首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
The physicochemical qualities of a typical rural-based river were assessed over a 12-month period from August 2010 to July 2011 spanning the spring, summer, autumn and winter seasons. Water samples were collected from six sampling sites along Tyume River and analysed for total nitrogen, orthophosphate, biochemical oxygen demand (BOD), temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS) and turbidity. BOD regimes did not differ significantly between seasons and between sampling points and ranged from 0.78 to 2.76 mg/L across seasons and sampling points, while temperature ranged significantly (P < 0.05) between 6 and 28 °C. Turbidity varied significantly (P < 0.05) from 6 to 281 nephelometric turbidity units while TDS (range 24–209 ppm) and conductivity (range 47.6–408 mg/L) also varied significantly (P < 0.05) across sampling points with a remarkable similarity in their trends. Orthophosphate concentrations varied from 0.06 to 2.72 mg/L across seasons and sampling points. Negative correlations were noted between temperature and the nutrients, DO and temperature (r = ?0.56), and TDS and DO (r = ?0.33). Positive correlations were noted between TDS and temperature (r = 0.41), EC and temperature (r = 0.15), and DO and pH (r = 0.55). All nutrients were positively correlated to each other. Most measured parameters were within prescribed safety guidelines. However, the general trend was that water quality tended to deteriorate as the river flows through settlements, moreso in rainy seasons.  相似文献   

2.
Prediction of water quality from simple field parameters   总被引:2,自引:0,他引:2  
Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the laboratory tests. On one hand parameters like temperature, pH, DO, etc., can be accurately measured with the exceeding simplicity, whereas on the other hand calculation of BOD and COD is not only cumbersome but also inaccurate many times. A number of previous researchers have tried to use different empirical methods to predict BOD and COD but these empirical methods have their limitations due to their less versatile application. In this paper, an attempt has been made to calculate BOD and COD from simple field parameters like temperature, pH, DO, TSS, etc., using Artificial Neural Network (ANN) method. Datasets have been obtained from analysis of mine water discharge of one of the mines in Jharia coalfield, Jharkhand, India. 73 data sets were used to establish ANN architecture out of which 58 datasets were used to train the network while 15 datasets for testing the network. The results show encouraging similarity between experimental and predicted values. The RMSE values obtained for the BOD and COD are 0.114 and 0.983 %, respectively.  相似文献   

3.
Rainfall events cause episodic discharges of groundwaters contaminated with septic tank effluent into nearshore waters of the Florida keys, enhancing eutrophication in sensitive coral reef communities. Our study characterized the effects of stormwater discharges by continuously (30-min intervals) measuring salinity, temperature, tidal stage, and dissolved oxygen (DO) along an offshore eutrophication gradient prior to and following heavy rainfall at the beginning of the 1992 rainy season. The gradient included stations at a developed canal system (PP) on Big Pine Key, a seagrass meadow in a tidal channel (PC), a nearshore patch reef (PR), a bank reef at Looe Key National Marine Sanctuary (LK), and a blue water station (BW) approximately 9 km off of Big PIne Key. Water samples were collected at weekly intervals during this period to determine concentrations of total nitrogen (TN), ammonium (NH4 +), nitrate plus nitrite NO3 ? plus NO2 ?), total phosphorus (TP), total dissolved phosphorus (TDP), soluble reactive phosphorus (SRP), and chlorophyll a (chl a). Decreased salinity immediately followed the first major rainfall at Big Pine Key, which was followed by anoxia (DO <0.1 mg I?1), high concentrations of NH4 + (≈24 μM), TDP (≈1.5 μM), and chl a (≈20 μg I?1). Maximum concentration of TDP (≈0.30 μM) also followed the initial rainfall at the PC, PR, and LK stations. In contrast, NH4 + (≈4.0 μM) and chl a (0.45 μg I?1) lagged the rain event by 1–3 wk, depending on distance from shore. The highest and most variable concentrations of NH4 +, TDP, and chl a occurred at PP, and all nutrient parameters correlated positively with rainfall. DO at all stations was positively correlated with tide and salinity and the lowest values occurred during low tide and low salinity (high rainfall) periods. Hypoxia (DO <2.5 mg I?1) was observed at all stations follwing the stormwater discharges, including the offshore bank reef station LK. Our study demonstrated that high frequency (daily) sampling is necessary to track the effects of episodic rainfall events on water quality and that such effects can be detected at considerable distances (12 km) from shore. The low levels of DO and high levels of nutrients and chl a in coastal waters of the Florida Keys demand that special precautions be exercised in the treatment and discharge of wastewaters and land-based runoff in order to preserve sensitive coral reef communities.  相似文献   

4.
Holocene reef development was investigated by coring on Britomart Reef, a mid-shelf reef, 23 km long and 8 km wide situated 120 km north of Townsville in the central Great Barrier Reef (GBR). Two holes were drilled, Britomart 1 on a lagoon patch reef, and Britomart 2 on the windward reef crest. The Holocene reef (25·5 m) is the thickest yet recorded in the GBR and overlies an uneven substrate of weathered Pleistocene limestone. Mineralogical and geochemical analyses show that magnesian calcite and aragonite were converted to low Mg-calcite below the Holocene-Pleistocene disconformity. Corals above the interface have 7500–8500 ppm Sr, but 1650–1500 ppm just below it, decreasing to 400–800 ppm downwards. The intermediate Sr values could be due to partial replacement of aragonite by calcite or higher original Sr content in the corals. Three units are recognized in the Holocene: (1) coral boundstone unit, (2) coral framestone unit, and (3) coral rudstone unit. The coral boundstone unit forms the top 5 m of both cores and is algal-bound coral rubble similar to the present reef top. The coral framestone unit is composed of massive head corals Diploastrea heliopora and Porites sp., and is currently forming in patch reefs situated in the lagoon and along the reef front. The coral rudstone unit comprises coral rudstone and floatstone with unabraded, and unbound, coral clasts in muddy matrix. This matrix may be up to 30% sponge chips. Radiocarbon dating indicates the reef grew more rapidly under the lagoon than under the reef front from 7000 to 5000 yr BP. The rate of reef growth matched existing estimates of sea-level rise, but lagged approximately 1000 years (5–10 m) behind it. Most of the reef mass accumulated between 8500 and 5000 yr BP as a mound of debris, perhaps stabilized by seagrasses or algae. Accretion of the reef top in a windward direction between 5000 and 3000 yr BP created the present, steep reef-front profile.  相似文献   

5.
Studies on the coral reefs of the South China Sea (SCS) was the theme of the 6th Session of the 3rd Conference on Earth System Science (CESS) in Shanghai, 2014. This session discussed the most recent study developments on the SCS coral reefs, including coral reefs’ responses to global changes, coral reefs’ records on past climatic variations, and the activities about constructions and oil gas explorations in the coral reefs areas of the SCS. Disturbed by intensive anthropogenic activities and global climate warming, coral reefs in the SCS have declined dramatically, reflecting the up to 80% decrease of living coral cover and many areas having less than 20% of living coral cover. Geochemical data of SCS coral skeletons clearly show that since the Industry Revolution, the pollution situation of the SCS have dramatically increased and the seawater pH values have been continuously lowering, i.e. oceanic acidification. All these environmental phenomenon are further stressing the healthy development of the coral reef ecosystem in the SCS. Meanwhile, the poor coral reef ecosystems in the SCS are facing more anthropogenic disturbances such as coastal developments and engineering constructions. Obviously, the SCS coral reefs will be faced with more environmental challenges in the coming future. We therefore suggest that the policy makers should realize the extreme importance and the fragile of the coral reef ecosystems, and scientifically and with great cautions design construction project when in coral reef areas. We initiated the concept of “green engineering” for future developments in coral reef areas. Coral reefs are widely spreading in the whole SCS, and most of them developed since Miocene. Variations in coral reef structures provide good future oil-gas exploration. Because the SCS coral reefs have a long-developing history and a wide spatial distribution, they provide great potential in recording past environmental changes.  相似文献   

6.
The degree and the contribution of each point source to the pollution were determined in the Izmit Bay during the period 1999–2000. During 8 campaigns, samples from 11 points in the channels and water samples from 5 points in the coastal sea were collected for chemical analysis. The important pollutant parameters taken into account are inflow of total organic carbon (TOC), total suspended solids (TSS), total phosphorus (TP), total nitrogen (TN), nitrate, ortho-phosphate, ammonia and total polycyclic aromatic hydrocarbons (t-PAHs) in the discharge channels, and TOC, TSS, nitrate, ortho-phosphate, chlorophyll-a, temperature, dissolved oxygen (DO), and salinity in the coastal stations of the Bay. It should be pointed out that the industrial wastewaters entering the bay are partially treated but domestic wastes are discharged directly into the surface waters without any treatment. Of the pollution parameters measured in the channels, the highest concentrations, except TP, were observed in the Dil River and in the Eastern Channel. Concentrations of TOC, TSS, TN, TP, ammonia, nitrate and o-phosphate were found at concentrations of 231, 290, 152, 3.8, 16, 79, and 3.07 mg/L, respectively. Annual inflows of TOC were 21,301, 580, and 775 t/year and for TSS were 26,742, 585, and 1505 t/year in the western, central and eastern parts, respectively. The results show that the water quality of the bay has been deteriorated and 80% of the pollution was caused by Dil River for all parameters measured.  相似文献   

7.
In order to monitor the heavy metals effect coming from both human activities and natural inputs on coral reef environments of the Egyptian Red Sea coast, metal concentrations in thirty- eight coral reef species and nearby sediment samples collected from seven studied sites were analyzed. Four sites represent impacted areas; included from south to north Hamrawein, Safaga and Hurghada Harbours and Ras El-Behar Area. Wadi El-Gemal represents natural input area while Qola'an and Kalawye Reefs are the control areas. Heavy metal contents were measured in both coral skeletons and nearby marine sediments. Both impact areas as well as natural inputs area recorded the highest values of metals compared with the control ones. However, heavy metal contents recorded high values in sediments of Hamrawein Harbour, while coral species recorded high values in Wadi El-Gemal area. Generally, metal variations in coral reef species reflect natural conditions and human activity. On the other hand, there are no clear relationships between concentrations of heavy metals in coral reef species and those in sediments.  相似文献   

8.
There is a net discharge of water and nutrients through Long Key Channel from Florida Bay to the Florida Keys National Marine Sanctuary (FKNMS). There has been speculation that this water and its constituents may be contributing to the loss of coral cover on the Florida Keys Reef tract over the past few decades, as well as speculation that changes in freshwater flow in the upstream Everglades ecosystem associated with the Comprehensive Everglades Restoration Plan may exacerbate this phenomenon. The results of this study indicate that although there is a net export of approximately 3,850 (±404) ton N year?1 and 63 (±7) ton P year?1, the concentrations of these nutrients flowing out of Florida Bay are the same as those flowing in. This implies that no significant nutrient enrichment is occurring in the waters of the FKNMS in the vicinity of Long Key Channel. Because of the effect of restricted southwestward water flow through Florida Bay by shallow banks and small islands, the volume of relatively high-nutrient water from central and eastern portions of the bay exiting through the channel is small compared to the average tidal exchange. Nutrient loading of relatively enriched bay waters is mediated by tidal exchange and mixing with more ambient concentrations of the western Florida Bay and Hawk Channel. System-wide budgets indicate that the contribution of Florida Bay waters to the inorganic nitrogen pool of the Keys coral reef is small relative to offshore inputs.  相似文献   

9.
Data collected from 12 marine monitoring stations in Daya Bay from 2001 to 2004 reveal a substantial change in ecological environment in this region. Cluster analysis based on water quality and zooplankton results divided stations into three clusters: Cluster I consisted of stations S1, S2 and S6 in the south part of Daya Bay; Cluster II consisted of stations S3, S8 and S11 in the cage culture areas in the southwest part, the northwest part near Aotou harbor and the northeast part near the Fanhe harbor of Daya Bay; Cluster III consisted of stations S4, S5, S7, S9, S10 and S12 that were in southwest, the middle and northeast parts of Daya Bay. Bivariate correlations between zooplankton biomass and the major physical and nutrient variables were evaluated for all stations. The zooplankton biomass in all stations correlated positively with salinity, pH, secchi, NO3-N, NH4-N, TIN/PO4-P and SiO3-Si/PO4-P, and negatively correlated with temperature, DO, COD, NO2-N and TIN, PO4-P, SiO3-Si and BOD5. Factors analysis shows high positive loading salinity, secchi and NH4-N of three clusters, which indicates that all stations of the three clusters were primarily grouped according to their respective nutrient conditions. The results of multivariate statistical analysis revealed that temperature, DO, TIN and BOD5 could also play an important role in determining the biomass of the zooplankton in Daya Bay, especially in the stations near the nuclear power plants and in the cage culture areas.  相似文献   

10.
底泥原地稳定化过程中药剂对上覆水体的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
采用底泥原地稳定化处理技术中的药剂投加方法,对苏州河底泥中投加零价铁(Fe0)、硝酸钙的上覆水体进行为期80 d研究比较.结果表明:投加Fe0后上覆水体的溶解氧(DO)被迅速消耗,体系易形成厌氧环境,而硝酸钙则减缓了上覆水体DO的消耗;投加零价铁或硝酸钙后都会使上覆水体的pH升高,Eh下降;投加Fe0后对上覆水体CODCr或TOC的影响较硝酸钙小;此外,两者上覆水体DO、pH和Eh与CODCr和TOC之间均具有一定的相关性.  相似文献   

11.
Accurate prediction of the chemical constituents in major river systems is a necessary task for water quality management, aquatic life well-being and the overall healthcare planning of river systems. In this study, the capability of a newly proposed hybrid forecasting model based on the firefly algorithm (FFA) as a metaheuristic optimizer, integrated with the multilayer perceptron (MLP-FFA), is investigated for the prediction of monthly water quality in Langat River basin, Malaysia. The predictive ability of the MLP-FFA model is assessed against the MLP-based model. To validate the proposed MLP-FFA model, monthly water quality data over a 10-year duration (2001–2010) for two different hydrological stations (1L04 and 1L05) provided by the Irrigation and Drainage Ministry of Malaysia are used to predict the biochemical oxygen demand (BOD) and dissolved oxygen (DO). The input variables are the chemical oxygen demand (COD), total phosphate (PO4), total solids, potassium (K), sodium (Na), chloride (Cl), electrical conductivity (EC), pH and ammonia nitrogen (NH4-N). The proposed hybrid model is then evaluated in accordance with statistical metrics such as the correlation coefficient (r), root-mean-square error, % root-mean-square error and Willmott’s index of agreement. Analysis of the results shows that MLP-FFA outperforms the equivalent MLP model. Also, in this research, the uncertainty of a MLP neural network model is analyzed in relation to the predictive ability of the MLP model. To assess the uncertainties within the MLP model, the percentage of observed data bracketed by 95 percent predicted uncertainties (95PPU) and the band width of 95 percent confidence intervals (d-factors) are selected. The effect of input variables on BOD and DO prediction is also investigated through sensitivity analysis. The obtained values bracketed by 95PPU show about 77.7%, 72.2% of data for BOD and 72.2%, 91.6% of data for DO related to the 1L04 and 1L05 stations, respectively. The d-factors have a value of 1.648, 2.269 for BOD and 1.892, 3.480 for DO related to the 1L04 and 1L05 stations, respectively. Based on the values in both stations for the 95PPU and d-factor, it is concluded that the neural network model has an acceptably low degree of uncertainty applied for BOD and DO simulations. The findings of this study can have important implications for error assessment in artificial intelligence-based predictive models applied for water resources management and the assessment of the overall health in major river systems.  相似文献   

12.
Al-Kharrar Lagoon is a fossil back-reef basin with hypersaline waters, situated 10 km northwest of Rabigh city, central of the eastern Red Sea coast, Saudi Arabia. About 130 stations were selected for measurements of the lagoon’s water temperature, salinity, pH, dissolved oxygen, and water depths during March 2014. The common macro-algae, flora, and fauna were also sampled and identified. The present study aims to investigate the prevailing environmental parameters and their impact on the macro-fauna/flora of the lagoon. The average water depth of the lagoon was around 5 m and reached maximum values of 8 and 16 at the lagoon centre and inlet, respectively. The results showed that the lagoon’s surface water temperature and salinity have mean values of 25 °C and 40‰, but with extreme values of 30 °C and 45‰ that occurred only at the enclosed intertidal areas, respectively. Their dissolved oxygen (DO) and pH were 6.5 mg/l and 8.3, respectively and the latter showing the highest values up to 8.5 in the intertidal areas dominated by the green cyanobacteria. These physicochemical conditions make the lagoon as a favorite place for the mangrove Avicennia marina, macro-algae, seagrasses (Halophila stipulacea and Cymodocea rotundata), and algal mats (Cyanobacteria) which dominate the intertidal and supratidal areas of the lagoon, tolerating extremely high-salinity and high-temperature conditions. On the other hand, corals were observed alive at the southern part of the lagoon, immediately south of the Al-Ultah Islet. Vertical profiles of temperature, salinity, and density in the lagoon’s water indicated that the water column consists of two layers throughout the year.  相似文献   

13.
ABSTRACT Thermobarometric studies on various granulite facies areas along the Prydz Bay coast, East Antarctica (73°-79°E, 68°-70°S), show that, at around 1100 Ma, during a late Proterozoic orogeny, the rocks of the Larsemann Hills suffered a lower pressure metamorphic peak than the surrounding areas. Along the Prydz Bay coast, the rocks affected by this event include parts of the Vestfold Hills block plus all of the Rauer Group, the Larsemann Hills and the Munro Kerr Mountains. The dykes in the south-west corner of the Vestfold Hills were recrystallized during this event with little deformation at temperatures not quite as high as in the areas further south-west (650°C, 6.5 kbar) (Collerson et al., 1983), the Rauer Group was metamorphosed at 800°C and 7.5 kbar (Harley, 1987a), the Larsemann Hills at 750°C and 4.5 kbar, and the Munro Kerr Mountains probably at around 850°C and 5 kbar. Retrograde equilibration in the different areas occurred during decompression to about 10 km depth in all areas, followed by isobaric cooling at this depth. This paper shows that the peak metamorphism in the Larsemann Hills occurred at a pressure which is too low to have been the consequence of thermal relaxation of overthickened crust with normal mantle heat flow. Although other areas in Prydz Bay were metamorphosed at sufficiently high pressures so that their decompression paths are not inconsistent with a continental collision model, the inferred pre-metamorphic peak histories and the requirement of consistency with the Larsemann Hills, make it unlikely that collision followed by erosion-driven decompression is an appropriate model. We suggest that the thermal regime of the crust in the Larsemann Hills region was controlled by a perturbation in the asthenosphere, with magma invasion of the crust. We suggest that the 500 Ma event, represented in Prydz Bay by granitic outcrops at Landing Bluff and by several K/Ar ages from the Larsemann Hills area, was responsible for the final excavation of the terrane.  相似文献   

14.
从莱州湾附近河流采集了36个表层沉积物样品,采用高效液相色谱耦合三重四极杆串联质谱的分析方法对沉积物中的六溴环十二烷(HBCDsl3种异构体进行了测定,目的是表征研究区域内HBCDs的污染水平和组成特征,并探讨其分布、来源及影响因素。结果表明,莱州湾河流沉积物中ZHBCDs的含量范围为0.03~20.17ng/gdw(均值是2.14ng/gdw):较国内外其他河流,该研究区域HBCDs含量水平较低。HBCDs异构体组成各不相同,除1个站位外,其他站位样品中7-HBCD占主导地位(52.3%~97.3%,均值72.4%),但是在农业区a-HBCD相对丰度较高。对HBCDs的分布特征及来源分析得出,含量较高的站点多集中在工业区,呈现出明显的点源特征:而远离工业区的采样点,HBCDs可能主要来自大气的传输和沉降,且HBCDs的含量与TOC含量呈现出较好的相关性,表明TOC是非工业区分布的一个控制因素。  相似文献   

15.
三峡大坝下游溶解氧变化特性及影响因素分析   总被引:4,自引:0,他引:4       下载免费PDF全文
根据三峡工程坝区水域实测数据,分析了水库蓄水以后大坝上、下游断面溶解氧浓度和溶解氧饱和度的变化特性,探讨了水位、流量因素对大坝下游水体溶解氧量的影响。结果表明,坝身孔口过流水体大量掺气后进入下游河道导致下游水体溶解氧浓度和饱和度显著增加,甚至达到超饱和状态。由于电站过流基本不改变水体溶解氧量,在电站和坝身孔口同时过流时,两种水体掺混后,下游溶解氧量主要受流量比的影响。此外,下游溶解氧量随流量的增加和下游水位的升高而增大。过坝总流量超过35 000 m3/s,下游水位超过68 m以及坝身孔口过流流量占总流量的绝大部分时,需特别重视溶解氧超饱和现象对水生生物可能造成的影响。  相似文献   

16.
We apply an objective statistical analysis to a 6-yr, multiparameter dataset in an effort to describe the spatial dependence and inherent variation of water quality patterns in the Florida Bay-Whitewater Bay area. Principal component analysis of 16 water quality parameters collected monthly over a 6-yr period resulted in live principal components (PC) that explained 71.8% of the variance of the original variables. The “organic” component (PC1) was composed of TN, TON, APA, and TOC; the “inorganic N” component (PCII) contained NO2, NO3, and NH4 +, the “phytoplankton” component (PCIII) was made up of turbidity, TP, and Chl a; DO and temperature were inversely related (PCIV); and salinity was the only parameter included in PCV. A cluster analysis of mean and SD of PG scores resulted in the spatial aggregation of 50 fixed monitoring stations in Florida Bay and Whitewater Bay into six zones of similar influence (ZSI) defined as Eastern Florida Bay. Core Florida Bay, Western Florida Bay, Coot Bay, the Inner Mangrove Fringe, and the Outer Mangrove Fringe. Marked differences in physical, chemical, and biological characteristics among ZSI were illustrated by this technique. Comparison of medians and variability of parameter values among ZSI allowed large-scale generalizations as to underlying differences in water quality in these regions. For example. Fastern Florida Bay had lower salinity, TON, TOC, TP, and Chl a than the Core Bay as a function of differences in freshwater inputs and water residence time. Comparison of medians and variability within ZSI resulted in new hypotheses as to the processes generating these internal patterns. For example, the Core Bay had very high TON, TOC, and NH4 + concentrations but very low NO3 ?, leading us to postulate the inhibition of nitrification via CO production by TOC photolysis. We believe that this simple, objective approach to spatial analysis of fixed-station monitoring datasets will aid scientists and managers in the interpretation of factors underlying the observed parameter distribution patterns. We also expect that this approach will be useful in focussing attention on specific spatial areas of concern and in generating new ideas for hypothesis testing.  相似文献   

17.
The fringing reef at Pointe-au-Sable (Mauritius, Indian Ocean) was used to examine the effects of Holocene sea-level rise on coral growth. This reef is about 1000 m wide and comprises a forereef slope (30 m maximum depth), a narrow reef crest and a very shallow backreef (1·5 m maximum depth). Four major coral communities were recognized, which developed within relatively narrow depth ranges: a Pachyseris/Oulophyllia community (deeper than 20 m), an Acropora‘tabulate’Faviid community (20–6 m); a robust branching Acropora community (less than 6 m) and a Pavona community (less than 10m). Three high-recovery cores show the Holocene reef sequence is a maximum of 19·3 m thick and comprises four coral biofacies which are similar to counterparts identified in modern communities: robust branching, tabular-branching, robust branching-domal and foliaceous coral facies. A minimum sea-level curve for the past 7500 years was constructed. Using distribution patterns of coral biofacies and radiocarbon dates from corals, reconstruction of reef growth history indicates that both offshore and onshore reef zones were developing coevally, aggrading at rates of 4·3 mm year?1 from 6900 years B.P. The reef caught up with sea-level only after sea-level stabilized. Changes in coral community and reef growth rates were driven principally by increasing water agitation due to the decrease in accommodation space. Based on the composition of the successive coral assemblages, the reef appears to have grown through successive equilibrium stages.  相似文献   

18.
Patterns of sediment composition of Jamaican fringing reef facies   总被引:1,自引:0,他引:1  
Recent carbonate sediments from Jamaican north coast fringing reefs were collected along three parallel traverses in the vicinity of Discovery Bay. Each traverse extended from near shore across the back reef, reef crest, and fore reef to a depth of 75 m. Relative abundances of the biotic constituents vary between sites, reflecting general patterns of reef community composition. The sediment is dominated by highly comminuted coral fragments (27·1% to 63·1%), plates of the calcareous green alga Halimeda (0·4% to 38·7%), coralline algae (4·7% to 16·2%) and the encrusting foraminiferan Homotrema rubrum (0·7% to 9·5%), with lesser amounts of other taxonomic groups (non-encrusting foraminifera 1·3–5·5%; molluscs 1·4–7·0%; echinoderms 0·9–5·0%). Coral fragments, coralline algae and particles of Homotrema rubrum dominate the sediments of the shallow portions of the fore reef (5–15 m), whereas plates of Halimeda are most abundant in sediments from the back reef and deeper portions of the fore reef ( 24 m). Q-mode cluster analysis, using sediment constituent data, resulted in the delineation of four reef biofacies over the depth range of this study (1–75 m).  相似文献   

19.
During 23–30 September 1997, a rare cyclonic storm has developed close to the Andhra coast, and it has later travelled parallel to coastline northward and finally crossed the land at Chittagong (22°N, 91°E) on 27 September. While translating along the east coast of India, it has produced heavy to very heavy rainfall on the coastal stations causing devastating floods. In this study, we made an attempt to understand the salient causes of this unique cyclone movement. We have analyzed daily fields of wind and relative humidity for 850, 700, 500 hPa and mean daily OLR data to understand the plausible reasons for its movement. The buoy data deployed by National Institute of Ocean Technology, Chennai, Viz. DS5 (15°N, 81°E), DS4 (19°N, 88°E) and SW7 (20°N, 86°E) were analyzed to understand the ocean–atmosphere interaction processes in the west Bay of Bengal during formation of the system. Analysis of OLR over the cyclonic storm region has revealed that the heavy rainfall areas coincide with low OLR (120–180 W m?2). The persistent southward movement of 500 hPa ridge on the eastern wedge of the system along with the steering current at 200 hPa has helped in maintaining the movement of the system parallel to the east coast of India during its life cycle.  相似文献   

20.
In the present research, coal fly ash, a waste by-product of thermal power plant, has been segregated to obtain hollow and spherical cenospheres which combined with activated carbon in different ratio for effectual remediation of wastewater. Fabricated cenospheres activated carbon (CNAC) composites were characterized by ATR-FTIR, SEM, XRD, BET and CILAS for functionality, surface modification, crystallinity, surface area, pore volume, pore size and particle size analysis, respectively. Batch adsorption has been applied to appraised maximum removal of Disperse Orange 25 (DO) and Disperse Blue 79:1 (DB) dyes at varying solution pH 2 to 12, adsorbent dose 0.1 g cenospheres + 0.1 g AC to 1.0 g cenospheres + 1.0 g AC, dye concentration 10 to 100 mg/L, agitation speed 80 to 240 rpm and contact time 5 to 300 min at three different temperatures (25, 35 and 45 °C). The maximum percentage removal was found to be 79 and 76% for DO and DB dyes, respectively, at optimized condition. Langmuir isotherm showed good interaction with adsorption data, and the obtained maximum equilibrium adsorption capacity was found to be 90.91 mg/g for DO and 83.33 mg/g for DB at 45 °C. Eventually, the negative ?G° (? 7.513 for DO and ? 7.767 for DB) has suggested the feasibility of dyes adsorption on CNAC composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号