首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Radio observations of some active regions (ARs) obtained with the Nobeyama radioheliograph at λ=1.76cm are used for estimating the magnetic field strength in the upper chromosphere, based on thermal bremsstrahlung. The results are compared with the magnetic field strength in the photosphere from observations with the Solar Magnetic Field Telescope (SMFT) at Huairou Solar Observing Station of Beijing Astronomical Observatory. The difference in the magnetic field strength between the two layers seems reasonable. The solar radio maps of active regions obtained with the Nobeyama radioheliograph, both in total intensity (I-map) and in circular polarizations (V-map), are compared with the optical magnetograms obtained with the SMFT. The comparison between the radio map in circular polarization and the longitudinal photospheric magnetogram of a plage region suggest that the radio map in circular polarization is a kind of magnetogram of the upper chromosphere. The comparison of the radio map in total intensity with the photospheric vector magnetogram of an AR shows that the radio map in total intensity gives indications of magnetic loops in the corona, thus we have a method of defining the coronal magnetic structure from the radio I-maps at λ=1.76 cm. Analysing the I-maps, we identified three components: (a) a compact bright source; (b) a narrow elongated structure connecting two main magnetic islands of opposite polarities (observed in both the optical and radio magnetograms); (c) a wide, diffuse, weak component that corresponds to a wide structure in the solar active region which shows in most cases an S or a reversed S contour, which is probably due to the differential rotation of the Sun. The last two components suggest coronal loops on different spatial scales above the neutral line of the longitudinal photospheric magnetic field.  相似文献   

2.
3.
4.
To model and study local magnetic-field enhancements in a solar flux rope we consider the magnetic field in its interior as a superposition of two linear (constant α) force-free magnetic-field distributions, viz. a global one, which is locally similar to a part of the cylinder, and a local torus-shaped magnetic distribution. The newly derived solution for a toroid with an aspect ratio close to unity is applied. The symmetry axis of the toroid and that of the cylinder may or may not coincide. Both the large and small radii of the toroid are set equal to the cylinder’s radius. The total magnetic field distribution yields a flux tube which has a variable diameter with local minima and maxima. In principle, this approach can be used for the interpretation and analysis of solar-limb observations of coronal loops.  相似文献   

5.
The aim of this article is to investigate how the background magnetic field of the Sun behaves in different hemispheres. We used SOHO/MDI data obtained during a period of eight years from 2003 to 2011 to analyze the intensity distribution of the background magnetic field over the solar surface. We find that the background fields of both polarities (signs) are more intense in the southern than in the northern hemisphere. Mixed polarities are observed in the vicinity of the equator. In addition to the main field, a weaker field of opposite polarity is always present in the polar regions. In the declining phase of the cycle, the main field dominates, but at the minimum and in the rising phase of the cycle, it is gradually replaced by the growing stronger secondary field.  相似文献   

6.
Correction of non-ideal effect due to a magnetic fluctuating tensor is derived from the ideal MHD equations. The inclusion of a magnetic turbulent field leads to modifications of the hydrostatic equilibrium equation and thermodynamical variables such as the temperature T, the adiabatic exponent γ, the adiabatic temperature gradient △↓ad and the temperature gradient △↓. In particular, the modifications in the adiabatic and radiative temperature gradients will result in a change in the Schwarzchild criterion, hence in the location of the base of the convective zone. Incorporating the modifications, we construct a modified thermodynamical equilibrium structure of the Sun.  相似文献   

7.
We study the relationship between the brightness (I) and magnetic field (B) distributions of sunspots using 272 samples observed at the San Fernando Observatory and the National Solar Observatory, Kitt Peak, whose characteristics varied widely. We find that the I – B relationship has a quadratic form for the spots with magnetic field less than about 2000 G. The slope of the linear part of the I – B curve varies by about a factor of three for different types of spots. In general the slope increases as the spot approaches disk center. The I – B slope does not have a clear dependency on the spot size but the lower limit appears to increase as a function of the ratio of umbra and penumbra area. The I – B slope changes as a function of age of the sunspots. We discuss various sunspot models using these results.  相似文献   

8.
Based on Hinode SOT/NFI observations with greatly improved spatial and temporal resolution and polarization sensitivity, the lifestory of the intranetwork (IN) magnetic elements are explored in a solar quiet region. A total of 2282 IN elements are followed from their appearance to disappearance and their fluxes measured. By tracing individual IN elements their lifetimes are obtained, which fall in the range from 1 to 20 min. The average lifetime is 2.9±2.0 min. The observed lifetime distribution is well represented by an exponential function. Therefore, the e-fold characteristic lifetime is determined by a least-square fitting to the observations, which is 2.1±0.3 min. The lifetime of IN elements is correlated closely with their flux. The evolution of IN elements is described according to the forms of their birth and disappearance. Based on the lifetime and flux obtained from the new observations, it is estimated that the IN elements have the capacity of heating the corona with a power of 2.1×1028 erg s−1 for the whole Sun.  相似文献   

9.
1 IntroductionDuringthepastfewdecadesthebirefringentfilterhasprovedaneffectivetoolinastronomicalresearch .TheinventionofthebirefringentfilterisoneofthemanyimportantcontributionsoftheFrenchastronomer,BernardLyot,toinstrumentalastronomy .Hefirstpublishedt…  相似文献   

10.
We recently investigated some of the hitherto unreported observational characteristics of the low frequency (85–35 MHz) type III–V bursts from the Sun using radio spectropolarimeter observations. The quantitative estimates of the velocities of the electron streams associated with the above two types of bursts indicate that they are in the range \({\gtrsim }0.13c\)–0.02c for the type V bursts, and nearly constant (\({\approx }0.4c\)) for the type III bursts. We also find that the degree of circular polarization of the type V bursts vary gradually with frequency/heliocentric distance as compared to the relatively steeper variation exhibited by the preceding type III bursts. These imply that the longer duration of the type V bursts at any given frequency (as compared to the preceding type III bursts) which is its defining feature, is due to the combined effect of the lower velocities of the electron streams that generate type V bursts, spread in the velocity spectrum, and the curvature of the magnetic field lines along which they travel.  相似文献   

11.
The objective testing of algorithms for performing ambiguity resolution in vector magnetic field data is continued, with an examination of the effects of noise in the data. Through the use of analytic magnetic field models, two types of noise are “added” prior to resolving: noise to simulate Poisson photon noise in the observed polarization spectra, and a spatial binning to simulate the effects of unresolved structure. The results are compared through the use of quantitative metrics and performance maps. We find that while no algorithm severely propagates the effects of Poisson noise beyond very local influences, some algorithms are more robust against high photon-noise levels than others. In the case of limited spatial resolution, loss of information regarding fine-scale structure can easily result in erroneous solutions. Our tests imply that photon noise and limited spatial resolution can act so as to make assumptions used in some ambiguity resolution algorithms no longer consistent with the observed magnetogram. We confirm a finding of the earlier comparison study that results can be very sensitive to the details of the treatment of the observed boundary and the assumptions governing that treatment. We discuss the implications of these findings, given the relative sensitivities of the algorithms to the two sources of noise tested here. We also touch on further implications for interpreting observational vector magnetic field data for general solar physics research.  相似文献   

12.
The good quality of the observing sequence of about 60 photographs of the white-light corona taken during the total solar eclipse observations on 29 March 2006, in Al Sallum, Egypt, enable us to use a new method of image processing for enhancement of the fine structure of coronal phenomena. We present selected magnetic-field lines derived for different parameters of the extrapolation model. The coincidence of the observed coronal white-light fine structures and the computed field-line positions provides a 3D causal relationship between coronal structures and the coronal magnetic field.  相似文献   

13.
Wang  Huaning  Yan  Yihua  Sakurai  Takashi  Zhang  Mei 《Solar physics》2000,197(2):263-273
The photospheric vector magnetic fields, H and soft X-ray images of AR 7321 were simultaneously observed with the Solar Flare Telescope at Mitaka and the Soft X-ray Telescope of Yohkoh on October 26, 1992, when there was no important activity in this region. Taking the observed photospheric vector magnetic fields as the boundary condition, 3D magnetic fields above the photosphere were computed with a new numerical technique. Then quasi-separatrix layers (QSLs), i.e., regions where 3D magnetic reconnection takes place, were determined in the computed 3D magnetic fields. Since Yohkoh data and Mitaka data were obtained in well-arranged time sequences during the day, the evolution of 3D fields, H features and soft X-ray features in this region can be studied in detail. Through a comparison among the 3D magnetic fields, H features and soft X-ray features, the following results have been obtained: (a) H plages are associated with the portions of QSLs in the chromosphere; (b) diffuse coronal features (DCFs) and bright coronal features (BCFs) are morphologically confined by the coronal linkage of the field lines related to the QSLs; (c) BCFs are associated with a part of the magnetic field lines related to the QSLs. These results suggest that as the likely places where energy release may occur by 3D magnetic reconnection, QSLs play an important role in the chromospheric and coronal heating in this active region.  相似文献   

14.
STEREO A and B observations of the radial magnetic field between 1 January 2007 and 31 October 2008 show significant evidence that in the heliosphere, the ambient radial magnetic field component with any dynamic effects removed is uniformly distributed. Based on this monopolar nature of the ambient heliospheric field we find that the surface beyond which the magnetic fields are in the monopolar configuration must be spherical, and this spherical surface can be defined as the inner boundary of the heliosphere that separates the monopole-dominated heliospheric magnetic field from the multipole-dominated coronal magnetic field. By using the radial variation of the coronal helmet streamers belts and the horizontal current – current sheet – source surface model we find that the spherical inner boundary of the heliosphere should be located around 14 solar radii near solar minimum phase.  相似文献   

15.
Active region magnetic flux that emerges to the photosphere from below will show complexity in the structure, with many small-scale fragmented features appearing in between the main bipole and then disappearing. Some fragments seen will be absorbed into the main polarities and others seem to cancel with opposite magnetic field. In this paper we investigate the response of the corona to the behaviour of these small fragments and whether energy through reconnection will be transported into the corona. In order to investigate this we analyse data from the Hinode space mission during flux emergence on 1?–?2 December 2006. At the initial stages of flux emergence several small-scale enhancements (of only a few pixels size) are seen in the coronal line widths and diffuse coronal emission exists. The magnetic flux emerges as a fragmented structure, and coronal loops appear above these structures or close to them. These loops are large-scale structures – most small-scale features predominantly stay within the chromosphere or at the edges of the flux emergence. The most distinctive feature in the Doppler velocity is a strong ring of coronal outflows around the edge of the emerging flux region on the eastern side which is either due to reconnection or compression of the structure. This feature lasts for many hours and is seen in many wavelengths. We discuss the implications of this feature in terms of the onset of persistent outflows from an active region that could contribute to the slow solar wind.  相似文献   

16.
Observations of the relation between continuum intensity and magnetic field strength in sunspots have been made for nearly five decades. This work presents full-Stokes measurements of the full-split (\(g = 3\)) line Fe i 1564.85 nm with a spatial resolution of \(0.5^{\prime\prime}\) obtained with the GREGOR Infrared Spectrograph in three large sunspots. The continuum intensity is corrected for instrumental scattered light, and the brightness temperature is calculated. Magnetic field strength and inclination are derived directly from the line split and the ratio of Stokes components. The continuum intensity (temperature) relations to the field strength are studied separately in the umbra, light bridges, and penumbra. The results are consistent with previous studies, and it was found that the scatter of values in the relations increases with increasing spatial resolution thanks to resolved fine structures. The observed relations show trends common for the umbra, light bridges, and the inner penumbra, while the outer penumbra has a weaker magnetic field than the inner penumbra at equal continuum intensities. This fact can be interpreted in terms of the interlocking comb magnetic structure of the penumbra. A comparison with data obtained from numerical simulations was made. The simulated data generally have a stronger magnetic field and a weaker continuum intensity than the observations, which may be explained by stray light and limited spatial resolution of the observations, and also by photometric inaccuracies of the simulations.  相似文献   

17.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

18.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

19.
20.
V. Gupta  Badruddin 《Solar physics》2010,264(1):165-188
We present a catalog of high-speed streams, along with their solar sources for solar cycle 23. We study their distribution during different years and different phases of solar cycle after classifying them into different groups based on their source(s), duration, and speed. We also study the average plasma/field properties of streams after dividing them into suitable groups on the basis of their source(s), duration and speed. It is expected that the catalog and statistical results presented in this work will further stimulate the space weather and solar-terrestrial studies involving high-speed streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号