首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have performed the calculations of the orbital evolution of dust particles from volcanic glass (p-obsidian), basalt, astrosilicate, olivine, and pyroxene in the sublimation zone near the Sun. The sublimation (evaporation) rate is determined by the temperature of dust particles depending on their radius, material, and distance to the Sun. All practically important parameters that characterize the interaction of spherical dust particles with the radiation are calculated using the Mie theory. The influence of radiation and solar wind pressure, as well as the Poynting–Robertson drag force effects on the dust dynamics, are also taken into account. According to the observations (Shestakova and Demchenko, 2016), the boundary of the dust-free zone is 7.0–7.6 solar radii for standard particles of the zodiacal cloud and 9.1–9.2 solar radii for cometary particles. The closest agreement is obtained for basalt particles and certain kinds of olivine, pyroxene, and volcanic glass.  相似文献   

2.
We study the dynamical evolution of the Hilda group of asteroids trough numerical methods, performing also a collisional pseudo-evolution of the present population, in order to calculate the rate of evaporation and its contribution to the cratering history of the Galilean satellites. If the present population of small asteroids in the Hilda's region follows the same size distribution observed at larger radii, we find that this family is the main contributor to the production of small craters (i.e., crater with diameters d∼4 km) on the Galilean system, overcoming the production by Jupiter Family Comets and by Trojan asteroids. The results of this investigation encourage further observational campaigns, in order to determine the size distribution function of small Hilda asteroids.  相似文献   

3.
We consider the problem of the distortion of the photospheric spectrum for a young star as its light is scattered in the inner accretion disk in the dust grain evaporation region. In T Tauri stars, this region is at a distance of the order of several stellar radii and is involved in the large-scale motions of matter with velocities of ~100 km s?1 or higher. The light scattering in such a medium causes the frequency of the scattered radiation to be shifted due to the Doppler effect. We analyze the influence of this effect on the absorption line profiles in the spectra of T Tauri stars using classical results of the theory of radiative transfer. We consider two models of a scattering medium: (i) a homogeneous cylindrical surface and (ii) a cylindrical surface with an azimuth-dependent height (such conditions take place during the accretion of matter onto a star with an oblique magnetic dipole). We show that in the first case, the scattering of the photospheric radiation causes the absorption lines to broaden. If the motion of the circumstellar matter in the dust evaporation region is characterized by two velocity components, then the line profile of the scattered radiation is asymmetric, with the pattern of the asymmetry depending on the direction of the radial velocity. In the second case, the scattered radiation can cause periodic shifts of the absorption line centroid, which can be perceived by an observer as periodic radial-velocity variations in the star. We suggest that precisely this effect is responsible for the low-amplitude radial-velocity variations with periods close to the stellar rotation periods that have recently been found in some of the T Tauri stars.  相似文献   

4.
Amit Levi 《Icarus》2009,203(2):610-625
In Levi and Podolak (Levi, A., Podolak, M. [in press] Icarus) we applied the theory of coronal expansion to gas escape from a small, cold, object such as those found in the Kuiper belt. Here we extend the theory to include aerosols that are lifted off the surface by the escaping gas. Aerosols carried by the gas but still gravitationally bound, tend to be lifted to a height above the surface that is dependent on the aerosol radius, so that in steady state the variation of aerosol radius with height is well-defined. We develop an extension of Parker’s coronal flow theory to include the effect of aerosols carried along by the gas and use this to estimate the optical depth of such an atmosphere. For KBOs with CO evaporation from the surface and with radii in the range 245-334 km, line-of-site optical depths through the atmosphere can exceed one at heights of a few hundred kilometers above the surface. Such aerosol layers should be observable, and might be used to infer the flow proprieties of the escaping gas.  相似文献   

5.
The evolution of halos consisting of weakly self-interacting dark matter particles is investigated using a new numerical Monte Carlo N-body method. The halos initially contain kinematically cold, dense r-1 power-law cores. For interaction cross sections sigma*=sigmawsi&solm0;mp>/=10-100 cm2 g-1, weak self-interaction leads to the formation of isothermal, constant-density cores within a Hubble time as a result of heat transfer into the cold inner regions. This core structure is in good agreement with the observations of dark matter rotation curves in dwarf galaxies. The isothermal core radii and core densities are a function of the halo scale radii and scale masses which depend on the cosmological model. Adopting the currently popular LambdaCDM model, the predicted core radii and core densities are in good agreement with the observations. For large interaction cross sections, massive dark halos with scale radii rs>/=1.4x104 cm2 g-1 (sigma*)-1 kpc could experience core collapse during their lifetime, leading to cores with singular isothermal density profiles.  相似文献   

6.
In this study, we try to refine the relation existing between the exobase temperature and density distributions of atomic hydrogen around the Earth (assuming that the zero net ballistic flux condition is satisfied all over the critical level). We find essentially that neither local heating in high latitude regions, nor the addition of proton fluxes around the Earth, induce large perturbations in the equatorial density distribution (less than 10 per cent). On the other hand, certain local heating can give large perturbations in the global density distribution (more than 50 per cent).The effect of the Earth's rotation is also studied. We find that at the exobase the density distribution of atomic hydrogen lags about one hour behind the temperature distribution. At higher altitudes this time lag increases, reaching 5–6 hr at 20 Earth radii.We show also that, due to a density inversion which takes place at 2 Earth radii, if the minimum of density at the exobase is on the dayside, above 2 Earth radii, a maximum of density is then on the dayside when going higher, due to the rotational effect, that density maximum shifts towards the evening, reaching early parts of the night at 20 Earth radii.  相似文献   

7.
The effective temperatures of the classical Cepheids RT Aur and T Vul have been determined by a comparison of their spectral scans with appropriate model atmospheres. The radii of the stars have been determined through the Wesselink method. Using these temperatures and the Wesselink radii, the luminosities of the stars have been determined. These radii estimates, including the radii of SU Cas (Joshi & Rautela 1980) andζ Gem (unpublished) fit better in the theoretical period-radius relationship given by Cogan (1978), as compared to earlier determinations of Wesselink radii. The pulsation masses and evolutionary masses of the stars have been calculated. The pulsation to evolutionary mass ratio is derived to be 0.85. Based on the effective temperatures obtained by us at different phases of the stars aθ c ? (B-V)0 relationship is found of the form, \(\begin{gathered} \theta _e = 0.274 (B - V)_0 + 0.637 \\ \pm 0.011 \pm 0.007 \\ \end{gathered} \)   相似文献   

8.
Two coronal mass ejections have been well observed by the LASCO coronagraphs to move out into the interplanetary medium as disconnected plasmoids. The first, on July 28, 1996, left the Sun above the west limb around 18:00 UT. As it moved out, a bright V-shaped structure was visible in the C2 coronagraph which moved into the field-of-view of C3 and could be observed out to beyond 28 solar radii. The derived average velocity in the plane of the sky was 110 ± 5 km s-1 out to 5 solar radii, and above 15 solar radii the velocity was 269 ± 10 km s-1. Thus there is evidence of some acceleration around 6 solar radii. The second event occurred on November 5, 1996 and left the west limb around 04:00 UT. The event had an average velocity in the plane of the sky of ∼54 km s-1 below 4 R⊙, and it accelerated rapidly around 5 R⊙ up to 310 ± 10 km s-1. In both events the rising plasmoid is connected back to the Sun by a straight, bright ray, which is probably a signature of a neutral sheet. In the November event there is evidence for multiple plasmoid ejections. The acceleration of the plasmoids around a projected altitude of 5 solar radii is probably a manifestation of the source surface of the solar wind. Supplementary material to this paper is available in electronic form at http://dx.doi.org/10.1023/A:1004994214697  相似文献   

9.
Positively charged molecular ions, such as H2O+, which have been observed in cometary. comas, may be efficiently produced by the evaporation of positively charged clathrate grains of radii in the range 10–6–10–5 cm. Such grains may be expelled from nuclei of comets, along with gaseous molecules. Grain charging occurs via interaction with solar ultraviolet photons and/or solar wind protons. Observational data on the total quantities as well as the distributions of H2O and H2O+ in cometary comas are shown to be in accord with detailed model calculations.On leave from: Tata Institute of Fundamental Research, Bombay, India.  相似文献   

10.
Data on 145 clusters of galaxies with known number-density distribution of galaxies as well as the corresponding references are compiled. So far as known, data on the distance and richness classes, redshift, cluster type, colour systems and limiting magnitudes of the investigations, core radii, total radii, and total populations of the clusters are given.  相似文献   

11.
The Pulkovo Spectrophotometric Data Base is used to determine the expansion velocities and radii of the continuum emission layers of the stars RR SCO and OMICR CET. Dependences of the radii and velocities on the phase of the variability cycle are found which agree with the known values obtained from the layers which emit line radiation. __________ Translated from Astrofizika, Vol. 50, No. 4, pp. 557–564 (November 2007).  相似文献   

12.
The radius of R CrB is estimated to 90–100 radii of the Sun. The dust layer, which is the cause of the deep minimum in the visible light of R Coronae Borealis-type stars, has a radius of about 6 radii of the star. This follows from the delay of the infrared light increase after the visual minimum and also from the analogy with the dust formation in novae. The emission lines appearing in the minimum have an origin analogous to the metal emissions in the comets of 1882 II and 1965 VIII in which they were observed at a distance of 20–30 R⊙. The permanent dust shell has a radius about of 26 stellar radii.  相似文献   

13.
We present HST observations of the lower main sequence of the Galactic globular cluster M3. Our data, obtained with WFPC2 in the F814W and F555W filters, sample a region centred about 4 arcmin away from the cluster centre (at ∼4.2 core radii). The photometry of the WF2, WF3 and WF4 fields extends down to V ∼26.5 ( I ∼25), much deeper than any previous ground-based study on this cluster. The resulting luminosity function (LF) for the main sequence covers the interval MI =3–10.5, and reaches a maximum between MI =8.5 and 9, sharing in this feature the same behaviour as other clusters studied with HST so far. Making use of four different mass–luminosity (M–L) relations (theoretical and semi-empirical) a present-day mass function (MF) has also been obtained, which spans the mass interval ≃0.8–0.18 M⊙. Independent of the adopted M–L relation, the MF clearly flattens out at the low-mass limits. However, no attempt has been made to take into account possible effects due, for instance, to mass segregation and evaporation.  相似文献   

14.
Experimental and theoretical work on the transverse dimensions of meteoric plasma trains have not converged to provide generally accepted values especially uncertain is the dependence of the train radii on meteor speeds. The roles of the meteoroid structure, fragmentation and plasma processes such as ion–electron instabilities need establishing. Knowledge of the quantitative spatial distribution of plasma in meteor trains is essential for a correct interpretation of fluxes and orbital characteristics. A current project is described which employs the AMOR 26 MHz radar facility in conjunction with a frequency managed radar operating at longer wavelengths designed to measure the ionization train radii, heights, atmospheric speeds and orbits of individual meteors.  相似文献   

15.
《Icarus》1987,71(1):137-147
Control networks of the five large satellites of Uranus have been established photogrammetrically from pictures taken by the Voyager 2 spacecraft. The control networks cover the illuminated southern hemisphere of each satellite. Coordinates are listed for 103 points on Miranda, 52 points on Ariel, 43 points on Umbriel, 46 points on Titania, and 34 points on Oberon; some points are identified on the U.S. Geological Survey maps of these satellites. Miranda is ellipsoidal in shape with radii of 241, 235 and 232 km. Mean radii are 579 km for Ariel, 586 km for Umbriel, 790 km for Titania, and 762 km for Oberon.  相似文献   

16.
We present new models for the formation of disc galaxies that improve upon previous models by following the detailed accretion and cooling of the baryonic mass, and by using realistic distributions of specific angular momentum. Under the assumption of detailed angular momentum conservation, the discs that form have density distributions that are more centrally concentrated than an exponential. We examine the influence of star formation, bulge formation, and feedback on the outcome of the surface brightness distributions of the stars. Low angular momentum haloes yield disc galaxies with a significant bulge component and with a stellar disc that is close to exponential, in good agreement with observations. High angular momentum haloes, on the other hand, produce stellar discs that are much more concentrated than an exponential, in clear conflict with observations. At large radii, the models reveal distinct truncation radii in both the stars and the cold gas. The stellar truncation radii result from our implementation of star formation threshold densities, and are in excellent agreement with observations. The truncation radii in the density distribution of the cold gas reflect the maximum specific angular momentum of the gas that has cooled. We find that these truncation radii occur at H  i surface densities of roughly 1 M pc−2, in conflict with observations. We examine various modifications to our models, including feedback, viscosity, and dark matter haloes with constant-density cores, but show that the models consistently fail to produce bulge less discs with exponential surface brightness profiles. This signals a new problem for the standard model of disc formation: if the baryonic component of the protogalaxies out of which disc galaxies form has the same angular momentum distribution as the dark matter, discs are too compact.  相似文献   

17.
The radii of several Ap and Am stars have been compared with those of the normal A stars of the Main Sequence. Though the brighter Ap stars have a little larger radii than the Main-Sequence stars, they may not be much different from those of the slightly evolved normal A stars. The Am stars have radii with which they appear to be merging with those of the cooler A stars of the Main Sequence. The Ap stars have radii predominantly in the range of 1.8 to 3.4R , while the Am stars are mainly concentrated between 1.8 and 2.2R .  相似文献   

18.
Merton E. Davies 《Icarus》1974,21(3):230-236
Mariner 9 took many pictures of the giant Olympus Mons during its year in orbit around Mars. Control points have been identified on the top of Olympus Mons, on the volcanic shield, and on the surrounding plains, and their locations have been measured on the television pictures. These measurements were used to compute the aerographic coordinates and the planetary radii of the points. The radii at some of the points were derived from radar elevation measurements and from radio occultation measurements. The mountain rises about 21 km above its base.  相似文献   

19.
Abstract— Two basic approaches (pure component reference (PCR) and equilibrium reference (EQR)) to modeling silicate melt evaporation are explored. The PCR model calculates the maximum possible evaporation rates of the pure oxides from their equilibrium vapor pressures and rescales these rates according to the activities of the oxides in the silicate melts and the melt densities. The EQR model calculates the maximum possible evaporation rates based on the equilibrium vapor pressures of the melts. Differences between the calculated and experimentally determined evaporation rates are accounted for with evaporation (αevap) coefficients that are only dependent on temperature. Two versions of the PCR model, Cases 1 and 2, are explored to try to resolve apparently contradictory conclusions about the composition of the evaporating species based on Mg and Si isotope fractionation during evaporation (species are not in thermodynamic equilibrium proportions) and direct measurements of gas species in Langmuir experiments (species are in roughly equilibrium proportions). The Case 2 and EQR models cannot explain the observed isotope fractionations unless evaporation occurred under non‐Rayleigh conditions, either because there was significant recondensation during the experiments or because diffusion was playing a limiting role. Whether or not the role of diffusion is included, the PCR and EQR models are able to reproduce the elemental results of evaporation experiments of “chondritic” melts from temperatures of 1700 to 2000 °C, and up to mass losses of about 95%. However, the models underestimate absolute evaporation rates in very Ca‐ and Al‐rich melts. This may reflect errors in the model used to estimate oxide activities. The EQR model can only reproduce the observed evaporation behavior of Na if, unlike the other oxides, its αevap coefficient is close to unity. Based on available diffusion data, diffusion is not slow enough in “chondritic” or forsteritic melts to explain the isotopic fractionations of Mg and O in the evaporation experiments, but it may play a role in limiting Si isotope fractionation. Provided recondensation was not a significant factor in the experiments, at present PCR Case 1 appears to be the best model if both the Langmuir and the isotopic fractionation experiments are to be explained.  相似文献   

20.
Astronomy Letters - The radii of the inner and outer boundaries of the circumbinary habitable zone (CBHZ) and the radii of the circumbinary chaotic zone (CBCZ) have been calculated for close binary...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号