首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article presents new geochronological and isotope-geochemical data on ultramafic–mafic rocks of the banded complex of the Dzhida zone of the Caledonides ophiolite association.  相似文献   

2.
The development of Early Cretaceous mafic dikes in northern and southern Jiangxi allows an understanding of the geodynamic setting and characteristics of the mantle in southeast China in the Cretaceous. Geological and geochemical characteristics for the mafic dikes from the Wushan copper deposit and No. 640 uranium deposit are given in order to constrain the nature of source mantle, genesis and tectonic implications. According to the mineral composition,the mafic dikes in northern Jiangxi can be divided into spessartite and olive odinite types, which belong to slightly potassium-rich calc-alkaline lamprophyre characterized by enrichment in large ion lithophile elements (LILE) and light rare earth elements (LREE), large depletion in high strength field elements (HSFE) and with negative Nb, Ta and Ti anomalies, as well as 87Sr/86Sr ratios varying from 0.7055 to 0.7095 and 143Nd/r44Nd ratios varying from 0.5119 to 0.5122.All features indicate that the magma responsible for the mafic dikes was derived mainly from metasomatic lithosphere mantle related to dehydration and/or upper crust melting during subduction. Differences in geochemical characteristics between the mafic dikes in northern Jiangxi and the Dajishan area, southern Jiangxi were also studied and they are attributed to differences in regional lithospheric mantle components and/or magma emplacement depth. Combining geological and geochemical characteristics with regional geological history, we argue that southeast China was dominated by an extensional tectonic setting in the Early Cretaceous, and the nature of the mantle source area was related to enrichment induced by asthenosphere upwelling and infiltration of upper crust-derived fluids responding to Pacific Plate subduction.  相似文献   

3.
The near-bottom part of the Yoko-Dovyren layered ultramafic-mafic intrusion host the Baikal deposit of Cu–Ni sulfide ores with Pt–Pd mineralization, whereas horizons and pockets of low sulfide ores with Pt–Pd mineralization occur at higher stratigraphic levels, including the boundary between strata of troctolite and gabbronorite, within these rocks, as well as in strata of peridotite at the lower part of the intrusion. This paper represents a new (for the Yoko-Dovyren intrusion) type of “refractory IPGE-mineralization” discovered in the lower peridotite ranging from two-pyroxene-plagioclase-bearing lherzolite. This mineralization occurs in thin intercalations of plagioclase lherzolite containing as much as 7% of alumochromite, up to 50 ppb Ru, 15 ppb Ir, and 60 ppb Pt. Crystals of cumulate alumochromite with 0.2–0.8 wt % TiO2 contain hexagonal plates of Ir-osmium up to 5 m in size. Crystals of cumulate alumochromite with 1.2–2.8 wt % TiO2 host pentagonal dodecahedrons of laurite up to 4 m in size. One of the alumochromite crystals with an inclusion of Os-poor laurite was found inside a crystal of cumulate olivine Fo86. Intergrowth of laurite and Ir-osmium enclosed in alumochromite with 1.1% TiO2 was observed in one case. Laurite from Yoko-Dovyren contains 93–66%, predominantly 92–82%, RuS2 endmember (n = 10); 3–20, predominantly 5–12%, OsS2 endmember; 4–5% IrS2 endmember; and up to 0.7% Pd and 0.5% Au. Ir-osmium is divided into two groups by composition. The first group is enriched in Os (58–73 wt %, on average 64 wt %) and Ru (3–8 wt %, on average 5 wt %), contains 24–34 wt % Ir (n = 4), up to 1.4 wt % Au, and no Pt. Compositions of the second group have 57–58 wt % Os, 27–30 wt % Ir, 1.5–5.5 wt % Ru, approximately 10 wt % Pt (n = 3), and up to 0.2 wt % Pd. The Cr# and Fe2+/(Fe2+ + Mg) values, which range within 58–69 and 61–72, respectively, are identical in alumochromite with both enclosed laurite and Ir-osmium. Alumochromite, relatively enriched in Ti, crystallized slightly later, suggesting later crystallization for hosted laurite. Occurrence of Ir-osmium seems to indicate a picritic magma undersaturated with sulfide sulfur during bulk crystallization of alumochromite Judging from the diagram from (Brennan and Andrews, 2001), intergrowths of laurite and Ir-osmium, evidence that their probable crystallization temperature did not exceed 1250°C. The presence of own minerals of Ru, Os, Ir in the rocks, containing the first ppb of these PGE shows startling degree of magmatic differentiation. In the matrix of plagioclase lherzolites, containing laurite and Ir-osmium, in association with phlogopite, pargasite, pentlandite, troilite and chalcopyrite there were found the smallest crystals of geversite, sperrilite, insizwaite, niggliite, naldrettite, zvyagintsevite, in association with serpentine and chlorite–native platinum, Pd-platinum, osarsite, irarsite, platarsite.  相似文献   

4.
In the Ospin–Kitoi ultramafic massif of the Eastern Sayan, accessory and ore Cr-spinel are mainly represented by alumochromite and chromite. Copper–nickel mineralization hosted in serpentinized ultramafic rocks occurs as separate grains of pentlandite and pyrrhotite, as well as assemblages of (i) hexagonal pyrrhotite + pentlandite + chalcopyrite and (ii) monoclinal pyrrhotite + pentlandite + chalcopyrite. Copper mineralization in rodingite is presented by bornite, chalcopyrite, and covellite. Talc–breunnerite–quartz and muscovite–breunnerite–quartz listvenite contains abundant sulfide and sulfoarsenide mineralization: pyrite, gersdorffite, sphalerite, Ag–Bi and Bi-galena, millerite, and kuestelite. Noble metal mineralization is represented by Ru–Ir–Os alloy, sulfides, and sulfoarsenides of these metals, Au–Cu–Ag alloys in chromitite, laurite intergrowth, an unnamed mineral with a composition of Cu3Pt, orcelite in carbonized serpentinite, and sperrylite and electrum in serpentinite. Sulfide mineralization formed at the late magmatic stage of the origination of intrusion and due to fluid–metamorphic and retrograde metasomatism of primary rocks.  相似文献   

5.
The Changning–Menglian Belt represents the main Paleo-Tethyan Suture in the southeastern Tibetan Plateau, which divides Gondwana- and Eurasia-derived continental fragments from each other. The belt contains ultramafic–mafic volcanic rocks that provide evidence of the tectonic processes which operated during the evolution of the Paleo-Tethyan Ocean. New geochemical data for Early Carboniferous volcanics in the southern Changning–Menglian Belt show that wehrlites have cumulate and poikilitic textures, and contain low-Fo (84.2–87.2) olivine, clinopyroxene with low Mg# values (79.4–85.6), and spinel with high Cr# values (67.8–72.4). Estimated equilibrium temperatures obtained using olivine-spinel Fe-Mg exchange geothermometry range from 978°C to 1373°C (mean = 1205°C; n = 3). These observations combined with a lack of reaction or melt impregnation textures indicate that these units represent magmatic cumulates rather than having formed as a result of mantle-melt reactions. Both wehrlites and basalts in the belt have subparallel rare earth element (REE)-and primitive-mantle-normalized multi-element patterns with slightly positive Nb-Ta anomalies, but negligible Eu and Zr-Hf anomalies. The volcanics have similar Sr-Nd-Pb isotopic compositions with εNd(t) values of 4.2–4.5 (mean = 4.3; n = 3) and 4.0–4.4 (mean 4.2; n = 4), respectively, and also have similar immobile element ratios, such as Nb/La, Nb/U, Th/La, Zr/Nb, Th/Ta, La/Yb, Nb/Th, Nb/Y, and Zr/Y. These characteristics indicate both units have ocean island basalt (OIB)-like geochemical affinities, consistent with the fact that the clinopyroxene in the wehrlites is compositionally similar to OIB-related cumulus clinopyroxene. This suggests that both the wehrlites and basalts were derived from similar parental magmas that underwent generally closed-system magmatic differentiation dominated by fractionation of the olivine and clinopyroxene. This parental magma was likely generated in an oceanic seamount setting from an OIB-type mantle source (i.e., asthenospheric mantle) containing garnet-spinel lherzolite material. Combing this new data with that from oceanic seamount volcano-sedimentary suites derived from previous research enables the identification of a mature late Paleozoic ocean basin between the passive northeastern Gondwanan margin and the northward-migrating microcontinent of Lanping–Simao.  相似文献   

6.
Cu–Au mineralization is rare in the Jurassic–Early Tertiary batholiths related to the India–Asia collision. Geochemical analysis and U–Pb isotope chronology was carried out on Shuangbujiere biotite hornblende granodiorite from the Zedong area. Zircon grains of the biotite hornblende granodiorite show oscillatory growth zonation and have high Th/U ratios of 1.08–2.39, indicating a magmatic origin for the zircons. Geochrological test yielded a LA-ICP-MS U-Pb age of 51.5±1.0 Ma, suggesting that the emplacement age of the biotite hornblende granodiorite is Early Eocene. The Shuangbujiere biotite hornblende granodiorites have geochemical features characteristic of adakite and are associated with a calc–alkaline metaluminous I-type granite enriched in Sr, high in Mg~#(49.6–54.9) and Sr/Y, and depleted in Y and Yb. These results indicate that this intrusion formation may have been associated with crustal thickening caused by the early collision of the Indian and Eurasian Plates. As the process of crustal thickening continued, the heating of the underplated basaltic magma caused the thickened lower crust amphibolite to dehydrate the melt and form a high-K calc–alkaline adakitic melt at about 848°C. Meanwhile, magma mixing of the underplated basaltic melt and high-K calc–alkaline adakitic melt formed a high-Mg# adakite representative of the sys-collisional tectonic setting.  相似文献   

7.
The authors measured Pb isotope compositions of seven USGS rock reference standards, i.e. AGV-1, AGV-2, BHVO-1, BHVO-2, BCR-2, BER-1/1 and W-2, together with NBS 981 using a micromass isoprobe multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) at the University of Queensland. 203Tl-205Tl isotopes were used as an internal standard to correct for mass-dependant isotopic fractionation. The results for both NBS 981 and USGS rock standards AGV-1 and BHVO-1 are comparable to or better than double- and triple-spike TIMS (thermal ionization mass spectrometry) data in precision. The data for BHVO-2 and, to a lesser extent, AGV-2 and BCR-2 are reproducibly higher for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb than double-spike TIMS data in the literature. The authors also obtained the Pb isotope data for BIR-1/1 and W-2, which may be used as reference values in future studies. It is found that linear correction for Pb isotopic fractionation is adequate with the results identical to those corre  相似文献   

8.
正Tectonic evolution and paleogeography of the two major continental blocks Fennoscandia and VolgoSarmatia during their docking to form the East European Craton(Baltica)at 1.8–1.7 Ga represent important‘puzzle  相似文献   

9.
Saturated hydrocarbon biomarkers were studied in bitumens from organic matter (OM) in the Lower and Middle Cambrian Kuonamka Complex in the Lena–Amga interfluve of East Siberia. Their contents and distribution were analyzed. It was established that OM of siliceous and carbonate rocks from the lower part of the sequence differs from OM of overlying mainly mixed siliceous–carbonate rocks in terms of distribution of alkanes, steranes, tricyclanes, hopanes, and ratios of their homologs. It was concluded that the peculiarities of molecular composition of OM in the rocks are related to the biochemistry of microorganism communities, the remains of which were accumulated in sediments of Cambrian sea. It is possible that the microbiota changed its composition in response to a sharp change of sedimentation settings, which follows from biomarker proxies. It is suggested that sediments in the lower part of the sequence were formed under conditions of H2S contamination. Catagenesis of OM and contribution of the Lower and Middle Cambrian potentially oil-generating rocks in naphthide generation on the northern slope of the Aldan anteclise are discussed.  相似文献   

10.
The study of Late Cretaceous magmatic rocks, developed as a result of magmatism and related porphyry mineralization in the northern Lhasa block, is of significance for understanding the associated tectonic setting and mineralization. This paper reports zircon chronology, zircon Hf isotope data, whole-rock Sr–Nd isotope data, and geochemistry data of Balazha porphyry ores in the northern Lhasa block. Geochemical features show that Balazha ore-bearing porphyries in the northern Lhasa block belong to high-Mg# adakitic rocks with a formation age of ~90 Ma; this is consistent with the Late Cretaceous magmatic activity that occurred at around 90 Ma in the region. The age of adakitic rocks is similar to the molybdenite Re–Os model age of the ore-bearing porphyries in the northern Lhasa block, indicating that the diagenesis and mineralization of both occurred during the same magmatism event in the Late Cretaceous. The Hf and Sr–Nd isotope data indicate that these magmatic rocks are the product of crust–mantle mixing. Differing proportions of materials involved in such an event form different types of medium-acid rocks, including ore-bearing porphyries. Based on regional studies, it has been proposed that Late Cretaceous magmatism and porphyry mineralization in the northern Lhasa block occurred during collision between the Lhasa and Qiangtang blocks.  相似文献   

11.
The Alto Paranaiba alkaline province (~82 Ma), tectonically associated with a NW-trending linear structure bordering the São Francisco craton, consists of a wide variety of igneous forms and magma types. It includes several alkaline-carbonatite complexes, some of which are quite important economically.

The Salitre complex is represented by two interconnected oval-shaped bodies, N-S-aligned and variable in size, emplaced into Proterozoic metasedimentary rocks. It consists mainly of syenites showing clear evidence of fenitization, ultramafic rocks (clinopyroxenites, mica-bearing clinopyroxenites, locally referred to as bebedourites, dunites, glimmerites, and per-ovskitites), radial dikes of trachytes/tinguaites, and carbonatites as small veins and also forming an elongated plug, approximately 500 m2 in area, associated with the Salitre I intrusion. In a few cases the carbonatitic rocks grade into phoscorites because of an increase in magnetite content. Texturally, the ultramafites are described as adcumulates, but meso- and orthocumulate rock types also are found. Clinopyroxene, olivine, phlogopite, perovskite, and apatite represent the main cumulus phases, sphene being less common. Intercumulus material consists of the same minerals in addition to melanite. Fresh rocks are rarely present at the surface; thus the entire set of data derives almost entirely from borehole samples.

Incompatible-element distributions normalized to primordial mantle for the different ultramafic rock types exhibit many similarities, showing patterns clearly dominated by the abundance of perovskite and phlogopite. Syenitic rocks and carbonatites generally are less enriched than the cumulates.

Distribution patterns of REE display LREE enrichment and strong LREE/HREE fractionation typical of alkaline suites; higher REE concentrations are related to the perovskitic rocks.

Smooth, almost linear patterns are indicated for all the rock types excluding the syenites (which show a characteristic U-shaped distribution curve, probably the result of the removal of sphene and amphibole). It should also be noted that the dunitic rocks in general are more fractionated than the clinopyroxenitic ones.

On the basis of texture and mineralogy, the Salitre ultramafites are interpreted as being formed by accumulative processes. No distinctive layering is evident in the rocks at the borehole scale. The crystallization sequence of the main rock-forming minerals of the ultramafites shows perovskite and opaques (Cr-spinel) as early phases, followed by olivine, clinopyroxene, and finally phlogopite; the last mineral is clearly a two-generation phase, the latest being related genetically to the fenitization processes.

Geological, petrographic, and mineralogical evidence for the Salitre rocks indicates a highly complex origin involving multistage crystallization processes from an initial ultrapotassic magma source. This may explain the absence of ijolitic rocks over the entire Alto Paranaíba province, which is contrary to the situation in other alkaline complexes of southern Brazil (e.g., Jacupiranga, Juquiá). Carbonatitic rocks are interpreted as resulting from an unmixing process that developed during the evolution of the parental magma.  相似文献   

12.
Doklady Earth Sciences - Despite the local occurrence of silicic magmatism during the formation of the oceanic crust, the nature of felsic granitoid veins (“oceanic plagiogranite”)...  相似文献   

13.
正Virtual absence of igneous complexes with ages between1.8 Ga and 0.8 Ga in southern part of the Siberian Craton allowed to Galdkochub et al.(2010)to formulate a hypothesis of long magmatic quiescence.Most reliable  相似文献   

14.
Likhanov  I. I.  Reverdatto  V. V.  Kozlov  P. S.  Savko  K. A.  Krylov  A. A. 《Doklady Earth Sciences》2022,507(2):1071-1079
Doklady Earth Sciences - It is established for the first time that biotite plagiogneisses from the Garevka metamorphic complex of the North Yenisei Ridge have geochemical characteristics of C-type...  相似文献   

15.
An Early Cretaceous (120 ± 5 Ma) trachyrhyolite lava sheet in the Nyalga basin, Central Mongolia, includes a domain (~0.5 km2) of unusual fluorite-enriched rocks with anomalously high concentrations of CaO (1.2–25.7 wt %) and F (0.6–15 wt %). The textures and structures of the rocks suggest that they were produced by two immiscible melts: fluoride–calcium (F–Ca) and trachyrhyolitic. Data on mineral-hosted inclusions and SEM EDS studies of the matrixes of the rocks indicate that a F–Ca melt occurred in the trachyrhyolitic magmas during its various evolutionary episodes, starting from the growth of minerals in a magmatic chamber and ending with eruptions on the surface. Elevated fluorine concentrations (up to 1.5–2 wt %) in local domains of the trachyrhyolitic melt may have resulted in the onset of its liquid immiscibility and the exsolution of a F–Ca liquid phase. This was associated with the redistribution of trace elements: REE, Y, Sr, and P were preferably concentrated in the F–Ca melt, while Zr, Hf, Ta, and Nb were mostly redistributed into the immiscible silicate liquid. The F–Ca melt contained oxygen and aqueous fluid and remained mobile until vitrification of the trachyrhyolitic magma. The oxygen-enriched F–Ca phase was transformed into fluorite at 570–780°? and a high oxygen fugacity Δlog fO2 (0.9–1.7) relative to the NNO buffer. Ferrian ilmenite, monazite-group As-bearing minerals, and cerianite crystallized under oxidizing conditions, and the titanomagnetite was replaced by hematite. The Ca- and F-enriched rocks were affected by low-density (0.05–0.1 g/cm3) aqueous fluid, which was released from the crystallizing trachyrhyolitic melt, and this led to the partial removal of REE from the F–Ca phase. The chondrite-normalized REE and Y patterns of the fluidmodified rocks show positive Y anomalies and W-shaped minima from Gd to Ho. A composition of the F–Ca phase close to the original one is conserved in mineral-hosted inclusions and in relict isolations in the rocks matrix. It is so far unclear why fluorite did not crystallize from the F–Ca melt contained in the trachyrhyolitic magma. Conceivably, this was favored by high-temperature oxidizing conditions under which the melt accommodated oxygen and aqueous fluid. The possible origin of mobile oxygen-bearing fluorite–calcic melt at subsolidus temperature should be taken into account when magmatic rocks and ores are studied. Fluorite and accompanying ore mineralization might have been formed in certain instances not by hydrothermal–metasomatic processes but during the fluid–magmatic stage as a result of the transformation of F–Ca melt enriched in REE, Y, and other trace elements.  相似文献   

16.
The first results of U–Pb SIMS geochronological and Nd–Sr isotope–geochemical studies of the Yurovka Complex metavolcanics and granitoids of the Luktur Complex belonging to the Yurovka Swell yielded a Paleoproterozoic age of their formation pointing to a considerable Paleoproterozoic continental crust formation event. These data allow us to reconsider existing ideas about the similarity of the composition and age of the basement of the Yurovka Swell and that of the Paleoarchaean Kukhtui Swell of the Okhotsk Massif.  相似文献   

17.
New magnetotelluric data were obtained for the Karabuk profile crossing the Naryn basin–Baibichetoo Ridge–Atbashi basin geodynamic system (Central Tien-Shan). The complex geological–geophysical cross section along the profile provides a good agreement between the surface tectonic structures and the deep geoelectric model. The electric conductivity anomalies revealed as subvertical conductors striking along the flanks of basins may be explained by the zones of dynamic influence of faults and cataclasis of granite.  相似文献   

18.
The results of geochronological (U–Pb), isotope–geochemical (Lu–Hf), and geochemical (REEs) studies of young (MZ, KZ) and xenogenic (AR, PR) zircons from magmatic rocks of the Central Arctic rises of the Arctic Ocean (AO) and the crest zone of the Mid-Atlantic Ridge (MAR) are presented. The data obtained show that the depleted mantle could be a source of young (KZ) zircons of the MAR, whereas young (MZ) zircons of the MAR and all xenogenic (AR, PR) zircons of the AO and MAR are from crustal rocks of the continental lithosphere.  相似文献   

19.
This work discussed the origins, alteration and accumulation processes of the oil and gas in the Kekeya gas condensate field based on molecular compositions, stable carbon isotopes, light hydrocarbons, diamondoid hydrocarbons and biomarker fingerprints. A comparison study is also made between the geochemical characteristics of the Kekeya hydrocarbons and typical marine and terrigenous hydrocarbons of the Tarim Basin. Natural gas from the Kekeya gas condensate field is derived from Middle–Lower Jurassic coal measures while the condensates are derived from Carboniferous–Permian marine source rocks with a higher maturity. In the study area, both natural gas and condensates have experienced severe water washing. A large amount of methane was dissolved into the water, resulting in a decrease in the dryness coefficient. Water washing also makes the carbon isotopic compositions of the natural gas more negative and partially reverse. Considering that the gas maturities are higher than once expected, gas generation intensity in the study area should be much stronger and the gas related to the Jurassic coal measures could promise a greater prospecting potential. As a result of evaporative fractionation, the Kekeya condensates are enriched in saturates and lack aromatics. Evaporative fractionation disguises the original terrigenous characteristics of the light hydrocarbons associated with the natural gas, making it appear marinesourced. Thus, alteration processes should be fully taken into consideration when gas–source correlations are carried out based on light hydrocarbons. With the condensates discovered in the study area all being "migration phase", the pre-salt Cretaceous and Jurassic reservoirs may promise great exploration potential for the "residual phase" hydrocarbons. This research not only is of significance for oil and gas exploration in the southwest Tarim Basin, but also sheds light on the oil/gas-source correlations in general.  相似文献   

20.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号