首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The accuracy of single-frequency ocean altimeters benefits from calibration of the total electron content (TEC) of the ionosphere below the satellite. Data from a global network of Global Positioning System (GPS) receivers provides timely, continuous, and globally well-distributed measurements of ionospheric electron content. For several months we have been running a daily automatic Global Ionospheric Map process which inputs global GPS data and climatological ionosphere data into a Kalman filter, and produces global ionospheric TEC maps and ocean altimeter calibration data within 24 h of the end-of-day. Other groups have successfully applied this output to altimeter data from the GFO satellite and in orbit determination for the TOPEX/Poseidon satellite. Daily comparison of the global TEC maps with independent TEC data from the TOPEX altimeter is performed as a check on the calibration whenever the TOPEX data are available. Comparisons of the global TEC maps against TOPEX data will be discussed. Accuracy is best at mid-to-high absolute latitudes (∣latitude∣>30°) due to the better geographic distribution of GPS receivers and the relative simplicity of the ionosphere. Our highly data-driven technique is relatively less accurate at low latitudes and especially during ionospheric storm periods, due to the relative scarcity of GPS receivers and the structure and volatility of the ionosphere. However, it is still significantly more accurate than climatological models.  相似文献   

2.
When travelling through the ionosphere the signals of space-based radio navigation systems such as the Global Positioning System (GPS) are subject to modifications in amplitude, phase and polarization. In particular, phase changes due to refraction lead to propagation errors of up to 50 m for single-frequency GPS users. If both the LI and the L2 frequencies transmitted by the GPS satellites are measured, first-order range error contributions of the ionosphere can be determined and removed by difference methods. The ionospheric contribution is proportional to the total electron content (TEC) along the ray path between satellite and receiver. Using about ten European GPS receiving stations of the International GPS Service for Geodynamics (IGS), the TEC over Europe is estimated within the geographic ranges –20° 40°E and 32.5° ø 70°N in longitude and latitude, respectively. The derived TEC maps over Europe contribute to the study of horizontal coupling and transport processes during significant ionospheric events. Due to their comprehensive information about the high-latitude ionosphere, EISCAT observations may help to study the influence of ionospheric phenomena upon propagation errors in GPS navigation systems. Since there are still some accuracy limiting problems to be solved in TEC determination using GPS, data comparison of TEC with vertical electron density profiles derived from EISCAT observations is valuable to enhance the accuracy of propagation-error estimations. This is evident both for absolute TEC calibration as well as for the conversion of ray-path-related observations to vertical TEC. The combination of EISCAT data and GPS-derived TEC data enables a better understanding of large-scale ionospheric processes.  相似文献   

3.
GPS data from the International GNSS Service (IGS) network were used to study the development of the severe geomagnetic storm of November 7–12, 2004, in the total electron content (TEC) on a global scale. The TEC maps were produced for analyzing the storm. For producing the maps over European and North American sectors, GPS measurements from more than 100 stations were used. The dense network of GPS stations provided TEC measurements with a high temporal and spatial resolution. To present the temporal and spatial variation of TEC during the storm, differential TEC maps relative to a quiet day (November 6, 2004) were created. The features of geomagnetic storm attributed to the complex development of ionospheric storm depend on latitude, longitude and local time. The positive, as well as negative effects were detected in TEC variations as a consequence of the evolution of the geomagnetic storm. The maximal effect was registered in the subauroral/auroral ionosphere during substorm activity in the evening and night period. The latitudinal profiles obtained from TEC maps for Europe gave rise to the storm-time dynamic of the ionospheric trough, which was detected on November 7 and 9 at latitudes below 50°N. In the report, features of the response of TEC to the storm for European and North American sectors are analyzed.  相似文献   

4.
Basic properties of the mid-latitude traveling ionospheric disturbances (TIDs) during the maximum phase of a major magnetic storm of 6–8 April 2000 are shown. Total electron content (TEC) variations were studied by using data from GPS receivers located in Russia and Central Asia. The nightglow response to this storm at mesopause and termospheric altitudes was also measured by optical instruments FENIX located at the observatory of the Institute of Solar-Terrestrial Physics (51.9°N,103.0°E), and MORTI located at the observatory of the Institute of Ionosphere (43.2°N, 77.0°E). Observations of the O (557.7 and 630.0 nm) emissions originating from atmospheric layers centered at altitudes of 90 and 250 km were carried out at Irkutsk and of the O2(b1g+X3g) (0-1) emission originating from an atmospheric layer centered at altitude of 94 km was carried out at Almaty. Our radio and optical measurement network observed a storm-induced solitary large-scale wave with duration of 1 h and a wave front width of no less than 5000 km, while it traveled equatorward with a velocity of 200 m/s from 62°N to 38°N geographic latitude. The TEC disturbance, basically displaying an electron content depression in the maximum of the F2 region, reveals a good correlation with growing nightglow emission, the temporal shift between the TEC and emission variation maxima being different for different altitudes. A comparison of the auroral oval parameters with dynamic spectra of TEC variations and optical 630 nm emissions in the frequency range 0.4–4 mHz (250–2500 s periods) showed that as the auroral oval expands into mid-latitudes, also does the region with a developed medium-sale and small-scale TEC structure.  相似文献   

5.
Dual-frequency transmissions from the Global Positioning System satellites can be used to measure and map ionospheric total electron content (TEC) on global scales. Using data exclusively from ground-based GPS networks, global ionosphere mapping has been successfully applied using either two- or three-dimensional techniques. Two-dimensional TEC maps retrieve a horizontally-varying distribution of total electron content, assuming a fixed vertical electron density profile. In three-dimensional mapping, both the horizontal and vertical distribution density are adjusted to fit the data. We describe a three-dimensional TEC mapping algorithm that uses three independent constant-density slabs stacked vertically to model the electron density, and compare with a more conventional two-dimensional approach using a single slab. One apparent benefit of the new method is reduction in a level error of the TEC maps, which decreased by 1.7 TECU using the three-dimensional retrieval on simulated data (1 TEC Unit corresponds to 1016 electrons/m2). Another benefit of the multilayer approach is improved slant TEC modeling. Using actual data from an equatorial site at Cocos Islands (96.8E, 12.2 S), three slab modeling improved estimates of slant TEC by a factor of 2 for elevation angles between 10 and 20° (9 versus 4.4 TECU, root-mean-square). However, the global structure of the vertical TEC retrievals we analyzed did not improve using three-dimensional modeling. This may be due to a critical approximation shared by both techniques that TEC persists unchanged at a given local time. This assumption is required to produce global maps from observations acquired from widely scattered ground receivers. Further improving the retrieval of global TEC structure with ground-based data probably requires improved dynamical models of TEC behavior. New data available from GPS receivers in low Earth orbit is also promising.  相似文献   

6.
Since 1 June 1998, the group of Astronomy and Geomatics of the Polytechnic University of Catalonia (gAGE/UPC) is contributing to the international project of defining an ionospheric product (Total Electron Content, TEC) from the data gathered by the permanent ground GPS receivers of the International GPS Service (IGS) network. The strategy and algorithms related to such a preliminary product, its calibration with synthetic observations generated from the International Reference Ionosphere (IRI), and the comparison with TOPEX TEC data are presented. Finally, these methods are applied combining ionosonde with ground GPS data, in order to obtain the vertical structure of the free electron distribution.  相似文献   

7.
Global plasmaspheric TEC and its relative contribution to GPS TEC   总被引:3,自引:0,他引:3  
The plasmaspheric electron content is directly estimated from the global positioning system (GPS) data onboard JASON-1 Satellite for the first time. Similarly, the ground-based GPS total electron content (TEC) is estimated using about 1000 GPS receivers distributed around the globe. The relative contribution of the plasmaspheric electron content to the ground-based GPS TEC is then estimated globally using these two independent simultaneous measurements; namely ground-based GPS TEC and JASON-1 GPS TEC. Results presented here include data from 3 months of different solar cycle conditions (October 2003, May 2005, and December 2006). The global comparison between the two independent measurements was performed by dividing the data into three different regions; equatorial, mid- and high-latitude regions. This division is essential as the GPS raypaths traverse different distances through the plasmasphere at different latitudes. The raypath length through the plasmasphere decreases as latitude increases. The relative contribution of the plasmaspheric electron content exhibits a diurnal variation that depends on latitude with minimum contribution (10%) during daytime and maximum (up to 60%) at night. The contribution is also maximum at the equatorial region where the GPS raypath traverses a long distance through the plasmasphere compared to its length in mid- and high-latitude regions. Finally, the solar cycle variation of plasmaspheric contribution is also reported globally.  相似文献   

8.
Results of the studies of ionospheric parameter variations during the intense geomagnetic storm on November 7–11, 2004, in the 20°–80° N, 60°–180° E sector are presented. The data of ionospheric stations and the results of total electron content (TEC) measurements at the network of the GPS ground-based receivers and of the GPS receiver onboard the CHAMP satellite were used. Periods of total absorption and blanketing sporadic E layers were observed at high latitudes, whereas durable negative disturbances typical of geomagnetic storms of high intensity were detected at midlatitudes. In the afternoon hours of local time on November 8, 2004, a large-scale ionospheric disturbance of a frontal type was detected on the basis of foF2 and TEC measurements. The disturbance propagated southwestward at a mean velocity of about 200 m/s. The comparison of the relative amplitude of this large-scale disturbance according to the total electron content (~70%) and foF2 (~80%) measurements made it possible to assume a large vertical scale of the disturbance.  相似文献   

9.
Data collected from a GPS receiver located at low latitudes in the American sector are used to investigate the performance of the WinTEC algorithm [Anghel et al., 2008a, Kalman filter-based algorithm for near realtime monitoring of the ionosphere using dual frequency GPS data. GPS Solutions, accepted for publication; for different ionospheric modeling techniques: the single-shell linear, quadratic, and cubic approaches, and the multi-shell linear approach. Our results indicate that the quadratic and cubic approaches perform much better than the single-shell and multi-shell linear approaches in terms of post-fit residuals. The performance of the algorithm for the cubic approach is then further tested by comparing the vertical TEC predicted by WinTEC and USTEC [Spencer et al., 2004. Ionospheric data assimilation methods for geodetic applications. In: Proceedings of IEEE PLANS, Monterey, CA, 26–29 April, pp. 510–517] at five North American stations. In addition, since the GPS-derived total electron content (TEC) contains contributions from both ionospheric and plasmaspheric sections of the GPS ray paths, in an effort to improve the accuracy of the TEC retrievals, a new data assimilation module that uses background information from an empirical plasmaspheric model [Gallagher et al., 1988. An empirical model of the Earth's plasmasphere. Advances in Space Research 8, (8)15–(8)24] has been incorporated into the WinTEC algorithm. The new Kalman filter-based algorithm estimates both the ionospheric and plasmaspheric electron contents, the combined satellite and receiver biases, and the estimation error covariance matrix, in a single-site or network solution. To evaluate the effect of the plasmaspheric component on the estimated biases and total TEC and to assess the performance of the newly developed algorithm, we compare the WinTEC results, with and without the plasmaspheric term included, at three GPS receivers located at different latitudes in the American sector, during a solar minimum period characterized by quiet and moderate geomagnetic conditions. We also investigate the consistency of our plasmaspheric results by taking advantage of the specific donut-shaped geometry of the plasmasphere and applying the technique at 12 stations distributed roughly over four geomagnetic latitudes and three longitude sectors.  相似文献   

10.
The variability of the ionosphere during April–May, 2008, has been analyzed in detail in order to reveal anomalous variations related to seismic activity, initiated by the strongest Wenchuan earthquake (M = 7.9) in the Sichuan province on May 12, 2008. Information about the total electron content (TEC) from the network of GPS receivers in the earthquake region, the global IONEX TEC maps, and the reconstructed vertical profiles of electron density according to the data of GPS receivers were used as a data source. The spatial and time localization of the observed anomalies, their morphological features, and the absence of geomagnetic disturbances during the observation period undoubtedly demonstrate that the observed variations were caused by seismic activity.  相似文献   

11.
The existence of a worldwide international GPS service (IGS) permanent network of dual-frequency receivers makes the computation of global ionospheric maps (GIMs) of total electron content (TEC) feasible. The GIMs computed by the IGS Associate Analysis Centers on a daily basis and by other kinds of forecast GIMs, which can be computed from, for instance, the international reference ionosphere (IRI) model, and the GPS broadcast models in the navigation message, can be applied to a broad diversity of fields, for instance as, navigation and time transfer.In this context, the performance of different kinds of models are presented in order to determine the accuracy of the different GIM. This is carried out by comparison with the TOPEX data that provides an independent and precise (at the level of few TECU) vertical TEC determination over the oceans and seas. Thus, the obtained accuracies, in terms of global relative error, ranging from 54% corresponding to the GPS broadcast model, to about 41% corresponding to IRI climatological model, and to less than 30% corresponding to GPS data driven models.  相似文献   

12.
电离层垂直TEC映射函数的实验观测与统计特性   总被引:2,自引:0,他引:2       下载免费PDF全文
利用GPS信标测量获得的电离层电子浓度总含量(TEC)是沿电波路径的斜向TEC.理论研究和实际应用中,常常需要通过映射函数将斜向TEC转换为垂直方向的TEC,这在当前主要采用对电子浓度分布模型的数值积分得到模型映射函数来实现.本文在考察现有不同模型映射函数的基础上,又提出了一种源于实际观测的实验映射函数的概念与估算方法.我们利用IGS的全球GPS观测站的斜向TEC和JPL提供的垂直TEC数据获得了2006年期间的实验映射函数,并对所得结果进行了初步统计分析.在卫星天顶角较小时,上述实验映射函数和模型映射函数之间相差甚微,均可很好描述垂直TEC与斜TEC之间关系;但卫星天顶角较大时,实验映射函数和常用的模型映射函数之间存在明显差异.本文认为,这种差异主要是因为现有模型映射函数中没有考虑到等离子体层的贡献.我们认为采用基于实验映射函数的模式,或者通过考虑等离子体层的贡献对现有模型映射函数进行改进,可以有效提高电离层TEC的估算精度.  相似文献   

13.
4D tropospheric tomography using GPS slant wet delays   总被引:20,自引:0,他引:20  
Tomographic techniques are successfully applied to obtain 4D images of the tropospheric refractivity in a local dense network of global positioning system (GPS) receivers. We show here how GPS data are processed to obtain the tropospheric slant wet delays and discuss the validity of the processing. These slant wet delays are the observables in the tomographic processing. We then discuss the inverse problem in 4D tropospheric tomography making extensive use of simulations to test the system and define the resolution and the impact of noise. Finally, we use data from the Kilauea network in Hawaii for February 1, 1997, and a local 4 × 4 × 40 voxel grid on a region of 400 km2 and 15 km in height to produce the corresponding 4D wet refractivity fields, which are then validated using forecast analysis from the European Center for Medium Range Weather Forecast (ECMWF). We conclude that tomographic techniques can be used to monitor the troposphere in time and space.  相似文献   

14.
Continuous monitoring of ionospheric conditions is essential to monitoring and forecasting space weather. The worldwide use of global navigation satellite systems like the Gobal Positioning System (GPS) makes it possible to continuously monitor the total electron content (TEC) of the ionosphere and plasmasphere up to a height of about 20,000 km. We have developed a system for deriving the TEC from GEONET data rapidly and we use the TEC distribution over Japan in the daily operations of the Space Weather Forecast Center at NICT (RWC Tokyo of ISES). Using instrumental biases from a few days before enables us to drastically shorten the processing time for deriving TEC. The latest TEC values (with a delay of about 1 h) are obtained every 3 h, and most of the values are within 2 TEC units of the actual TEC. We have found our system for deriving TEC rapidly to be useful for continuously monitoring the progress of ionospheric storms under any ionospheric conditions, even those under which the usual ionosonde observations are unable to obtain F-region profiles.  相似文献   

15.
With increasing reliance on space-based platforms for global navigation and communication, concerns about the impact of ionospheric scintillation on these systems have become a high priority. Recently, the Air Force Research Laboratory (AFRL) performed amplitude scintillation measurements of L1 (1.575 MHz) signals from GPS satellites at Ascension Island (14.45° W, 7.95° S; magnetic latitude 16° S) during February–April, 1998, to compare amplitude scintillations with fluctuations of the total electron content (TEC). Ascension Island is located in the South Atlantic under the southern crest of the equatorial anomaly of F2 ionization where scintillations will be much enhanced during the upcoming solar maximum period. Ascension Island is included in the global network of the International GPS Service (IGS) and the GPS receivers in this network report the carrier to noise (C/N) ratio, the dual frequency carrier phase and pseudorange data at 30-s intervals. Such data with a sampling interval of 30 s were analyzed to determine TEC, the rate of change of TEC (ROT) and also ROTI, defined as the standard deviation of ROT. The spatial scale of ROTI, sampled at 30 s interval, will correspond to 6 km when the vector sum of the ionospheric projection of the satellite velocity and the irregularity drift orthogonal to the propagation path is of the order of 100 m/s. On the other hand, the scale-length of the amplitude scintillation index corresponds to the Fresnel dimension which is about 400 m for the GPS L1 frequency and an ionospheric height of 400 km. It is shown that, in view of the co-existence of large and small scale irregularities in equatorial irregularity structures, during the early evening hours, and small magnitude of irregularity drifts, ROTI measurements can be used to predict the presence of scintillation causing irregularities. The quantitative relationship between ROTI and S4, however, varies considerably due to variations of the ionospheric projection of the satellite velocity and the ionospheric irregularity drift. During the post-midnight period, due to the decay of small scale irregularities leading to a steepening of irregularity power spectrum, ROTI, on occasions, may not be associated with detectable levels of scintillation. In view of the power law type of irregularity power spectrum, ROTI will, in general, be larger than S4 and the ratio, ROTI/S4, in the present dataset is found to vary between 2 and 10. At high latitudes, where the ionospheric motion, driven by large electric fields of magnetospheric origin, is much enhanced during magnetically active periods, ROTI/S4 may be considerably larger than that in the equatorial region.  相似文献   

16.
The earlier experiments of ionospheric tomography were conducted by receiving satellite signals from ground-based stations and then reconstructing electron density distribution from measures of the total electron content (TEC). In June 1994, National Central University built up the low-latitude ionospheric tomography network (LITN) including six ground stations spanning a range of 16.7° (from 14.6°N to 31.3°N) in latitude within 1° of 121°E longitude to receive the naval navigation satellite system (NNSS) signals (150 and 400 MHz). In the study of tomographic imaging of the ionosphere, TEC data from a network of ground-based stations can provide detailed information on the horizontal structure, but are of restricted utility in sensing vertical structure. However, an occultation observation mission termed the global positioning system/meteorology (GPS/MET) program used a low Earth orbiting (LEO) satellite (the MicroLab-1) to receive multi-channel GPS carrier phase signals (1.5 and 1.2 GHz) and demonstrate active limb sounding of the Earth's atmosphere and ionosphere. In this paper, we have implemented the multiplicative algebraic reconstruction technique (MART) to reconstruct and compare two-dimensional ionospheric structures from measured TECs through the receptions of the GPS signals, the NNSS signals, and/or both of the systems. We have also concluded the profiles retrieved from tomographic reconstruction showing much reasonable electron density results than the original vertical profiles retrieved by the Abel transformation and being in more agreement in peak electron density to nearby ionosonde measurements.  相似文献   

17.
The state of the ionization of the upper atmosphere at low and mid latitudes in the Australian region has been studied by investigating the total electron content (TEC) obtained by a dual-frequency group path and phase path GPS technique. For the low sunspot number time period of March 1995–February 1996, one week of data centred on the Priority Regular World Day for each month have been used to investigate night-time mid-latitude peaks occurring around midnight in the Australian region. TEC from TOPEX provided additional information related to the formation of the night-time peaks. Although night-time TEC enhancements have been observed previously, there is no general agreement on their origin. From the results of the present study, the development of midnight TEC enhancements coincided with the low latitude processes occurring at around the time of vertical E×B drift velocity reversal. The TOPEX results confirmed that the upward E×B drift velocity reversal and the downward plasma flow from greater heights producing the night-time peaks at mid latitudes are triggered from a common source: the westward electric field.  相似文献   

18.
A Neural Network model has been developed for estimating the total electron content (TEC) of the ionosphere. TEC is proportional to the delay suffered by electromagnetic signals crossing the ionosphere and is among the errors that impact GNSS (Global Navigation Satellite Systems) observations. Ionospheric delay is particularly a problem for single frequency receivers, which cannot eliminate the (first-order) ionospheric delay by combining observations at two frequencies. Single frequency users rely on applying corrections based on prediction models or on regional models formed based on actual data collected by a network of receivers. A regional model based on a neural network has been designed and tested using data sets collected by the Brazilian GPS Network (RMBC) covering periods of low and high solar activity. Analysis of the results indicates that the model is capable of recovering, on average, 85% of TEC values.  相似文献   

19.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

20.
Measurements at GPS ground stations of the International GPS Service (IGS) havebeen used to derive the total electron content (TEC) of the ionosphere over Europe and overthree North American stations for the 6–11 January 1997 storm event. The derived TEC dataindicate large deviations from the average behaviour especially at high latitudes on thenight-side/early morning longitude sector.The high-latitude perturbation causes a well-pronounced positive phase on the day-sidesector over Europe.Both meridional winds as well as transient electric fields are assumed to contribute to thesignature of the ionospheric perturbation propagating from high to low latitudes. Theobservations indicate a subsequent enhanced plasma loss which is probably due to theequatorward expansion of storm induced composition changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号