共查询到20条相似文献,搜索用时 15 毫秒
1.
Geochemical anomaly separation and identification using the number–size (N–S) model at Bardaskan area, NE Iran is studied in this paper. Lithogeochemical data were used in this study which was conducted for the exploration for Au and Cu mineralization and enrichments in Bardaskan area. There are two major mineralization phases concluded epithermal gold and a disseminated systems. N–S log–log plots for Cu, Au, Sb, and As illustrated multifractal natures. Several anomalies at local scale were identified for Au (32 ppb), Cu (28 ppm), As (11 ppm), and Sb (0.8 ppm) and the obtained results suggest existence of local Au and Cu anomalies whose magnitudes generally are above 158 and 354 ppm, respectively. The most important mineralization events are responsible for presence of Au and Cu at grades above 1,778 and 8,912 ppm. The study reveals threshold values for Au and Cu are a consequence of the occurrence of anomalous accumulations of phyllic and silicification alteration zones and metamorphic rocks especially in tuffaceous sandstones and sericite schist types. The obtained results were correlated with fault distribution patterns, revealing a positive direct correlation between mineralization in anomalous areas and the faults present in the mineralized system. 相似文献
2.
This study is carried out for delineation of the Tepeoba porphyry-skarn Cu-Mo ± Au mineralized zones at the Biga peninsula (NW Turkey) using the concentration–volume (C–V) fractal model. The power-law C–V relationships of Cu, Mo, and Au reveal five mineralized zones of Cu, three zones of Mo, and five zones for gold in the Tepeoba deposit. The main phase of the mineralization has average ore grades of 0.257% Cu, 0.357% Mo and 5.3083 ppm Au. Cu–Mo sulfide-rich hypogene ore zone overlain by mineralized oxidation zone are encompassed by three main alteration types, which are represented by biotite ± muscovite-K-feldspar, actinolite-albite and outer chlorite-epidote-calcite mineral associations occurring within the porphyritic microgranite and hornfels in the mine area. The delineated mineralization trend, based on the C–V fractal model, suggested that Cu and Mo enrichment zones were controlled by the same geochemical processes in the deposit due to their similar trends with the C–V log-log plot. Cu and Mo occurred mainly within the breccia zones along with stockwork veining at the contact between the hornfels and the biotite (±muscovite)-K-feldspar-altered Eybek microgranite. The main mineralization zone of Au developed in the oxidation zone due to of supergene enrichment processes. 相似文献
3.
Geochemical anomaly separation using the concentration–number (C–N) method at the Haftcheshmeh porphyry system in NW Iran is the aim of this study. We used lithogeochemical data sets to explore Cu, Mo, Au and Re mineralization in gabbroic, dioritic and monzonitic units at the Haftcheshmeh Cu–Mo porphyry system. The obtained results were interpreted using a rather extensive set of information available for each mineralized area, consisting of detailed geological mapping, structural interpretation and alteration data. Threshold values of elemental anomalies for the mineralized zone were computed and compared with the statistical methods based on the data obtained from chemical analyses of samples for the lithological units. Several anomalies at local scale were identified for Cu (40 ppm), Mo (12 ppm), Au (79 ppb), and Re (0.02 ppm), and the results suggest the existence of local Cu anomalies whose magnitude generally is above 500 ppm. The log–log plots show the existence of three stages of Cu and Mo enrichment, and two enrichment stages for Au and Re. The third and most important mineralization event is responsible for presence of Cu at grades above 159 ppm. The identified anomalies in Haftcheshmeh porphyry system, and distribution of the rock types, are mainly gabbrodiorite–monzodiorite, granodiorite and monzodiorite–diorite that have special correlation with Cu–Mo and gabbroic and monzonitic rocks, especially the gabbrodiorite–monzodiorite type, which is of considerable importance. The study shows that these elemental anomalous parts have been concentrated dominantly by potassic and phyllic, argillic and propylitic alterations within the gabbroic, monzonitic and dioritic rocks especially in the gabrodioritic type in certain parts of the area. The results, which were compared with fault distribution patterns, revealed a positive correlation between mineralization in anomalous areas and the faults present in the mineralized system. 相似文献
4.
The aim of this study is to identify geochemical anomalies using power spectrum–area (S–A) method based on the grade values of Cu, Mo and Au in 2709 soil samples collected from Kahang porphyry-type Cu deposit, Central Iran. S–A log–log plots indicated that there are three stages of Cu, Mo and Au enrichment. The third enrichment was considered as the main stage for the presence of Cu, Mo and Au at the concentrations above 416 ppm, 23 ppm and 71 ppb, respectively. Elemental anomalies are positively associated with monzo–granite–diorite and breccias units which are in the central and western parts of the deposit. The anomalies are located within the potassic, phyllic and argillic alteration types and also there is the positive correlation between the anomalies and nearing faults in the studied area. The results obtained via fractal model were interpreted accordingly to incorporate the information for the mineralized areas including detailed geological map, structural analysis and alterations. The results show that S–A multifractal modeling is applicable for anomalies delineation based on soil data. 相似文献
5.
The aim of this study is to delineate and separate mineralization phases based on surface lithogeochemical Au, Ag, As and Cu data, using the Concentration–Area (C–A) fractal method in the Touzlar epithermal Au–Ag (Cu) deposit, NW Iran. Four mineralization phases delineated by multifractal modeling for these elements are correlated with the findings of mineralization phases from geological studies. The extreme phase of Au mineralization is higher than 3.38 ppm, which is correlated with the main sulfidation phase, whereas Ag extreme phase (higher than 52.48 ppm) is associated with silicic veins and veinlets. The resulting multifractal modeling illustrates that Au and Ag have two different mineralization trends in this area. Extreme (higher than 398.1 ppm) and high mineralization phases of Cu from the C–A method correlate with hydrothermal breccias and main sulfidation stage in the deposit, respectively. Different stages of Au mineralization have relationships with As enrichment, especially in high and extreme (higher than 7.9%) phases. The obtained results were compared with fault distribution patterns, showing a positive correlation between mineralization phases and the faults present in the deposit. Moreover, mineralization phases of these elements demonstrate a good correlation with silicification and silicic veins and veinlets. 相似文献
6.
Gold mineralization at Chah Zard, Iran, is mostly concentrated in breccia and veins, and is closely associated with pyrite. Optical and scanning electron microscopy-backscattered electron observations indicate four different pyrite types, each characterized by different textures: porous and fractured py1, simple-zoned, oscillatory-rimmed, framboidal and fibrous py2, colloform py3, and inclusion-rich py4. Laser ablation ICP–MS analysis and elemental mapping reveal the presence of invisible gold in all pyrite types. The highest concentrations (161–166 ppm Au) are found in py2 and py4, which correlate with the highest As concentrations (73,000–76,000 ppm). In As-poor grains, Au concentrations decrease by about two orders of magnitude. Copper, Pb, Zn, Te, Sb, and Ag occur with invisible gold, suggesting that at least part of the gold occurs in nanoparticles of sulfosalts of these metals and metalloids. Gold distribution patterns suggest that only negligible Au was originally trapped in py1 from the initial ore fluids. However, most, if not all, Au was transported and deposited during subsequent overprinting hydrothermal fluid flow in overgrowth rims around the margins of the py2 and within microfractures of py4 grains. Oscillatory zonation patterns for Co, Ni, Sb, Cu, Pb, and Ag in pyrite reflect fluctuations in the hydrothermal fluid chemistry. The LA-ICP–MS data reveal that Cu, Pb and Ag show systematic variations between different pyrite types. Thus, Cu/Pb and Pb/Ag ratios in pyrite may provide a potentially powerful exploration vector to epithermal gold mineralization at Chah Zard district and elsewhere. 相似文献
8.
The aims of present study are investigation of endemic plants at Masjed–Daghi area introducing hyperaccumulator and indicator plants for Au, Ag, As, Cu, Mo, Hg, Re, Sb, and Te mineralization and also describe the biogeochemical response pattern over a known Au–Cu mineralized site. The Masjed–Daghi prospecting area is covered by Eocene flysch, andesite, trachyandesite, dacite, rhyodacite, Oligocene agglomerate, and Quaternary deposits. Previous researches reported copper porphyry mineralization and related epithermal gold veins in this area. This study presents that plants with high metal intake enabled us to obtain invaluable information about natural concentrations of chemical elements in the substrate and to recognize new potential areas for mineral prospecting. Stachys inflata has biological absorption coefficient mean exceeding or near hyperaccumulating criterion >1 for most of the elements investigated then could be as a hyperaccumulator. The indicator values belong to S. inflata, Artemisia sp., Salvia sp., Astragalus sp., Peganum harmala, Moltkia coerulea, and Cousinia sp. 相似文献
9.
This method of assigning weights based on expert opinion introduces bias when we are evaluating the relative importance of evidence values. In this paper, we used a prediction–area (P–A) plot method and content–area (C–A) fractal model to estimate the weight of each evidence map. In this paper, we used the content region (C–A) fractal model to divide the evidence maps to the threshold of the corresponding dimensions. The P–A plot approach is an objective data-driven approach for evaluating map weights. Using geochemical layer and remote sensing, hydroxyl layers as weight evidence maps are the highlights of this study. We use the P–A method from which we can evaluate the predictive ability of each evidence map with respect to the known ore occurrences. We used the P–A plot for weighting each evidence map and choosing the appropriate threshold for predictor maps in the Luchun area of Yunnan Province, China. The method adopted in this paper can improve the prediction efficiency of ore prospecting. 相似文献
10.
The present study utilizes the processed SPOT 5 data to discriminate and to generate 1:10,000 geologic image map to delineate the mineralized diorite–tonalite intrusion around Bulghah gold mine area, Saudi Arabia. The rock units exposed in the area include gossan, marble, Hulayfah volcanics, diorite–tonalite, gneissose granite, and alkali granite. Gold mineralization at Bulghah mine is hosted mainly by Syn- to Late-tectonic diorite–tonalite intrusion aligned along N–S direction and is associated mainly with cataclastic zones and quartz veins. Gossans and jasparoidal gossans (Hulayfah group), recorded at the western side of Bulghah mine area as discontinuous small lenses, can be easily discriminated on 4/2 and 4/3 band ratio SPOT images by their white and black image signatures, respectively. Granitoids (gneissose granite and alkali granite) are easily discriminated in 3/2 ratio image, in which gneissose granite has gray image signature, whereas alkali granite has dark gray image signature. On the SPOT false color composite band ratios image (3/2 R, 4/2 G, and 4/3 B), gossan, marble, Hulayfah volcanics, diorite–tonalite, gneissose granite, and alkali granite have sky blue, blood red, bluish light brown, orange, brick red, and deep blue colors, respectively. Fusion of the false color composite SPOT ratios image (3/2 R, 4/2 G, and 4/3 B) with the high spatial resolution SPOT pan image is performed using IHS transformation method. The fused image is used to delineate the mineralized diorite–tonalite intrusion and to produce 1:10,000 geologic image map for Bulghah gold mine area. The present study reveals the usefulness of the processed SPOT 5 data for adding new extensions at the southern and northern boundaries of diorite–tonalite intrusion. 相似文献
11.
The Neo-Tethyan subduction in Iran is characterized by the Urumieh–Dokhtar magmatic arc (UDMA), formed by northeast-ward subduction of the oceanic crust beneath the central Iran. This belt coincides with the porphyry copper metallogenic belt that comprises several metallogenic zones, including Ahar–Jolfa in northwest Iran. The Ahar–Jolfa metallogenic zone encompasses two main batholiths of Qaradagh and Sheyvardagh and numerous intrusive bodies of Cenozoic, which have produced many base and precious metal deposits and prospects. The former is considered as continuation of the Meghri–Ordubad pluton in South Armenian Block (SAB), which also hosts porphyry copper deposits (PCDs). The Sungun PCD is the largest occurrence in northwest Iran. Rhenium-Osmium ages of Sungun molybdenites are early Miocene and range between 22.9 ± 0.2 and 21.7 ± 0.2 Ma. Comparison of the ages obtained here with published ages for mineralization across the region suggests the following sequence. The earliest porphyry Cu–Mo mineralization event in northwest Iran is represented by Saheb Divan PCD of late Eocene age, which is followed by the second epoch of middle Oligocene, including the Cu–Mo–Au mineralization at Qarachilar and the Haftcheshmeh PCD. Mineralization in Sungun, Masjed Daghi, Kighal and Niaz deposits corresponds to the third mineralization event in northwest Iran. The first epoch in northwest Iran postdates all Eocene mineralizations in SAB, while the second epoch is coeval with Paragachay and the first-stage of Kadjaran PCDs. Its third epoch is younger than all mineralizations in SAB, except the second stage in Kadjaran PCD. Finally, the Cu mineralization epochs in northwest Iran are older than nearly all PCDs and prospects in Central Iran (except the Bondar Hanza PCD), altogether revealing an old to young trend along the UDMA and the porphyry Cu belt towards southeast, resulted from diachronous, later closure of the Neo-Tethyan oceanic basin in central and SE Iran. 相似文献
12.
The Sarvian Fe skarn deposit is located in the Urumieh–Dokhtar magmatic arc, western Iran. The Sarvian quartz diorite intruded the surrounding Permian to Tertiary limy formation, culminated in thermal metamorphism as well as skarnification in which the Sarvian deposit formed. Microthermometry studies in the Sarvian skarn deposit reveal two distinct inclusion groups; group A with medium–high temperature and hypersaline and group B with low–medium temperature and low salinity. Group A inclusions which are entrapped during formation of prograde are thought to be derived from the magmatic source. Fluid boiling and subsequent developing of hydraulic fracturing led to inflow and/or mixing of early magmatic fluids (group A) with circulating groundwater culminated in formation of low salinity and low temperature fluid inclusions (group B) during the formation of retrograde assemblage. Fluid inclusion thermometry reveals the formation temperature and the salinity of 300–370 °C and 31–33 wt% NaCl for the prograde stage and 180–230 °C and 1–15 wt% NaCl for the retrograde stage of skarnification at Sarvian skarn rocks. Fe-mineralization as well as hydrothermal minerals occurred during retrograde metasomatism. The estimated depth and pressure of occurrence for prograde stage are 1000–1200 m and 100–150 bars, and for retrograde stage, these are about 200 m and 50 bars, respectively. Garnet and pyroxene, as the main constituent minerals of prograde stage, are the most informative minerals offering a suitable tool to constrain the skarnification conditions. Garnets in the Sarvian deposit are mainly grossular and andradite, showing both normal and inverse zoning as the result of variation in their chemical composition. Such types of zoning represent alternation of high acidity oxidation and low acidity oxidation conditions that were prevailed on skarnification in the Sarvian prograde assemblage. Also, chemical composition of the Sarvian pyroxenes shows an alternation of high oxygen fugacity and low oxygen fugacity conditions for their formation. This is also supported by fluctuation of the ratios of andradite to grossular and diopside to hedenbergite, denoting to an obvious shifting that was prevailed between oxidizing and redox conditions during formation of prograde assemblage in the Sarvian. Garnet–pyroxene thermometry determines the formation temperature of prograde assemblage between 370 and 550 °C at Sarvian skarn rocks which is verified also by fluid inclusion thermometry. Decomposition of limestone by reaction of high-temperature hydrothermal fluids with carbonate host rock resulted in injection of CO 2 into the Sarvian system that caused oxidation, changing Fe +2 to Fe +3 culminated in the magnetite deposition. 相似文献
13.
The breccia-hosted epithermal gold–silver deposit of Chah Zard is located within a high-K, calc-alkaline andesitic to rhyolitic
volcanic complex in the central part of the Urumieh-Dokhtar Magmatic Arc (UDMA), west central Iran. The total measured resource
for Chah Zard is ∼2.5 million tonnes of ore at 12.7 g/t Ag and 1.7 g/t Au (28.6 t Ag, 3.8 t Au), making it one of the largest
epithermal gold deposits in Iran. Magmatic and hydrothermal activity was associated with local extensional tectonics in a
strike-slip regime formed in transtensional structures of the Dehshir-Baft strike-slip fault system. The host rocks of the
volcanic complex consist of Eocene sedimentary and volcanic rocks covered by Miocene sedimentary rocks. LA-ICP–MS U–Pb zircon
geochronology yields a mean age of 6.2 ± 0.2 Ma for magmatic activity at Chah Zard. This age represents the maximum age of
mineralization and may indicate a previously unrecognized mineralization event in the UDMA. Breccias and veins formed during
and after the waning stages of explosive brecciation events due to shallow emplacement of rhyolite porphyry. Detailed systematic
mapping leads to the recognition of three distinct breccia bodies: volcaniclastic breccia with a dominantly clastic matrix;
gray polymict breccia with a greater proportion of hydrothermal cement; and mixed monomict to polymict breccia with clay matrix.
The polymictic breccias generated bulk-mineable ore, whereas the volcaniclastic breccia is relatively impermeable and largely
barren. Precious metals occur with sulfide and sulfosalt minerals as disseminations, as well as in the veins and breccia cements.
There is a progression from pyrite-dominated (stage 1) to pyrite-base metal sulfide and sulfosalt-dominated (stages 2 and
3) to base metal sulfide-dominated (stage 4) breccias and veins. Hydrothermal alteration and deposition of gangue minerals
progressed from illite-quartz to quartz-adularia, carbonate, and finally gypsum-dominated assemblages. Free gold occurs in
stages 2 and 4, principally intergrown with pyrite, quartz, chalcopyrite, galena, sphalerite, and Ag-rich tennantite–tetrahedrite,
and also as inclusions in pyrite. High Rb/Sr ratios in ore-grade zones are closely related to sericite and adularia alteration.
Positive correlations of Au and Ag with Cu, As, Pb, Zn, Sb, and Cd in epithermal veins and breccias suggest that all these
elements are related to the same mineralization event. 相似文献
14.
New data on mercurial mineralization are presented, and a detailed characteristic is given for the first discovery of mercurous silver in ores of the Rogovik gold–silver deposit (the Omsukchan trough, Northeastern Russia). It was found that native silver in the examined ores occurs as finely-dispersed inclusions in quartz filling microcracks and interstitions. It also occurs in associations with kustelite, Ag sulfosalts and selenides, selenitic acanthite, and argyrodite. The mercury admixture varies from “not detected” in the central parts of grains to 0.22–1.70 wt % along the edges, or, in independent grains, to the appearance of Ag amalgams containing 10.20–24.61 wt % of Hg. The xenomorph form of grains of 50 μm or less in size prevails. It is assumed that the appearance of mercurial mineralization is caused by the superposition of products of the young Hg-bearing Dogda–Erikit belt upon the more ancient Ag-bearing Omsukchan trough. 相似文献
16.
Early Miocene igneous rocks associated with the Dalli porphyry ore body are exposed within the Urumieh-Dokhtar Magmatic Arc (UDMA). The Dalli porphyry Cu–Au deposit is hosted by subduction-related subvolcanic plutons with chemical composition from diorite to granodiorite, which intruded andesitic and dacitic volcanic rocks and a variety of sedimentary sequences. 40Ar/ 39Ar age data indicate a minimum emplacement age of ~21 million years for a potasically altered porphyritic diorite that hosts the porphyry system. The deposit has a proven reserve of 8 million tonnes of rock containing 0.75 g/t Au and 0.5% Cu. Chondrite-normalized rare earth element (REE) patterns for the subvolcanic rocks are characterized by light REE enrichments [(La/Sm) n ?=?2.57–6.40] and flat to gently upward-sloping profiles from middle to heavy REEs [(Dy/Yb) n ?=?0.99–2.78; (Gd/Yb) n ?=?1.37–3.54], with no significant Eu anomalies. These characteristics are generated by the fractionation of amphibole and the suppression of plagioclase crystallization from hydrous calc-alkaline magmas. In normalized multi-element diagrams, all analysed rocks are characterized by enrichments in large ion lithophile elements and depletions in high field strength elements, and display typical features of subduction-related calc-alkaline magmas. We used igneous mineral compositions to constrain the conditions of crystallization and emplacement. Biotite compositions plot above the nickel–nickel oxide (NNO) buffer and close to oxygen fugacity values defined by the hematite–magnetite (HM) buffer, indicating oxidizing conditions during crystallization. Assuming a minimum crystallization temperature of 775°C, the oxygen ( fO 2) and water ( fH 2O) fugacities are estimated to be 10 ?10.3 bars (~ΔNNO+4) and ≤748 bars, respectively, during the crystallization of biotite phenocrysts. The temperature and pressure conditions, estimated from temperature–corrected Al-in-hornblende barometry and amphibole-plagioclase thermometry, suggest that the hornblende phenocrysts in Dalli rocks crystallized at around 780 ± 20°C and 3.8 ± 0.4 kbar. An alternative method using the calcic amphibole thermobarometer indicates that the Dalli magmas were, on average, characterized by an H 2O content of 4.3 wt.%, a relatively high oxygen fugacity of 10 ?11.0 bars (ΔNNO+1.3), and a hornblende phenocryst crystallization temperature of 880 ± 68°C and pressure of 2.6 ± 1.7 kbar. 相似文献
17.
Diyadin mineralization is the first reported gold deposit located in a collisional tectonic environment in Eastern Anatolia. The mineralization is related to N–S and N10–20°W-trending fault systems and hosted within the Paleozoic metamorphic basement rocks of the Anatolide–Toride microcontinent. Calc-schist, dolomitic marble and Miocene and Quaternary volcanic rocks comprise the exposed units in the mineralized area. Geochemical signatures, alteration types and host rock characteristics of the Diyadin gold deposit resemble those of Carlin-type deposits. Mineralization is constrained by alteration of overlying volcanic rocks to younger than ~ 14 Ma (K–Ar).Carbon and oxygen stable isotope measurements of carbonate rocks were made on six drill holes (n = 81) with an additional four samples of fresh carbonate rocks from surface outcrops. Background carbonate rocks have δ 13C V-PDB ~ 1.8‰ and δ 18O V-SMOW ~ 27‰. Isotopically-altered host rock samples have decreased δ 18O (down to ~+11.4‰) and variable δ 13C (from − 3.6 to + 4.8‰). Postore carbonate veins and cave-fill material have distinctly different isotopic signatures, particularly carbon (from δ 13C = + 8.4 to + 9.8‰). Whether this post-ore carbonate is simply very late in mineralization associated with the gold system, or is a completely different, younger system utilizing the same pathways, is unclear at present. Within the host rock sample set, there is no correlation between gold and δ 13C, and a weak correlation between gold and δ 18O, indicative of water–rock interaction and isotopic alteration. Both the isotopic data and structural mapping suggest that the main upflow zone for the deposit is near the northern portion of the drill fence. Additional data at multiple scales are required to clarify the relationship(s) between fluid flow and mineralization. 相似文献
18.
The Chahmir zinc–lead deposit (1.5 Mt @ 6 % Zn + 2 % Pb) in Central Iran is one among several sedimentary-exhalative Zn–Pb deposits in the Early Cambrian Zarigan–Chahmir basin (e.g., Koushk, Darreh-Dehu, and Zarigan). The deposit is hosted by carbonaceous, fine-grained black siltstones, and shales interlayered with volcaniclastic sandstone beds. It corresponds to the upper part of the Early Cambrian volcano-sedimentary sequence (ECVSS), which was deposited on the Posht-e-Badam Block during back-arc rifting of the continental margin of Central Iran. Based on crosscutting relationships, mineralogy, and texture of sulfide mineralization, four different facies can be distinguished: stockwork (feeder zone), massive ore, bedded ore, and distal facies (exhalites with barite). Silicification, carbonatization, sericitization, and chloritization are the main wall-rock alteration styles; alteration intensity increases toward the proximal feeder zone. Fluid inclusion microthermometry was carried out on quartz associated with sulfides of the massive ore. Homogenization temperatures are in the range of 170–226 °C, and salinity is around 9 wt% NaCl eq. The size distribution of pyrite framboids of the bedded ore facies suggests anoxic to locally suboxic event for the host basin. δ 34S (V-CDT) values of pyrite, sphalerite, and galena range from +10.9 to +29.8?‰. The highest δ 34S values correspond to the bedded ore (+28.6 to +29.8?‰), and the lowest to the massive ore (+10.9 to +14.7?‰) and the feeder zone (+11.3 and +12.1?‰). The overall range of δ 34S is consistent with a sedimentary environment where sulfide sulfur was derived from two sources. One of them was corresponding to early ore-stage sulfides in bedded ore and distal facies, consistent with bacterial reduction from coeval seawater sulfate in a closed or semiclosed basin. However, the δ 34S values of late ore-stage sulfides, observed mainly in massive ore, interpreted as a hydrothermal sulfur component, leached from the lower part of the ECVSS. Sulfur isotopes, along with the sedimentological, textural, mineralogical, fluid inclusion, and geochemical characteristics of the Chahmir deposit are in agreement with a vent-proximal (Selwyn type) SEDEX ore deposit model. 相似文献
19.
This paper is focused on the new data for geology, mineralogy, and geochemistry of stockworks consisting of steep and gentle quartz veins and veinlets forming a complex multilevel structure at the Rodion deposit. These stockworks range from 25 to 150 m in thickness. Average gold grade is 1.8 g/t. Ore minerals pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, and native gold are predominantly concentrated on the vein and veinlet walls. Thermal metamorphism caused by the intrusion of the Ulakhan granodiorite pluton is the important singularity of the deposit. The deposit ore is enriched in chalcophile microelements Au, Ag, As, Sb, Cu, Pb, Zn, and Bi as compared to the average composition of the upper crust and hosting Permian sequences. The enrichment factors range from a few to hundreds of times. Bi, W, Pb, Ag, and Na 2O are positively correlated between each other and with Au. The highest correlation coefficient 0.59 is between Au and Bi. Au is negatively correlated with Ba, Li, Co, Ni, Mn, Ti, and Be. The stockwork ores were formed involving homogeneous low-saline (9.4–4.3 wt % NaCl equiv) substantially aqueous bicarbonate-chloride fluid at 275–330°C and 300–1840 bar fluid pressure. Fluid has a high concentration of CO 2 (up to 349 g/kg of water) and is reductive (СО 2/СН 4 = 17–37.3). Na and Ca are the major cations in the fluid, whereas K and Mg are minor. In addition, many microelements were detected in the fluid: As, Li, Rb, Cs, Mo, Ag, Sb, Cu, Zn, Cd, Pb, U, Ga, Ge, Ti, Mn, Fe, Co, Ni, V, Cr, Y, Zr, Sn, Ba, W, Au, Hg, and REE. The results obtained are consistent with the metamorphic–magmatic formation model of orogenic gold–quartz deposits within the Yana–Kolyma belt. 相似文献
20.
Northern Sweden is currently experiencing active exploration within a new gold ore province, the so called Gold Line, situated southwest of the well-known Skellefte VMS District. The largest known deposit in the Gold Line is the hypozonal Fäboliden orogenic gold deposit. Mineralization at Fäboliden is hosted by arsenopyrite-rich quartz veins, in a reverse, mainly dip-slip, high-angle shear zone, in amphibolite facies supracrustal host rocks. The timing of mineralization is estimated, from field relationships, at ca. 1.8 Ga.The gold mineralization is hosted by two sets of mineralized quartz veins, one steep fault–fill vein set and one relatively flat-lying extensional vein set. Ore shoots occur at the intersections between the two vein sets, and both sets could have been generated from the same stress field, during the late stages of the Svecofennian orogen.The tectonic evolution during the 1.9–1.8 Ga Svecofennian orogen is complex, as features typical of both internal and external orogens are indicated. The similarity in geodynamic setting between the contemporary Svecofennian and Trans-Hudson orogens indicates a potential for world-class orogenic gold provinces also in the Svecofennian domain.The Swedish deposits discussed in this paper are all structurally associated with roughly N–S striking shear zones that were active at around 1.8 Ga, when gold-bearing fluids infiltrated structures related to conditions of E–W shortening. 相似文献
|