die ersten sicheren Anzeichen für einen Zerfall des Westteils des Gondwanakontinents sind am Ende der Unterkreide zu verzeichnen, während gewisse Beziehungen in den Faunen des älteren Neokom noch für eine einheitliche Küste zwischen Südafrika und Patagonien sprechen. Ob zur mittleren Kreidezeit aber nur der südlichste Teil des Atlantischen Ozean entstanden ist, während der Norden von Südafrika und Amerika noch bis in sehr junge Zeit miteinander verbunden waren, lä\t sich nach dem bis jetzt vorliegenden Beobachtungsmaterial noch nicht endgültig entscheiden.  相似文献   

15.
Zusammenfassung Es werden genauere Angaben gemacht über den Verlauf des Saarsprungs und des Felsbergsprunges an der Erdoberfläche. Der Saarsprung konnte von Bous bis Burbach verfolgt werden. Der Felsbergsprung verfolgt sich nach SE bis in den Rosselsprung.Das Vorkommen von Oberrotliegendem scheint an diese Verwerfungen gebunden zu sein. Es sind Zerrungsspalten, die während der Hauptfaltungsphase (saalische Phase nachStille) des Saar-Nahe-Beckens aufgebrochen sind. Es ist aber anzunehmen, daß sie während des Oberrotliegenden aktiv waren. Sie wurden nach Ablagerung der Trias neu belebt.  相似文献   

16.
The Coolac ultramafic belt consists dominantly of variably serpentinised harzburgite and contains a diversity of tectonic inclusions. Reaction zones of chlorite-, talc- and Ca-Al silicate-rich rocks are commonly developed between serpentinites and either tectonic inclusions or country rocks. The chlorite-and talc-rich parts of the reaction zones typically contain sparsely disseminated to rarely massive Cu- and Fe-bearing sulphides, variable sphalerite, and minor Ni- (-Co-Fe) sulphides, arsenides and sulpharsenides, Pb and Bi minerals. The reaction zones have formed concomitantly with the serpentinisation of the harzburgite at temperatures of 100°–350°C and at pressures of <6 kb. Migration of Ca, Al, Ti, V, Sc, Cu and Zn has occurred from the ultramafic rocks to the reaction zones. The sulphur content of the ultramafic rocks increased during serpentinisation, but decreased markedly in the final stage of the process owing possibly to rising oxygen fugacity. The availability of sulphur during serpentinisation may have enabled sulphide minerals to form from the concentration of base metals in the reaction zones.
Zusammenfassung Der ultrabasische Gürtel von Coolac besteht vorwiegend aus unterschiedlich serpentinisiertem Harzburgit und weist mannigfaltige tektonische Einschlüsse auf. Reaktionszonen Chlorit-, Talk-, und Ca-Al-Silikat-reicher Gesteine sind gewöhnlich entwickelt im Kontaktbereich zwischen serpentinisiertem Harzburgit und entweder tektonischen Einschlüssen oder Gesteinen der Umgebung. Die Chlorit- und Talk-reichen Partien der Reaktionszone enthalten typischerweise fein verteilte, seltene Konzentrationen von Cu- und Feführenden Sulphiden, mit wechselndem Zinkblendegehalt, und untergeordnet Ni(-Co-Fe) Sulphide, Arsenide und Schwefel-haltige Arsenide, sowie Pb-und Bi-haltige Mineralien. Die Reaktionszonen entstanden zusammen mit der Serpentinisierung des Harzburgits bei Temperaturen von 100°–350°C und unter einem Druck von <6 Kb. Migration von Ca, Al, Ti, V, Sc, Cu und Zn verlief von den ultrabasischen Gesteinen zu den Reaktionszonen. Der Schwefelgehalt der ultrabasischen Gesteine nahm während der Serpentinisierung zu, verringerte sich jedoch auffällig im letzten Stadium des Prozesses, möglicherweise wegen der zunehmenden Verflüchtigung des Sauerstoffes. Das Angebot von Schwefel während der Serpentinisierung mag der Grund für die Bildung von Sulphiden aus Schwermetallkonzentration in den Reaktionszonen gewesen sein.
  相似文献   

17.
Summary Three types of mineralization are found in high-temperature lherzolite massifs of Southern Spain and Northern Morocco: (Cr) chromite, (Cr-Ni) chromite-nickel arsenide, (S-G) sulphide-graphite. The ore veins are distributed in this order from the plagioclase-lherzolite core to the garnet-lherzolite border of the massifs. These hightemperature ore assemblages (1200-600°C) have cumulate textures including orthopyroxene and/or cordierite as main silicate minerals.High average PGE concentrations are present in the Cr-Ni ores (2000 ppb) in relation to the Ni-arsenide abundance. The Cr ores have only 900 ppb PGE, and the S-G ores are PGE-poor (350 ppb). Gold roughly follows the PGE distribution: 13,000 ppb in Cr-Ni ores, 570 ppb in Cr ores, and only 88 ppb in S-G ores. The chondrite normalized PGE patterns of the Cr-Ni ores are chondritic, whereas those of the Cr and S-G ores have respectively negative and positive slopes. The Pd/Ir ratio strongly increases from the Cr ores (0.39) to the Cr-Ni and the S-G ores (2.7 and 3.4)). There are some (Os, Ru)S2 inclusions in the chromite of the Cr ores. In the Cr-Ni ores, some minute Au, Au-Cu, and Au-Bi-Te grains are observed. No PGM have been found, except in a weathered Cr-Ni ore sample where abundant PGM (PtAs2, IrAsS) are present., suggesting that PGE may be hidden as solid solution in the Ni-arsenide.The ore-forming magma probably has a mantle source-rock. The earliest chromites (Cr ores) contain Os-Ir-Ru mineral inclusions, whereas most of the gold and the remaining PGE with higher Pd/Ir ratio were partitioned into an immiscible As-S-liquid, which fractionated later into an earliest PGE-Au-rich NiAs-phase (Cr-Ni ores) and then a PGE-Au-poor MSS-phase (S-G ores).
Abtrennung und Fraktionierung von Edelmetallen in magmatischen Erzen der LherzolitMassive von Ronda und Beni Bousera (Spanien, Marokko)
Zusammenfassung In den Hochtemperatur-Lherzolit Massiven von Süd-Spanien und Nord-Marokko kommen drei Typen von Vererzung vor: (Cr) Chromit, (Cr-Ni) Chromit-Nickelarsenid, (S-G) Sulfid-Graphit. Die Erzgänge sind in dieser Abfolge vom Plagioklas-Lherzolit Kern zum Granat-Lherzolit Rand der Massive angeordnet. Diese Hochtemperaturparagenesen (1200°-600° C) haben Kumulattexturen mit Orthopyroxen und/oder Cordierit als Hauptsilikatminerale.Hohe Durchschnittsgehalte an PGE kommen in den Cr-Ni Erzen (2000 ppb) vor, und diese stehen in Beziehung zur Häufigkeit der Nickel-Arsenide. Die Cr-Erze führen nur 900 ppb PGE und die S-G Erze sind PGE-arm (350 ppb). Gold folgt in ungefähr der PGE-Verteilung: 13000 ppb in Cr-Ni Erzen, 570 ppb in Cr Erzen, und nur 88 ppb in S-G Erzen. Die Chondrit-normalisierten PGE Verteilungen der Chrom-Nickel Erze sind chondritisch, während jene der Cr- und S-G Erze negative, bzw. positive Neigungen zeigen. Das Pd/Ir Verhältnis nimmt von den Cr-Erzen (0, 39) zu den Cr-Ni und den S-G Erzen (2,7 und 3,4) deutlich zu. Es gibt einige (Os, Ru)S2 Einschlüsse in den Chromiten der Cr Erze. In den Cr-Ni Erzen, kommen winzige Einschlüsse von Au, Au-Cu und AuBi-Te Körnern vor. Keine PGM konnten nachgewiesen werden, mit Ausnahme eines verwitterten Cr-Ni Erzes wo reichlich PGM (PtAs2,1rAsS) vorliegen. Dies weist darauf hin, daß PGE in fester Lösung in den Nickel-Arseniden gebunden sein könnten.Das erzbildende Magma dürfte dem Mantel entstammen. Die am frühesten gebildeten Chromite (Cr-Erze) enthalten Einschlüsse von Os-Ir-Ru Mineralen, während ein Großteil des Goldes und der verbleibenden PGE mit höheren Pd/Ir Verhältnissen in eine nicht mischbare As-S fluide Phase gingen; die letztere fraktionierte später in eine frühe PGE-Au-reiche NiAs-Phase (Cr-Ni Erze) und dann in eine PGE-Au-arme MSS-Phase (S-G Erze).


With 6 Figures  相似文献   

18.
1 Introduction The association of massive Fe-Ni-Cu sulfides andchromite is a very unusual feature of podiformchromitites occurring in mantle tectonites of ophioliticcomplexes. It has only been described in theSoutheastern Desert, Egypt, where sulfides a…  相似文献   

19.
Summary Ni, Co, Fe arsenic minerals are common accessory phases associated with both the Ni-Cu mineralization and country rock sulphides of the Pechenga complex. The majority of the arsenic minerals fall in the cobaltite-gersdorffite series, with minor arsenopyrite, nickeline and maucherite. These minerals are regularly distributed between different types of mineralization. Nickeline, maucherite and gersdorffite occur mainly in hydrothermally altered Ni-Cu sulphide ores, in particular stringer zone sulphides and mineralized talc-carbonate rocks. Arsenopyrite occurs only in pentlandite-free assemblages of the host shales, mainly in remobilized iron sulphide mineralization. The concentrations of Ni and Co in arsenopyrite decrease with the distance from the Ni-Cu bearing intrusions. Cobaltite is an ubiquitous mineral, but Ni-rich cobaltite occurs mainly in the Ni-Cu ores. In general, the transition from Ni-Cu ores to country rocks is marked by the change from Ni-arsenides to Ni-Co sulpharsenides and, finally, to Fe sulpharsenides.Sedimentary pyrite in sulphidic shales contains up to 1.8 wt.% As and was initially enriched in arsenic during sedimentation and diagenesis. Metamorphic recrystallization of authigenic As-bearing pyrite to As-free pyrrhotite led to significant liberation of arsenic during metamorphism. The mobilized arsenic could have been carried by associated metamorphic fluids and then participated in the low-grade alteration of the ultramafic rocks and associated Ni-Cu sulphide ores.
Zusammensetzung und Verteilung der akzessorischen Ni-, Co und Fe-Arsenminerale in den Nickel-Kupferlagerstätten von Pechenga, Kola-Halbinsel, Rußland
Zusammenfassung Ni-, Co- und Fe-Arsenminerale sind verbreitete akzessorische Phasen, sowohl in den Nickel-Kupfer-Vererzungen, als auch in den Sulfiden der Nebengesteine des PechengaKomplexes. Der Großteil der Arsenminerale ist zur Cobaltit-Gersdorffit-Serie zu stellen. Arsenkies, Nickelin und Maucherit sind in geringeren Mengen vorhanden. Diese Minerale sind zwischen den verschiedenen Vererzungstypen gleichmäßig verteilt. Nickelin, Maucherit und Gersdorffit kommen hauptsächlich in hydrothermal veränderten Ni-Cu-Sulfiderzen vor, besonders in Sulfiden der Stringer-Zone und in mineralisierten Talk-Karbonat-Gesteinen. Arsenkies kommt nur in Pentlandit-freien Paragenesen in den schiefrigen Nebengesteinen, vor allem in einer remobilisierten Eisensulfidvererzung, vor. Die Konzentrationen von Ni, Fe und Co in Arsenkies nehmen mit zunehmender Entfernung von den Ni-Cu-führenden Intrusionen ab. Cobaltit ist ein verbreitetes Mineral, wobei nickelreicher Cobaltit jedoch hauptsächlich in den Nickel-Kupfererzen vorkommt. Im allgemeinen wird der übergang von NickelKupfererzen zu Nebengesteinen durch den übergang von Nickelarseniden zu NickelKobalt-Sulpharseniden und schließlich zu Eisensulpharseniden markiert.Sedimentärer Pyrit in den schiefrigen Nebengesteinen enthält bis zu 1,8 Gew% As, wobei die Arsenanreicherung während der Sedimentation und Diagenese erfolgten. Metamorphe Rekristallisation authigener As-führenden Pyrite zu As-freiem Magnetkies führte zu signifikanter Freisetzung von Arsen während der Metamorphose. Das mobilisierte Arsen dürfte durch metamorphe Fluide transportiert worden sein, die an der niedriggradigen Alteration der ultramafischen Gesteine und der assoziierten NickelKupfererze beteiligt waren.


With 8 Figures  相似文献   

20.
Chromitite xenoliths from the Takashima alkali basalt in the Southwest Japan arc are classified into two types: Type 1 chromitite in thin layers in dunite or wehrlite xenoliths; and Type 2 chromitite in discrete xenoliths which has an orbicular texture, previously documented only from podiform chromitites in ophiolites. Type 1 may be equivalent to layered chromitites in ophiolitic cumulates and Type 2 to podiform chromitites in the transition zone of ophiolites. This example of podiform chromitite from the Southwest Japan arc suggest that these podiform chromitites may exist in the upper mantle beneath an arc, where their formation is favored.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号