首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以广东省揭阳市揭东区表层土壤B、Cu、Mn、Zn、Mo 5种元素为研究对象,在分析微量元素含量状况和分布特征的基础上,从成土母质、土地利用方式、pH值和有机质含量4个方面来分析其对土壤微量元素含量的影响。利用GIS空间分析法、SPSS数理统计法和相关分析法对揭东区土壤微量元素含量、空间分布特征和影响因素进行分析。结果显示:揭东区表层土壤B、Cu、Mn元素的平均含量分别为18.0 mg/kg、14.5 mg/kg、313 mg/kg,含量均处于缺乏水平;Zn元素的平均含量为77.3 mg/kg,总体处于较丰富水平;Mo元素的平均含量为1.31 mg/kg,含量丰富。相关分析表明B、Cu、Mn、Zn、Mo均受到成土母质和土地利用方式的影响,在粉砂岩成土母质区土壤中B和Mn含量最高,凝灰岩成土母质区土壤中Cu和Mo含量最高,Zn在第四纪沉积物中含量最高;比较各种利用方式的土壤,B、Cu在农用地中含量最高,Mn、Zn和Mo在建设用地中含量最高;土壤pH值与B、Cu、Mn、Zn含量呈极显著的正相关关系(P<0.01);土壤有机质与B、Cu、Zn含量呈极显著的正相关关系(P<0.001...  相似文献   

2.
The paper presents the results of a combined soil and vegetation survey in Ro?ia Montan? mining area (western Romania), famous for its gold and silver deposits, extensively exploited over the last 2,000 years. As the ore extraction has ceased in 2006 and new operations could be initiated in the future, the study contributes to the definition of the environmental baseline. Samples of topsoil and leaves of the tree species Betula pendula and Carpinus betulus have been collected from the inside and outside of the mining area, on a total surface of more than 60 km2. The pH and heavy metal concentrations (Cd, Cr, Cu, Ni, Pb, and Zn) have been measured on 262 soils/sediments samples, revealing the predominantly acidic character of soils and the generally low contents of heavy metals. Stronger acidity and higher contents of heavy metals have been noticed in the proximity of the mining site, on the tailings and waste rock dumps, and along the streams with acid water. More than 100 leaf samples have been analysed for the same heavy metals as soils and also for chlorophyll fluorescence and pigment concentrations. B. pendula has shown a particular ability to concentrate Zn in leaves, at levels that may greatly exceed the Zn content in the corresponding soil samples. The correlation between the heavy metal contents in leaves and in soils, in most of the cases, is not very strong, presumably in relation to the low concentrations in soils. The chlorophyll concentration in leaves of B. pendula slightly diminishes on soils with low pH.  相似文献   

3.
Industrialization, urbanization, and agricultural practices are 3 of the most important sources of metal accumulations in soils. Concentrations of Cr, Mn, Ni, Cu, Pb, Zn and Cd were determined in surface soils collected under different land uses, including urban (UR), industrial (IN-1 and IN-2), agricultural (AG), abandoned unused (AB), and natural (NA) sites to examine the influence of anthropogenic activities on metals in soils formed in a typical Mediterranean environment. The highest concentrations of Cr, Cd, and Pb observed in the NW industrial area (IN-2) were 63.7, 3.34 and 2330 mg metal kg−1 soil, for each metal, respectively. The SW industrial area (IN-1) contained the highest Zn content at 135 mg kg−1. However, soils with the highest concentrations of Ni and Cu were located in AG sites at 30.9 and 64.9 mg kg−1 soil, respectively. Sampling locations with the highest concentrations of Mn were identified in AB sites. Using the concentrations of metals at the NA sites as the baseline levels, soils collected from all other land uses in the study area exhibited significantly higher total contents of Zn, Mn, Cr and Ni. Metal enrichment was attributed to fertilizer and pesticide applications, industrial activities, and metal deposition from a high volume of vehicular traffic (for Pb and Cd). High concentrations of Mn in some samples were attributed to parent materials. The study demonstrated that anthropogenic activities associated with various land uses contribute to metal accumulation in soils and indicated a need to closely monitor land management practices to reduce human and ecological risks from environmental pollution.  相似文献   

4.
Soil development in till of various ages in northeastern Pennsylvania   总被引:1,自引:0,他引:1  
Eleven well-drained soils formed in till parent materials of varying ages in northeastern Pennsylvania were studied to determine changes in the soils with time. Four profiles (three Lackawanna and one Bath) were formed in Woodfordian till (15,000 yr B.P.), and two (Leck Kill) were formed in Altonian till (>28,000, <75,000 yr B.P.). The remaining five (Allenwood) were formed in pre-Wisconsinan till (>75,000 yr B.P.). In these soils, the extractable iron oxide, extractable aluminum oxide, and kaolinite contents increase with age, as do the total clay and fine/total clay ratio. With increasing age, the maximum accumulation of these constituents is found deeper in the profile. The extractable silicon oxide distribution is constant with depth, but it decreases in overall amount with time. Gibbsite is found only in small amounts in the A horizon of Altonian soils, but occurs throughout the profile of pre-Wisconsinan soils, although only in small amounts. In general, differences were found in these soils which separated them into three groups representing varying degrees of soil development. A regression equation was derived to predict the age of soils formed from the Altonian till based on a “clay accumulation index” value for soils of known Woodfordian and Holocene ages. The equation log Y = 1.80 + 0.992(logX) best fit the data, with an r2 value of 0.913. Using this equation, a mean age of 41,000 yr was calculated for the Altonian soils. This date was used to derive a second equation to predict ages for pre-Wisconsinan soils. The equation with the highest r2 value (0.934) was log Y = 1.81 + 0.998(logX). Dates for soils developed in the White Deer till and the Laurelton till of the pre-Wisconsinan stage were calculated to be 86,000 and 91,000 yr B.P., respectively. These dates fall within ages estimated for the Sangamon Interglaciation and thus would appear to be too young for pre-Sangamonian materials. The probable reason for the “too-young age” is that the C-horizon material of the pre-Wisconsinan soils was weathered and did not provide an accurate estimate of clay accumulation for the prediction equation.  相似文献   

5.
Thirty soil samples were analyzed for their properties and cadmium concentration in polluted and unpolluted sites of Isikwuato, Abia State, Nigeria. Polluted soils were more acidic (pH = 4.38) than unpolluted ones (pH = 5.22). Bulk density increased in polluted soils (1.51 g/cm3). Higher average value of organic matter was recorded in polluted soils (mean value = 1.42 %) unlike 0.98 % found in unpolluted soils. Cadmium concentration was higher in polluted soils (0.76 mg/kg) contrasting with 0.02 mg/kg obtained in their unpolluted counterparts. Good relationship existed between exchangeable acidity and cadmium status in polluted soils (R = 0.83, R2 = 0.77, N = 30) as opposed to values in unpolluted soils (R = 0.58, R2 = 0.49, N = 30).  相似文献   

6.
At Segura, granitic pegmatite veins with cassiterite and lepidolite, hydrothermal Sn–W quartz veins and Ba–Pb–Zn quartz veins intruded the Cambrian schist–metagraywacke complex and Hercynian granites. Cassiterite from Sn–W quartz veins is richer in Ti and poorer in Nb and Nb+Ta than cassiterite from granitic pegmatite. Wolframite from Sn–W quartz veins is enriched in ferberite component. The Sn–W quartz veins contain pyrrhotite, arsenopyrite, sphalerite, chalcopyrite, stannite, matildite and schapbachite and the Ba–Pb–Zn quartz veins have cobaltite, pyrite, sphalerite, chalcopyrite, galena and barite, which were analyzed by electron microprobe. The presently abandoned mining area was exploited for Sn, W, Ba and Pb until 1953. Stream sediments and soils have higher concentrations of metals than parent granites and schists. Sn, W, B, As and Cu anomalies found in stream sediments and soils are associated with Sn–W quartz veins, while Ba, Pb and Zn anomalies in stream sediments and soils are related to Ba–Pb–Zn quartz veins. Sn, W, B, As, Cu, Ba, Pb and Zn anomalies in stream sediments and soils are also related to the respective old mining activities, which increased the mobility of trace metals from mineralized veins to soils, stream sediments and waters. Stream sediments and soils are sinks of trace elements, which depend on their contents in mineralized veins and weathering processes, but Sn, W and B depend mainly on a mechanic process. Soils must not be used for agriculture and human residence due to their Sn, B, As and Ba contents. Waters associated with mineralized veins were analyzed by flame atomic absorption spectroscopy (FAAS) and ICP-AES have high As, Fe and Mn and should not be used for human consumption and agriculture activities. The highest As values in waters were all related to Sn–W quartz veins and the highest Fe and Mn values were associated with the Ba–Pb–Zn quartz veins. No significant acid drainage was found associated with the old mine workings.  相似文献   

7.
《Applied Geochemistry》2002,17(9):1209-1218
Acid sulphate soils, common in the coastal areas of Finland, contribute strongly to high acid, S and metal loadings on adjacent surface waters. This, in turn, is causing significant harm to the aquatic ecology. There is, however, limited knowledge on the total amounts of acidity and chemical elements leached from these soils. The overall objective of this study was to determine geochemical patterns in acid sulphate soils and their parent sediments and, based on the identified patterns assess the extent, mechanisms and present state of leaching of major and trace elements from these soils. The distribution of pH, aqua regia extractable concentrations of P and metals (Al, Ba, Ca, Co, Cr, Cu, Fe, K, La, Mg, Mn, Na, Ni, Sr, Th, Ti, V, Zn) and total concentrations of S and C were determined in 30 vertical profiles collected in the 23 km2 large Rintala agricultural area (mid-western Finland) underlain largely with S-rich sediments. It was found that approximately 70% of the area consists of acid sulphate soils with a minimum pH<4.0, an average depth of 1.8 m, and S concentrations in the parent sediments varying from 0.24 to 1.04%. Acid sulphate soils have not developed where the S concentrations in the sediments are ⩽0.10% or where the concentrations of organic C in the soil zones are >4%. Four different methods were used to estimate the losses of chemical elements from the acid sulphate soils: (1) the concentrations in the soil were compared with those in the parent sediments, (2) due to indicated heterogeneities in several profiles, the vertical changes of the immobile Ti was used to re-calculate element losses, (3) element depletions in the acid sulphate soils (as compared to those in the parent sediments) were compared to the corresponding depletions in the non acid sulphate soils, (4) element concentrations in drainage waters were compared with those in the parent sediments. Based on these calculations, it was assessed that the percentual leaching of the aqua regia extractable fraction (total for S) has been as follows: S (40–50%), Na (30–50%), Mn (25–35%), Sr (15–20%), Ca–Ni–Co (approximately 10%), Mg–K–Zn (5–10%), Th–La–Cu–Al–P–Ti–Fe (<5%), and Ba–Cr–V (<1%). While it was possible to quite accurately estimate the percentages and thus the amounts of elements lost, it was not possible to estimate the rate of leaching as there is no available detailed information on dates when ditching activities and thus oxidation-acidification processes started. Other calculations indicated that the mobile S reservoir is still some 15 ton/hectare, which is huge but still smaller than the losses that have occurred since the area was drained (23–28 ton/hectare).  相似文献   

8.
This paper describes the concentrations of heavy metals in soils and in raisins (sultanas) cultivated upon the Gediz Plain (Manisa), western Turkey, which is cut by major roads from ?zmir to ?stanbul and ?zmir to Ankara. A total of 212 samples of surface soil and 82 raisin samples were analysed. Soil samples have nearly same mineralogy, quartz, calcite, magnetite, pseudo-rutile and clay minerals. Dolomite is seen especially in areas close to Neogene sediments. Clay minerals are mainly mica (illite?Cmuscovite), chlorite/kaolinite, smectite and mixed layers (Sm-Il). The concentrations of 21 elements (Ba, Ni, Mo, Cu, Pb, Zn, Co, Mn, As, U, Sr, Cd, Sb, Bi, Cr, B, W, Hg, Sn, Li and organic C) were determined in the surface soils. The degree of element enrichment in soil can be measured in many ways, the most common of which are the geoaccumulation index (Igeo), enrichment factor and the pollution index. Arsenic and Sb showed the highest Igeo values, corresponding to Igeo classes 3?C4. Hence, the area is characterised as ??being heavily contaminated to polluted?? by As and Sb. Arsenic contamination has been reported from all over world. Arsenic-related pollutants enter the groundwater system by gradually moving with the flow of groundwater from rains and irrigation. Gediz Plain forms the main groundwater supply of ?zmir city. The enrichment factor (EFarsenic) of the analysed soil samples is around 76, which corresponds to ??extremely high enrichment??. The concentrations of 33 elements (Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li, Mg, Mn, Hg, Mo, Ni, K, Se, Ag, Na, Sr, Ta, Th, Sn, Ti, U, V, Zn and Zr) were determined in the raisin samples. The Pb and Cd contents of raisins are of great concern due to their toxicity. Pb contents ranged between 0.05 and 0.46?mg?kg?1, and average Cd content was 0.04?mg?kg?1. Only one sample contained high level of Cd, 0.23?mg?kg?1. After cleaning the raisins, the heavy metal concentrations were low as in the European Community (EC) regulation No: 466/2001 for allowable levels of Pb (0.2?mg?kg?1) and Cd (0.05?mg?kg?1).  相似文献   

9.
广西南流江流域第四系发育形成的土壤中Cd等重金属含量较低,但水稻籽实Cd超标率很高。为了查清Cd在南流江流域土壤-水稻系统中的分布和迁移规律及其生物有效性的影响因素,按照不同成土母质物源分区,系统采集了水稻及其对应的根系土样品,测试了水稻籽实Cd、土壤Cd、pH、Corg、N、S、Mn及氧化物等指标,部分土壤样品进行了七步顺序提取法实验。结果表明,不同母质根系土Cd总量大小顺序为碳酸盐岩区>水系上游第四系区>水系中游第四系区>水系下游第四系区>碎屑岩区,而水稻籽实中Cd含量顺序却基本相反,两者之间不具有明显相关性(r=-0.030,p=0.84 )。形态数据显示,水溶态Cd与籽实Cd相关性较好,能够较好指示研究区Cd的生物有效性,同时,土壤水溶态Cd占比受土壤pH、土壤CaO、Mn、有机碳(Corg)等土壤指标的控制。  相似文献   

10.
山东五莲县地质背景与浅层土壤地球化学特征   总被引:1,自引:0,他引:1  
王申 《物探与化探》2007,31(4):377-381
五莲县为山区县,主要发育棕壤土类和褐土土类,土壤中元素的含量受土壤母岩和母质的控制。笔者对土壤中元素的全量和有效态含量特征进行了分析,对土壤的营养水平进行了评价。研究区土壤中元素含量以高Fe、Mn、Cu.Zn,低Ca,S、B为特征,有益元素Se含量较高,土壤总体供肥能力较强,适宜特色农业和果品生产。  相似文献   

11.
《Applied Geochemistry》1994,9(2):127-139
A regional survey of podzol B horizons has been carried out to investigate the effects of parent material and soil texture on sulphate (SO42−) adsorption capacity and pH in Scottish soils. Sulphate adsorption was measured on equilibration of the soils with 10 and 100 mg 1−1 SO42− solutions. The results showed that soil texture and soil parent material had a significant effect on SO42− adsorption. Significant correlations were found between sulphur (S) deposition loads and SO42− adsorption, and between precipitation pH and soil pH, but not between total hydrogen ion (H+) load and soil pH, even on sensitive soils. Relationships between the chemical composition of atmospheric deposition and soil pH could be marginally improved if the possible amelioration of acidification by base cation inputs, especially on sensitive soils, was taken into account.  相似文献   

12.
黑龙江省主要类型土壤中微量元素含量的垂向分异研究   总被引:4,自引:2,他引:4  
蔡晶  柴社立  陆继龙 《世界地质》2002,21(4):364-367,396
黑龙江省主要类型土壤中微量元素在剖面中的变化趋势是不同的,这与不同类型土壤的成土母质、成土条件、土壤有机质和土壤中粘粒含量等有关。各种类型土壤表层中微量元素Fe、Mn、Zn、Cu、Co的有效量均大于其有效态临界值,并且Cu、Zn、Mn全量与有效量之间呈明显的相关关系。  相似文献   

13.
Arsenic is a non-essential element that poses risks in many environments, including soil, groundwater, and surface water. Insights into the environmental biogeochemistry of As can be gained by comparing As and P reaction processes. Arsenic and P are chemical analogues, and it is proposed that they have similar chemical behaviors in environmental systems. However some chemical properties of As and P are distinct, such as redox reactions, causing the biogeochemical behavior of the two elements to differ. In the environment, As occurs as either As(V) or As(III) oxyanions (e.g., AsO43? or AsO33?). In contrast, P occurs predominantly as oxidation state five plus; most commonly as the orthophosphate ion (PO43?). In this paper, data from four published case studies are presented with a focus on P and As distribution and speciation in soil. The goal is show how analyzing P chemistry in soils can provide greater insights into As reaction processes in soils. The case studies discussed include: (1) soil developed from shale parent material, (2) mine-waste impacted wetland soils, (3) phosphate-amended contaminated soil, and (4) plants grown in biochar-amended, mine-contaminated soil. Data show that while P and As have competitive reactions in soils, in most natural systems they have distinct biogeochemical processes that create differing mobility and bioavailability. These processes include redox reactions and rhizosphere processes that affect As bioavailability. Results from these case studies are used as examples to illustrate how studying P and As together allows for enhanced interpretation of As biogeochemical processes in soils.  相似文献   

14.
文章利用海南岛SOTER数据库及自动土地评价模型ALES评价结果,对海南岛4种主要母岩上发育的土壤类型、土壤性质及香蕉种植适宜性与母质的关系进行了分析。海南岛不同母岩上土壤类型的发育呈现多样性,土壤类型的分布明显受到母岩类型、成土年龄、成土环境等因素的影响。酸性火成岩上主要发育有雏形土和富铁土,基性岩上则主要是发育良好的铁铝土,碎屑岩上主要是雏形土,而海相沉积物由于土壤形成时间的差异出现了多样的土壤类型。在海南岛湿热的气候条件下,原生母岩上发育的土壤,尽管成土母岩成分各不相同,但一些土壤性质已经没有明显差别,如交换性钙、镁、钠等,部分土壤化学性质如交换性钾的含量继承了母岩特性。各种母岩上发育的土壤,在自然条件下,适宜香蕉种植的比例都很低,但基性火成岩和海积物上发育的土壤,更容易受到人为管理措施的影响,如果满足一定的技术和经济投入,海南岛热带作物的种植潜力可以得到进一步的挖掘。  相似文献   

15.
某矿区土壤重金属分布特征及来源解析   总被引:1,自引:0,他引:1  
为探究赣南某矿区土壤重金属污染状况及来源,以该矿区内40个土壤样品为研究对象,分析了土壤中Cu、Pb、Zn、Cr、Ni、Cd、As和Hg等8种重金属元素的含量,并采用频率直方图、相关性分析、主成分分析等多种统计方法探究了土壤重金属含量的分布特征及来源。研究结果表明:(1)研究区8种重金属中有7种不同程度地超过了江西省土壤重金属元素背景值;(2)Pb、Zn、As和Hg的含量接近正态分布,而Cu、Cr、Ni和Cd的含量则呈现出右偏分布的趋势,这可能与研究区矿山开采活动及土地利用类型等因素有关;(3)矿区土壤重金属相关性分析表明,Cu、Cr、Ni的同源性较高,可能具有相同的污染源,而Pb、Zn、Cd等元素与Cu、Cr、Ni相比,其来源可能存在一定的差异;(4)主成分分析结果显示,矿区内土壤中8种重金属元素含量可以由2个主成分来解释,所代表的实际意义按贡献率排序分别是成土母质和人为采矿活动;(5)矿区内土壤重金属污染物主要为Pb、Zn、Cd,人为采矿活动是这三种重金属污染的主要来源。  相似文献   

16.
The geological, geochemical, and isotopic-geochronological data obtained for Sumian moderate-basic metavolcanites of Shombozero and Lekhta structures of the Panayarvi-Vygozero belt shows that the Tunguda Formation is confined to the Paleoproterozoic structural and material complex. This formation is represented by the complex of weakly differentiated andesitobasalts and andesites of calc-alkaline series with higher contents of MgO and moderate contents of Al2O3 and rare earth elements. The rocks of the Tunguda Formation are different from the Late Archean basic rocks of the Hiziyarvi Formation represented mainly by tholeiitic basalts with low REE contents and undifferentiated spectrum of REE distribution. The age of volcanites of the Tunguda Formation was determined to be 2439 ± 21 Ma. The xenogenic zircons from metaandesites of the Tunguda Formation have Neoarchean age according to the 207Pb/206Pb ratio (from 2536 ± 4 to 2825 ± 7 Ma). The Neoarchean zircons, a negative value of ?Nd (?3.8), and indicative geochemical parameters are evidence that the crustal component took part in formation of the protolith of the studied rocks.  相似文献   

17.
The Nanmushu Zn‐Pb deposit, hosted by the Neoproterozoic Dengying Formation dolostone, is located in the eastern part of the Micangshan tectonic belt at the northern margin of the Yangtze Craton, China. This study involves a systematic field investigation, detailed mineralogical study, and Rb‐Sr and Pb isotopic analyses of the deposit. The results of Rb‐Sr isotopic dating of coexisting sphalerite and galena yield an isochron age of 486.7 ± 3.1 Ma, indicating the deposit was formed during the Late Cambrian to Early Ordovician. This mineralization age is interpreted to be related to the timing of destruction of the paleo‐oil reservoir in the Micangshan tectonic belt. All initial 87Sr/86Sr ratios of sphalerite and galena (0.70955–0.71212) fall into the range of the Mesoproterozoic Huodiya Group basement rocks (0.70877–0.71997) and Dengying Formation sandstone (0.70927–0.71282), which are significantly higher than those of Cambrian Guojiaba Formation limestone (0.70750–0.70980), Cambrian Guojiaba Formation carbonaceous slate (0.70766–0.71012), and Neoproterozoic Dengying Formation dolostone (0.70835–0.70876). Such Sr isotope signatures suggest that the ore strontium was mainly derived from a mixed source, and both of the Huodiya Group basement rocks and Dengying Formation sandstone were involved in ore formation. Both sphalerite and galena are characterized by an upper‐crustal source of lead (206Pb/204Pb = 17.849–18.022, 207Pb/204Pb = 15.604–15.809, and 208Pb/204Pb = 37.735–38.402), and their Pb isotopes are higher than, but partly overlap with, those of the Huodiya Group basement rocks, but differ from those of the Guojiaba and Dengying Formations. This suggests that the lead also originated from a mixed source, and the Huodiya Group basement rocks played a significant role. The Sr and Pb isotopic results suggest that the Huodiya Group basement rocks were one of the most important sources of metallogenic material. The geological and geochemical characteristics show that the Nanmushu Zn‐Pb deposit is similar to typical Mississippi Valley type, and the fluid mixing may be a reasonable metallogenic mechanism for Nanmushu Zn‐Pb deposit.  相似文献   

18.
An extensive zone of molybdenite concentration occurs in the north part of a small (5.7 km2) epizonal pluton of equigranular to porphyritic granodiorite-quartz monzonite that intrudes Early Precambrian mafic metavolcanics and metasediments at Setting Net Lake in northwestern Ontario. Within an east-trending mineralized zone up to 460 m wide and 2500 m long, widespread molybdenite occurs along the margins of narrow, variably spaced quartz veins filling joints in the stock, and as minor disseminated mineralization throughout the granodiorite-quartz monzonite. The zone also contains minor chalcopyrite. The study area is typical of extensive poorly-drained, low relief regions of northwestern Quebec, northern Ontario and central Manitoba that are covered by transported Quaternary deposits of glacial till and calcareous lake clay.Average metal abundances in plutonic rocks of the Setting Net Lake stock are (in p.p.m.): Cu - 8, Mo - 1.7, Zn - 30, Mn - 277 in the barren south half of the stock, and Cu - 61, Mo - 26, Zn - 30, Mn - 240 in the mineralized north half of the stock.Molybdenum concentrations range from 1 p.p.m. to 80 p.p.m. in soils and from 2 p.p.m. to 71 p.p.m. in the ash of second year black spruce needles. Anomaly patterns can be explained in terms of pH-solubility relationships in a wide range of Eh-pH environments and it is apparent that Mo uptake by coniferous vegetation is controlled mainly by Mo concentration and mobility in supporting soils.Copper concentrations range from 3 p.p.m. to 311 p.p.m. in soils and from 32 p.p.m. to 322 p.p.m. in the ash of second year black spruce needles. Anomalous copper levels in soil extend into areas of high pH soils developed on calcareous parent material. Copper anomaly contrast is limited to 3/1 in vegetation growing in soil containing as much as 30 times background levels of copper and for this reason, it is suggested that Cu uptake by coniferous vegetation is controlled mainly by the specific biochemical requirement of the plant for this metal.  相似文献   

19.
Consuming edible plants contaminated by heavy metals transferred from soil is an important pathway for human exposure to environmental contaminants. In the past several decades, heavy metal accumulation in contaminated soil has been widely studied; however, few researches investigated the background levels of metals in plants and evaluated the difference in plants grown in soils produced from different parent rocks. In this study, a systemic survey of heavy metal distribution and accumulation in the soil–pepper system was investigated in an unpolluted area, Hainan Island, China. Levels of Cu, Pb, Zn and Cd were measured in soils and pepper fruits from five representative pepper-growing areas with different soil parent rocks (i.e. basalt, granite, sedimentary rock, metamorphic rock and alluvial deposits). Average concentrations of Cu, Pb, Zn and Cd in pepper fruits were 11.52, 0.84, 8.77 and 0.05 mg/kg, respectively. The concentrations of heavy metals in soils are controlled by the parent materials and varied greatly from in different areas. Heavy metal contents in all pepper samples were lower than the Chinese maximum contaminant levels. The relationship between heavy metals in soils and biological absorption coefficient (BAC) of pepper fruits suggests that the uptake ability of pepper for soil metals depends mainly on the physiological mechanism, while in some cases, the soil types and supergene environment are also important.  相似文献   

20.
通过对济阳县生态地球化学调查研究,该区受成土母质来源、土壤类型、地形地貌及其理化性质等因素影响,土壤元素全量、有效量及有效度表现为:低平洼地土壤中K,P,N,Se,Mn,Fe,Zn,Cu和Mo全量较高,P,N,Se和Cu有效量较高,显示为低平洼地为黏质成分的沉积成因特点;而决口扇形地区土壤Cu,Mo,N,Zn,B有效量和全量均偏低。富含有机质,且pH相对较低的潮土中Se,Cu,Mo和B等元素有效度较高,贫有机质、pH相对较高的草甸风沙土中N,Fe,Cu,Mo,B和S等元素有效量较低,但K有效量和有效度均较高。统计分析表明,土壤中K,P,N,S和Cu等元素全量与有效量间具显著正相关性,表明全量是有效量的重要影响控制因素;有机质含量与K,P,Zn,Cu和B有效度间为显著正相关,说明有机质较高有利于土壤元素活化;Fe,P,S,Zn,B和Cu有效度与pH值为显著负相关,表明土壤酸性增强会增加这类元素的生物有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号