首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Located in the southeast of Tunisia, on the Mediterranean Sea, Jerba Island has a semiarid climate condition. The surface water scarcity has made groundwater the main source to supply the domestic, touristic, and agricultural water demand. Unconfined aquifer is a vulnerable costal aquifer system that undergoes several phenomena. This work aims at assessing the geochemical and bacteriological groundwater quality, defining groundwater pollution sources and promoting sustainable development and effective management of groundwater resources in Jerba Island. Data were collected after the wet season in 2014 from 79 wells. Electric conductivity, pH, TDS, and major and fecal tracers (total coliforms, thermotolerant coliforms, Escherichia coli, and Salmonella) were analyzed. Geochemical modeling including the relationships between geochemical tracers Na+ vs. Cl?, Ca2+ vs. Cl?, K+ vs. Cl?, representative ionic ratios (Br?/Cl?, Na+/Cl?, Mg2+/Ca2+), and statistical analysis were used to specify major process contributing to groundwater pollution and main factors controlling groundwater mineralization in the island. Groundwater varieties were hydrochemically classified into three types in terms of salinity values: group 1 (8.86%) to fresh water, group 2 (27.84%) to brackish water, and group 3 (63.29%) belongs to saline water. In addition, groundwater quality revealed high concentrations in chemical pollution tracers (Na+, Cl?, SO4 2?, and NO3 ?) and fecal tracers. Besides, most of the sampled wells were contaminated with nitrate (50.63%). Also, thermotolerant coliforms and E. coli were detected in all groundwater samples (96.2% of wells). Results indicated that the Jerba shallow aquifer was under serious threat from both natural and anthropogenic contamination. However, the wild discharge of domestic effluents, septic tanks, and sewage were the main origins of underground water contamination in Jerba Island. The reduction of fecal sources, through constructing normalized latrines is thus recommended.  相似文献   

2.
Groundwater quality in the Madinah city is increasingly endangered by expanding urbanization, industrial activities, and intensified agricultural land use. In order to investigate the pollution of Madinah groundwater resources, 32 samples have been gathered and examined for major, trace, and nutrient components. Results of groundwater characterization and groundwater quality assessment show that Na+ and Cl? are the main anion and cation in the groundwater, respectively. Depletion of HCO3 that interacts with water increases salinity. Cluster analysis and principal component analysis were applied in the current study to obtain relationship between parameters and sampling site in order to identify the factors and sources influencing groundwater quality. The CA allowed the formation of three clusters between the sampling wells reflecting differences on water quality at different locations. Four major PCs were extracted, which accounted 86.05 % variance of the original data structure. Forty-four percent of the groundwater samples have high values of NO3, due to human and agricultural activities. Four samples in the southwestern part of the study area show high content of Pb, Cd, Cr, Ni, As, and Al. This may be due to the influence of anthropogenic activities that resulted from the southwestern industrial area of Madinah. The present study illustrates explicitly the stress on groundwater quality and its vulnerability in the aquifer system.  相似文献   

3.
The purpose of this research is to evaluate the groundwater quality in Dindugal district of Tamil Nadu based on the water quality index by geographic information system (GIS) and statistical analysis. This area consists of 80 functional tanneries around Dindigul town with a capacity to process about 200 Mt of hides and skins as leather. In 13 villages, as many as 1090 houses were damaged by tannery contamination. A total of 66 groundwater samples were collected to identify the geochemical sources and contamination. The order of major cations is Na > Ca > Mg > K, while that of anions is Cl > SO4 > HCO3 > F > PO4. CaCl2, MgCl2, and (CaHCO3)2 types suggested that the mixing of high-salinity water was caused by irrigation return flow, domestic wastewater, and septic tank effluents, with existing water followed by ion exchange reactions. Moreover, Gibbs plots indicated that groundwater contamination was derived from the weathering of granitic gneisses as well as the leaching of evaporated and crystallized ions from agricultural and industrial effluents. The water quality index (WQI) exhibited 8 % of the groundwater samples were not suitable for drinking purpose. The GIS maps showed that the poor water quality decreased toward the southern part of the study area. WQI of TDS, fluoride, sodium, potassium, and bicarbonate were high in groundwater. Multivariate statistical analyses (principal component analysis (PCA), factor analysis (FA)) suggested that the groundwater chemistry was changed by the weathering of source rocks ion exchange and leaching of inorganic components and addition from anthropogenic effluents. Finally, it is thought that the monitoring and assessment works are very useful to understand the degree and sources of groundwater contamination.  相似文献   

4.
High nitrate concentrations, above the WHO guideline of 50 mg l−1, were observed in samples of shallow wells reaching the Yeumbeul suburb (Senegal) area groundwater. This groundwater is exploited by 7000 houses and therefore there are health implications. Correlations between parameters such as nitrate content (NO3) in the groundwater and soil water, the distance between shallow wells and family latrines, and soil water chloride (Cl) and colon bacillus content led to two possible sources of groundwater pollution: first, contamination by non impervious and shallow latrines; and second, the leaching of soil NO3 from waste organic matter carried in groundwater.  相似文献   

5.
The assessment of groundwater quality and its environmental implications in the region of the abandoned Cunha Baixa uranium mine (Central Portugal) was carried out from 1995 to 2004. Shallow groundwater is the major water supply source for irrigation in the neighbourhood of Cunha Baixa village. Water samples from the mine site as well as from private wells were collected in order to identify the mining impact on water composition, the extent of contamination and the seasonal and temporal groundwater quality variations. Some of the sampled private wells contain waters having low pH (<4.5–5) and high values of EC, TDS, SO4, F, Ca, Mg, Al, Mn, Ni, U, Zn and 226Ra. The wells located through the ESE–WSE groundwater flow path (1 km down gradient of the mining site) display the most contaminated water. In the summer season, the levels of SO4, Al, Mn, and U were 50–120 times higher than those registered for uncontaminated waters and exceeded the quality limits for irrigation purposes, presenting soil degradation risks. Nevertheless, this study indicates that groundwater contamination suffered a small decrease from 1999 to 2004. The bioaccumulation of toxic metals such as Al, Mn, and U within the food chain may cause a serious health hazard to the Cunha Baixa village inhabitants.  相似文献   

6.
To investigate the urban groundwater contamination by eight trace metals and 69 volatile organic compounds (VOCs) in relation to land use in Seoul, a total of 57 groundwater samples collected from wells were examined using a non-parametric statistical analysis. Land use was classified into five categories: less-developed, residential, agricultural, traffic, and industrial. A comparison of analyzed data with US EPA and Korean standards for drinking water showed that some metals and VOCs exceeded the standards in a few localities, such as Fe (N=5), Mn (N=6), Cu (N=1), TCE (N=6), PCE (N=8), 1,2-DCA (N=1), and 1,2-dichloropropane (N=1). Among the 69 investigated VOCs, 19 compounds such as some gasoline-related compounds (e.g., toluene) and chlorinated compounds (e.g., chloroform, PCE, TCE) were detected in groundwater. Non-parametric statistical analysis showed that the concentrations of most trace metals (Fe, Mn, As, Cr, Pb, Cd) and some VOCs (especially, TCE, PCE, chloroform; toluene, carbon tetrachloride, bromodichloromethane, CFC113) are significantly higher in the industrial, residential, and traffic areas (P<0.05), indicating that anthropogenic contamination of urban groundwater by those chemicals is growing. Those chemicals can be used as effective indicators of anthropogenic contamination of groundwater in urban areas and therefore a special attention is warranted for a safe water supply in those areas. The results of this study suggest that urban groundwater quality in urban areas is closely related with land use.  相似文献   

7.
Electrical resistivity methods are applied extensively for shallow sub-surface objectives but it has constraints in distinguishing the chemical characteristics of the medium. However, this complexity can be resolved by integrated investigations where geophysical anomaly would be validated with hydro-geochemical data. The present study highlights the notable importance of integrated geophysical and hydrogeological investigations in demarcating sub-surface pollution due to saline water intrusion and industrial effluents at Cuddalore coast in India. Geophysical scanning encompassing a total of 35 vertical electrical sounding (VES) were validated with drilling lithologs, water level and water quality parameters from a network of 125 observation wells at a test site of 17 km2. To understand the spatial variation of sub-surface contamination, two profiles of apparent resistivity sections were generated covering VES points parallel to the coast. Results revealed that, the low order of resistivity range 3 to 10 Ω-m (up to 30–40 m depth) and total dissolved solids range 2000 to 10,000 mg/l of groundwater reflects sub-surface contamination but cannot distinguish kind of salinity which is further verified by chemical analysis of Ca2+ (1200–2041 mg/l), SO4 2? (3000–9480 mg/l) which confirms the gypsum pollution and Na+ (750–1000 mg/l), Cl? (1000–2000 mg/l) designate the marine water contamination. Further, static groundwater head measurements demarcate the study area into above mean sea level (MSL) and below MSL zones. This study has provided a rapid and comprehensive picture about spatial variations of groundwater contamination which can help in planning, protection and safe management of coastal aquifers in India and worldwide.  相似文献   

8.
This paper deals with the importance of integrated hydrogeological, geological and geophysical applications in identifying suitable site for treatment, storage and disposal facility (TDSF) for industrial waste management. The pollution control authorities (Civic body) have a mandate to provide proper TSDF for the industrial zones. One such zone of 2800 acres, established by State Industries Promotion Corporation of Tamil Nadu (SIPCOT) at Perundurai in southern India, is selected to identify suitable TSDF site. The zone is envisaged to cater 22500 MTA (metric tones per annum) of industrial waste generated by 565 units. Hydrogeological and geological setup forms an important criterion in the process of environmental impact assessment (EIA) to establish proposed activity. Hydrogeological, geophysical and socio-economic/ecological studies were carried out to identify suitable TSDF site. Vertical electrical sounding (VES), multi-electrode resistivity imaging (MERI), ground penetrating radar (GPR) scanning, and infiltration tests were performed within the proposed TSDF site of 50 acres land. An inventory of 54 key wells includes depth to water level (varies from 9.7 to 15 m, below ground level) and water chemistry (pH, TDS, Ca2+, Mg2+, Na+, K+, Cl?, HCO 3 ? , SO 4 2? , NO 3 ? and F?) helped in identifying physical environment around (5 km radius) proposed TSDF site. Geophysical and hydrogeological investigations verified with drillings (at 5 locations) within the proposed TSDF site resulted, shallow hard rock at 4.5 m depth, the absence of groundwater, and low infiltration rate (4.3 cm/hour) of soil in the western side (45 acres) of proposed 50 acres land reveals suitability of TSDF site.  相似文献   

9.
This study examined the natural and anthropogenic pollution of groundwater at a national groundwater monitoring station (NGMS) in a dyeing industry complex, Korea. The arsenic contamination of a shallow well at the NGMS was noticed, starting from 22 months after the well installation. Possibilities of several mechanisms for As pollution of the groundwater were examined. The arsenical pyrite oxidation as a source mechanism in the shallow aquifer may be disregarded because of deficiency of pyrite in the shallow sediments, concomitant with depleted dissolved oxygen and very low levels of redox potentials of the As-polluted groundwater. The effect of wastewater from the general industrial area through a covered sewer stream was also considered as a possible source. Even though occurrence patterns of phenol and volatile organic hydrocarbons were very similar to those of the polluted shallow groundwater, As was not detected in the wastewater. One of the most plausible sources of the arsenic pollution was believed to be the reductive dissolution of Fe hydroxide. The As-polluted shallow groundwater had also very high levels of pH, HCO3, COD and very low levels of DO and NO3, which support the possibility of As pollution by the reductive dissolution. Consequently, the shallow groundwater in and around the NGMS has been polluted with various contaminants including As, phenol, chlorinated solvents, and petroleum hydrocarbons through multiple sources of contamination, such as natural reductive dissolution, dyeing wastewater, industrial wastewater, and municipal sewage.  相似文献   

10.
The Kingston Basin in Jamaica is an important hydrologic basin in terms of both domestic and industrial sector. The Kingston hydrologic basin covers an area of approximately 258 km2 of which 111 km2 underlain by an alluvium aquifer, 34 km2 by a limestone aquifer and the remainder underlain by low permeability rocks with insignificant groundwater resources. Rapid development in recent years has led to an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. A detailed knowledge of the water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To achieve this, a hydrochemical investigation was carried out in the Kingston Basin. Results showed that the water is Na–Ca–Cl–HCO3 and Na–Ca–HCO3 type with higher concentrations of nitrate, sodium and chloride as the leading causes of contamination in most of the wells. High concentrations of nitrate correlate with wells from areas of high population density and could be attributed to anthropogenic causes, mainly involving improper sewage treatment methodologies or leaking sewer lines. Jamaica, owing to its island nature, has the continuous problem of saline water intrusion, and this is reflected in the higher levels of chloride, sodium and conductivity in the water samples collected from the wells. The wells studied show higher concentrations of chloride ranging from around 10.2 mg/l in wells located approximately (4931.45 m) from the coast to around 234 mg/l in the well located near to the coast. The conductivity values also closely correlate with the chloride levels found in the wells.  相似文献   

11.
Analyses of 67 samples collected from 25 bore wells and 42 dug wells in the basaltic aquifer at Tuppa, New Nanded, Maharashtra, India over a period of three years revealed that groundwater from this region shows higher content of TDS, Cl, TH, Ca, Mg and SO4 The geochemical characteristic of groundwater is related to pollution. The source of this pollution is effluent from industries. The effluent is discharged in a stream flowing through this area. The effluent is also discharged in the injection wells. The result of this is that pollutants have entered into the aquifer system and flowed farther in the eastern direction. The zone of pollution has an aerial extent of more than 38 km2. The values of molar ratios of effluent sample are either the same or a little higher than the samples from the polluted zone, suggesting that industrial effluent, probably, is the source of pollution in this region. The people from this region have already stopped using water from these polluted wells, which forms the only source of drinking water in the area.  相似文献   

12.
High water demand for domestic use in Douala with over 3 million inhabitants is met mainly by shallow groundwater. Field measurements and water sampling in January 2015 were carried out to examine the major controls on the groundwater composition and spatial view of ions in the water, timing of recharge and link between the recharge process and quality of the water. Fifty-two water samples were analysed for major ions and stable hydrogen and oxygen isotopes. Low pH values (3.61–6.92) in the groundwater indicated an acidic aquifer; thus, prone to acidification. The dominant water type was Na–Cl. Nitrate, which exceeded the WHO guide value of 50 mg/l in 22% of the groundwater, poses a health problem. Mass ratios of Cl?/Br? in the water ranged from 54 to 3249 and scattered mostly along the mixing lines between dilute waters, septic-tank effluent and domestic sewage. A majority of the samples, especially the high NO3 ? shallow wells, clustered around the septic-tank effluent-end-member indicating high contamination by seepage from pit latrines; hence, vulnerable to pollution. Stable isotopes in the groundwater indicated its meteoric origin and rapid infiltration after rainfall. The δ18O values showed narrow ranges and overlaps in rivers, springs, open wells and boreholes. These observations depict hydraulic connectivity, good water mixing and a homogeneous aquifer system mainly receiving local direct uniform areal recharge from rainfall. The rapid and diffused recharge favours the leaching of effluent from the pit toilets into the aquifer; hence, the high NO3 ? and Cl? in shallow wells. Silicate weathering, ion exchange and leaching of waste from pit toilets are the dominant controls on the groundwater chemistry. Drilling of deep boreholes is highly recommended for good-quality water supply. However, due the hydraulic connection to the shallow aquifer, geochemical modelling of future effects of such an exploitation of the deeper aquifer should support groundwater management and be ahead of the field actions.  相似文献   

13.
The paper describes the degradation of the groundwater resources in the Cecina area, where seawater intrusion, B contamination and NO3 pollution are all affecting the heavily exploited Pleistocene aquifer. Over-pumping has brought water levels to about 0 m.a.s.l. as far as about 7 km from the shore line, thereby promoting the seawater intrusion. The intrusion, which is characterized by cation exchange phenomena and Ca–Cl type waters, enters the plain mostly through the shallower horizons. The saline front, which advanced from 0.5 to 1 km in 4 a, has by now reached the foot of the hills to the east of the town, where it is also affecting wells of the local aqueduct. Boron contamination, linked to past discharge of industrial waste transported downstream by the river, reached concentrations as high as 3.5 mg/L in the mid-1980s. Although a decreasing trend is now under way, B content is still close to 1 mg/L. The presence of high NO3, which, together with the seawater intrusion, represents a major issue for groundwater management in the area, is linked to the widespread utilization of fertilizers. Nitrate concentration, which reaches a maximum of about 300 mg/L in the shallow aquifer horizons and then decreases rather regularly with depth, is strongly influenced by precipitation. However, irrigation also contributes significantly to transporting the NO3 contamination to depth, as clearly shown by δ18O data. The severe decline in the quality of the groundwater resource in the Cecina area is further compounded by an overall decrease in water availability in the region of Tuscany, as evidenced by long-term monitoring of precipitation and fluvial discharge.  相似文献   

14.
In order to assess the impact of fluoride-rich groundwater of Shasilair Vagu watershed on groundwater regime, more than hundred groundwater samples for pre- and post-monsoon seasons were collected from bore wells/dug wells and analyzed for major ions. Water quality analysis of major ion chemistry shows elevated concentration of fluoride in groundwater samples. The fluoride concentration ranges from 1.4 to 5.9 mg/l and 1.5 to 5.8 mg/l in pre- and post-monsoons, respectively. The result clearly shows that the seasonal variation of fluoride in groundwater is due to recharge of rain water during monsoon. The water quality data was analyzed by hydrochemical facies (Piper diagram), Gibbs plot, and various plots. Plots of Na versus Cl, Ca versus SO4, and (Na+Cl)-(SO4+HCO3) versus (Na+K-Cl) shows positive and negative values, indicating that their source of high concentration are aquifer, evapotranpiration, and other anthropogenic sources. Saturation index of halite and gypsum shows that all groundwater samples were undersaturated and suggests that carbonate minerals influence the concentration. Using multivariate statistical techniques, viz., principal component (factor analysis and cluster analysis), the analysis brought out impact of intensity of excess use of fertilizers and excess withdrawal of groundwater regime. Multivariate statistical techniques are potential tools and provide greater precision for identifying contaminant parameter linkages.  相似文献   

15.
Groundwater is inherently susceptible to contamination from anthropogenic activities and remediation is very difficult and expensive. Prevention of contamination is hence critical in effective groundwater management. In this paper an attempt has been made to assess aquifer vulnerability at the Russeifa solid waste landfill. This disposal site is placed at the most important aquifer in Jordan, which is known as Amman-Wadi Sir (B2/A7). The daily-generated leachate within the landfill is about 160 m3/day and there is no system for collecting and treating this leachate. Therefore, the leachate infiltrates to groundwater and degrades the quality of the groundwater. The area is strongly vulnerable to pollution due to the presence of intensive agricultural activity, the solid waste disposal site and industries. Increasing groundwater demand makes the protection of the aquifer from pollution crucial. Physical and hydrogeological characteristics make the aquifer susceptible to pollution. The vulnerability of groundwater to contamination in the study area was quantified using the DRASTIC model. The DRASTIC model uses the following seven parameters: depth to water, recharge, aquifer media, soil media, topography, impact on vadose zone and hydraulic conductivity. The water level data were measured in the observation wells within the disposal site. The recharge is derived based on precipitation, land use and soil characteristics. The aquifer media was obtained from a geological map of the area. The topography is obtained from the Natural Resources Authority of Jordan, 1:50,000 scale topographic map. The impact on the vadose zone is defined by the soil permeability and depth to water. The hydraulic conductivity was obtained from the field pumping tests. The calculated DRASTIC index number indicates a moderate pollution potential for the study area.  相似文献   

16.
Multivariate statistical techniques including cluster analysis and principal components analysis were applied on 22 variables consisted of 3 physicochemical parameters, 8 major ions and 11 trace elements. Samples were collected from the south Rhodope multilayered coastal aquifer in north Greece which is facing saltwater intrusion and anthropogenic contamination over the last 35 years. Cluster analysis grouped the variables into five main groups while principal components analysis revealed four distinct hydrochemical processes in the aquifer system, explaining 84.5 % of the total variance between the variables. The identified processes correspond to, saltwater intrusion and subsequent reverse cation exchange, the presence of deep connate groundwater masses, application of fertilizers in shallow wells and anthropogenic contamination with heavy metals nearby an improperly constructed landfill. The wells categorized with the above techniques were grouped and five constituent ratios Na/Cl, (Mg + Ca)/Cl, Ca/(HCO3 + SO4), Ca/SO4 and Ca/Mg were utilized to identify the ones which enable the more accurate distinction between the group cases. The results of stepwise discriminant analysis showed that the calculated classification function can distinguish almost 80 % of groundwater samples with the Na/Cl ratio being the most statistically significant grouping variable. All the aforementioned statistical models managed to successfully identify numerous hydrochemical processes in a complex multilayered aquifer system and to explicitly attribute them for every investigated well, allowing a deeper insight into groundwater chemical characteristics with the use of an optimized smaller number of variables.  相似文献   

17.
Teboursouk region, Northwestern Tunisia, is characterized by the diversity of its natural resources (petroleum, groundwater and minerals). It constitutes a particular site widely studied, especially from a tectonic stand point as it exhibits a complex architecture dominated by multi-scale synclinals and Triassic extrusions. It has typical karst landform that constitutes important water resources devoted for human consumption and agriculture activities, besides to the exploitation of the Mio-Plio-Quaternary aquifer (MPQ). Thus, hydrogeological investigations play a significant role in the assessment of groundwater mineralization and the evaluation of the used water quality for different purposes. Hence, the current study based on a combined geochemical–statistical investigation of 50 groundwater samples from the multilayered aquifer system in the study area give crucial information about the principal factors and processes influencing groundwater chemistry. The chemical analysis of the water samples showed that Teboursouk groundwater is dominantly of Ca–Mg–Cl–SO4 water type with little contribution of Ca–Mg–HCO3, Na–K–Cl–SO4 and Na–K–HCO3. The total dissolved solids (TDS) values range from 0.37 to 3.58 g/l. The highest values are located near the Triassic outcrops. Furthermore, the hydrogeochemistry of the studied system was linked with various processes such as carbonates weathering, evaporites dissolution of Triassic outcrops and anthropogenic activities (nitrate contamination). Additionally, the main processes controlling Teboursouk water system were examined by means of multivariate statistical analysis (PCA and HCA) applied in this study based on 10 physicochemical parameters (TDS, pH, SO4, HCO3, pCO2, Ca, Mg, Na, K, Cl and NO3). Two principal components were extracted from PCA accounting 61% of total variance and revealing that the chemical characteristics of groundwater in the region were acquired through carbonates and evaporite dissolution besides to nitrate contamination. Similarly, according to Cluster analysis using Ward’s method and squared Euclidean distance, groundwater from the studied basin belongs to five different groups suggesting that the geochemical evolution of Teboursouk groundwater is controlled by dissolution of carbonates minerals, chemical weathering of Triassic evaporite outcrops, cation exchange and anthropogenic activities (nitrate contamination).  相似文献   

18.
Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO2) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as saline water, and nine as mixed hydrothermal fluids/meteoric water wells. The M3 mixing-model results indicated that the nine mixed wells contained between 14% and 30% hydrothermal fluids. Further, the chemical analyses show that several of these mixed-water wells have concentrations of As, F and B that exceed drinking-water standards or notification levels due to contamination by hydrothermal fluids.  相似文献   

19.
The Paluxy aquifer in north-central Texas is composed primarily of Lower Cretaceous clastics. This aquifer provides water for both domestic and agricultural purposes in the region. The study area for this investigation incorporates the outcrop and recharge areas, as well as the confined and unconfined portions of the aquifer. The purpose of this investigation is to develop a predictive modeling approach for evaluating the susceptibility of groundwater in the Paluxy aquifer to contamination, and then compare this susceptibility evaluation to water-chemistry data collected from wells completed within the aquifer. Using such an approach allows one to investigate the potential for groundwater contamination on a regional, rather than site-specific scale. Based on data from variables such as land use/land cover, soil permeability, depth to water, aquifer hydraulic conductivity and topography, subjective numerical weightings have been assigned according to each variables' relative importance in groundwater pollution susceptibility. The weights for each variable comprise a Geographic Information System (GIS) map layer. These map layers are combined to formulate the final pollution susceptibility map. Using this method of investigation, the pollution susceptibility map classifies 32% of the study area as having low pollution susceptibility, 41% as having moderate pollution susceptibility, 25% as having high pollution susceptibility, and 2% as having very high pollution susceptibility. When comparing these modeling results with water-chemistry data from wells within the Paluxy aquifer, the four wells with the highest concentration of nitrate contamination are all found within regions of very high pollution potential. This confirms the accuracy and usefulness of the predictive modeling approach for assessing aquifer pollution susceptibility. Received: 1 June 1999 · Accepted: 30 August 1999  相似文献   

20.
Application of a groundwater contamination index in Finland and Slovakia   总被引:14,自引:3,他引:11  
A methodology is presented for evaluating and mapping the degree of groundwater contamination by applying the contamination index C d . The applicability of the contamination index was tested in two distinctly different geological regions: the area between Uusikaupunki and Yläne in southwestern Finland and the Brezno area in central Slovakia. The index takes into account both the number of parameters that exceed the upper permissible concentrations of contaminants or potentially harmful elements and the part of the concentrations exceeding those values. The water-quality parameters reflect the effect of diverse natural (topographical, climatical, geological, biological) and anthropogenic (type of land use, local pollution) environmental factors on groundwater quality. In Finland, technical-aesthetic contamination was found over more than half the test area. These quality problems were most often related to acidity and high concentrations of organic carbon and Al and Fe in wells. Health-risk-based contamination, mainly caused by elevated concentrations of fluoride, radon, or nitrate, was found in only a few separate areas. In Slovakia, naturally contaminated and anthropogenically polluted groundwaters could be distinguished. The geogenic pollution is mainly derived from sulfide mineralizations. In both countries the strongest anthropogenic pollution was found in intensively cultivated areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号