首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anions of polycarboxylic low-molecular-weight organic acids (LMWOA) compete with phosphate for sorption sites of hydrous Fe and Al oxides. To test whether the sorption of LMWOA anions decreases the accessibility of micropores (<2 nm) of goethite (α-FeOOH) for phosphate, we studied the kinetics of citrate-induced changes in microporosity and the phosphate sorption kinetics of synthetic goethite in the presence and absence of citrate in batch systems for 3 weeks (500 μM of each ion, pH 5). We also used C-coated goethite obtained after sorption of dissolved organic matter in order to simulate organic coatings in the soil. We analyzed our samples with N2 adsorption and electrophoretic mobility measurements. Citrate clogged the micropores of both adsorbents by up to 13% within 1 h of contact. The micropore volume decreased with increasing concentration and residence time of citrate. In the absence of citrate, phosphate diffused into micropores of the pure and C-coated goethite. The C coating (5.6 μmol C m−2) did not impair the intraparticle diffusion of phosphate. In the presence of citrate, the diffusion of phosphate into the micropores of both adsorbents was strongly impaired. We attribute this to the micropore clogging and the ligand-induced dissolution of goethite by citrate. While the diffusion limitation of phosphate by citrate was stronger when citrate was added before phosphate to pure goethite, the order of addition of both ions to C-coated goethite had only a minor effect on the intraparticle diffusion of phosphate. Micropore clogging and dissolution of microporous hydrous Fe and Al oxides may be regarded as potential strategies of plants to cope with phosphate deficiency in addition to ligand-exchange.  相似文献   

2.
The presence of organic acids greatly affects the formation of Fe oxides and surface properties; however, the subsequent effect on the kinetics and mechanisms of Pb adsorption by the Fe oxides formed under the influence of organic acids remains obscure. The kinetics of Pb adsorption on the Fe oxides formed in the presence of citrate ligands at initial citrate/Fe(II) molar ratios (MRs) of 0, 0.001, 0.01, and 0.1 was studied at the initial Pb concentration of 8.33 μM and pH 5.0 at 278, 288, 298, and 313 K using macroscopic batch method. The results indicate that the Pb adsorption followed multiple first-order kinetics and the rate coefficient, activation energy, and pre-exponential factor in the Arrhenius equation of the adsorption varied greatly with the surface properties of the Fe oxides formed at various citrate/Fe(II) MRs. The alteration of surface properties of Fe oxides formed at the citrate/Fe(II) MR of 0.1 and the effect on the rate coefficient of the fast and slow reactions of Pb adsorption were especially significant. The rate-limiting step of Pb adsorption reactions on the Fe oxides was predominantly a diffusion process, except for the slow reaction of Pb adsorption on the Fe oxides formed at the initial citrate/Fe(II) MR of 0.1, where the rate-limiting process was evidently a chemical process, which may involve bond breaking between the coprecipitated citrate ligand and Fe oxide. The rate coefficients of Pb adsorption by the Fe oxides formed at various citrate/Fe(II) MRs cannot be explained by the activation energy alone. The pre-exponential factor plays an important role in influencing the rate coefficient of Pb adsorption by the Fe oxides. The role of organic acids such as citric acid in influencing the crystallization and the resultant alteration of surface properties of Fe oxides, and the impact on the dynamics of Pb in terrestrial and aquatic environments, thus merit close attention.  相似文献   

3.
《Applied Geochemistry》1998,13(1):77-88
There is an increasing awareness that rate-limited sorption reactions can play an important role in the transport of solutes in groundwater. The rate and extent of reactions between aqueous metals and mineral surfaces are affected by many factors, including the temperature, the presence of organic chelating agents, and adsorbent mineralogy. Cobalt sorption was investigated in terms of temperature, citrate concentration, and silica sand surface coating. The kinetic sorption data were described well by two simultaneous second-order reactions. The results suggested that decreasing temperature or the presence of citrate resulted in a slower approach to equilibrium for Co sorption to the uncoated silica sand that contained small amounts of secondary minerals. Using the same sand coated with an amorphous Fe(III) oxide, increasing temperature or the presence of citrate resulted in a faster approach to equilibrium for Co sorption. The equilibrium adsorption isotherms were described well by a generalized two-layer surface complexation model. Citrate decreased the extent of Co sorption to the uncoated silica; the effect was most pronounced at low temperature. Conversely, citrate increased the extent of Co sorption to the Fe-coated silica. These results suggest that citrate decreased the rate and extent of adsorption to the uncoated silica through the formation of a stable anionic aqueous complex that has a lower affinity for the surface than Co2+. Conversely, the higher anion sorption capacity of the Fe-coated silica increased the rate and extent of Co sorption with citrate present, presumably through the formation of an organo-metallic ternary surface complex.  相似文献   

4.
Riparian soils are periodically flooded, leading to temporarily reducing conditions. Diffusion of O2 through plants into the rhizosphere maintains oxic conditions around roots, thereby promoting trace element fractionation along a redox gradient from the reduced soil matrix towards the oxic rhizosphere. The aim of this study was to determine the distribution and speciation of arsenic around plant roots in a contaminated (170-280 mg/kg As) riparian floodplain soil (gleyic Fluvisol). The analysis of soil thin sections by synchrotron micro-X-ray fluorescence (μ-XRF) spectrometry showed that As and Fe were enriched around roots and that As was closely correlated with Fe. Arsenic contents of three manually separated rhizosphere soil samples from the subsoil were 5-9 times higher than respective bulk As contents. This corresponds to the accumulation of about half of the total As in the subsoil in Fe-enrichments around roots. The speciation of As in the soil was assessed by oxalate extractions at pH 3.0 as well as by X-ray absorption near edge structure (XANES) and extended X-ray fine structure (EXAFS) spectroscopy. More than 77% of the total As was oxalate extractable in all samples. XANES and EXAFS spectra demonstrated that As was predominantly As(V). For the accurate analysis of the EXAFS data with respect to the bonding of As(V) to the Fe- or Al-octahedra of (hydr)oxides and clays, all 3-leg and 4-leg multiple scattering paths within the As(V)O4-tetrahedron were considered in a fully constrained fitting scheme. We found that As(V) was predominantly associated with Fe-(hydr)oxides, and that sorption to Al- and Mn-hydroxides was negligible. The accumulation of As in the rhizosphere may affect As uptake by plants. Regarding the mobility of As, our results suggest that by oxygenation of the rhizosphere, plants attenuate the leaching of As from riparian floodplain soils during periods of high groundwater levels or flooding.  相似文献   

5.
Ten highly weathered soils in southeastern Nigeria were sampled from their typical A and B horizons for analyses. The objectives were to determine the different forms of Fe and Al oxides in the soils and relating their occurrence to phosphate availability and retention in the soils. The soils are deep and often physically degraded but are well drained and coarse in the particle size distribution. They are mostly dominated by kaolinite in their mineralogy with very high values of SiO2. The soils are acidic with low soil organic carbon (SOC) contents. The elements in the exchange complex are also low thus reflecting in the low CEC of the soil. Available phosphorus (P) in the soils are generally low while total P ranged from 157 to 982 mg kg−1 with an overall average of 422 mg kg−1. Total Fe in the soil is highest and their order represented as follows: Fet > Fed > Feox ≥ Fep. The pyrophosphate extractable Fe was always higher in the top soil than in the subsoil and was attributed to the fact that these forms of Fe are associated with organic matter which is more abundant in topsoil than in subsoil. Like in Fe forms, the order of Al occurrence could generally be presented as; Alt > Ald > Alox > Alp. More Fe and Al oxides in the soils are strongly crystalline while a small quantity is poorly crystalline Fe forms. The amorphous forms of both Fe and Al are very low in the soils when compared with the crystalline forms. The oxides that show very strong affinity to total P are Fed–Feox, Fed, Ald, Fet, Feox and Alox/Ald. To overcome this problem of P retention in the soil, we recommend constant liming of these soils to neutralize them, application of organic matter and of high dosage of phosphate fertilizer to the soils.  相似文献   

6.
影响向海湿地草根层土壤吸附铅、镉能力的因素   总被引:9,自引:7,他引:2  
利用向海湿地采集的草根层土壤进行吸附铅、镉的热力学实验,结果表明草根层土壤吸附铅、镉的过程符合Langmuir和Freundlich等温吸附曲线(n=8,p=0.01).吸附铅、镉存在干扰吸附现象,吸附铅的能力约是吸附镉的能力的3倍.而且草根层土壤吸附铅、镉的最大吸附量与土壤中的有机质和铁、锰氧化物含量存在着正相关性.土壤的理化性质是影响土壤吸附铅、镉能力的内在主要因素;pH等是影响草根层土壤吸附铅、镉能力的外部主要因素.  相似文献   

7.
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0-13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacterium (DIRB), Shewanella putrefaciens CN32. Here we reveal that the impact of Al on microbial reduction varies with Fe(III) (hydr)oxide type. No significant difference in Fe(III) reduction was observed for either goethite or lepidocrocite as a function of Al substitution. In contrast, Fe(III) reduction rates significantly decreased with increasing Al substitution of ferrihydrite, with reduction rates of 13% Al-ferrihydrite more than 50% lower than pure ferrihydrite. Although Al substitution changed the minerals’ surface area, particle size, structural disorder, and abiotic dissolution rates, we did not observe a direct correlation between any of these physiochemical properties and the trends in bacterial Fe(III) reduction. Based on projected Al-dependent Fe(III) reduction rates, reduction rates of ferrihydrite fall below those of lepidocrocite and goethite at substitution levels equal to or greater than 18 mol% Al. Given the prevalence of Al substitution in natural Fe(III) (hydr)oxides, our results bring into question the conventional assumptions about Fe (hydr)oxide bioavailability and suggest a more prominent role of natural lepidocrocite and goethite phases in impacting DIRB activity in soils and sediments.  相似文献   

8.
Phosphate sorption and desorption experiments were conducted with four ferruginous soils (alfisols) of Eastern India, in view of the low native phosphate concentrations in tropical Indian soils. From the P-isotherm curve, standard P requirement (SPR) of the soils was determined. Phosphate sorption data were fitted to both Langmuir and Freundlich equations and mean sorption maximum values obtained for the different soil series were in the decreasing order as Matimahal > Anandapur > Mrigindih > Kashipur. The fraction of added P sorbed followed the same trend as SPR, P sorption maximum (Pmax), phosphate affinity constant (K), maximum phosphate buffering capacity (MPBC), Freundlich constant K′ and phosphate desorption values. Phosphate sorption maximum was significantly correlated with MPBC, Freundlich 1/n, SPR, clay and different forms of Fe and Al. The value of K (bonding energy) was significantly correlated with MPBC, Freundlich K′ and pyrophosphate extractable Fe and Al. The MPBC was significantly correlated with Freundlich K′, Freundlich constant 1/n, clay, oxalate and dithionite extractable, amorphous and crystalline form of Fe and Al. Freundlich K′ was significantly correlated with Freundlich 1/n, pHwater, clay, dithionite extractable and crystalline form of Fe and Al. The results suggested that the soils having higher amount of extractable and reactive Fe and Al shared higher P sorbtion capacity and such soils may need higher levels of P application  相似文献   

9.
Extracellular polymeric substances (EPS) are continuously produced by bacteria during their growth and metabolism. In soils, EPS are bound to cell surfaces, associated with biofilms, or released into solution where they can react with other solutes and soil particle surfaces. If such reaction results in a decrease in EPS bioaccessibility, it may contribute to stabilization of microbial-derived organic carbon (OC) in soil. Here we examined: (i) the chemical fractionation of EPS produced by a common Gram positive soil bacterial strain (Bacillus subtilis) during reaction with dissolved and colloidal Al species and (ii) the resulting stabilization against desorption and microbial decay by the respective coprecipitation (with dissolved Al) and adsorption (with Al(OH)3(am)) processes. Coprecipitates and adsorption complexes obtained following EPS-Al reaction as a function of pH and ionic strength were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The stability of adsorbed and coprecipitated EPS against biodegradation was assessed by mineralization experiments for 1100 h. Up to 60% of the initial 100 mg/L EPS-C was adsorbed at the highest initial molar Al:C ratio (1.86), but this still resulted only in a moderate OC mass fraction in the solid phase (17 mg/g Al(OH)3(am)). In contrast, while coprecipitation by Al was less efficient in removing EPS from solution (maximum values of 33% at molar Al:C ratios of 0.1-0.2), the OC mass fraction in the solid product was substantially larger than that in adsorption complexes. Organic P compounds were preferentially bound during both adsorption and coprecipitation. Data are consistent with strong ligand exchange of EPS phosphoryl groups during adsorption to Al(OH)3(am), whereas for coprecipitation weaker sorption mechanisms are also involved. X-ray photoelectron analyses indicate an intimate mixing of EPS with Al in the coprecipitates, which is not observed in the case of EPS adsorption complexes. The incubation experiments showed that both processes result in overall stabilization of EPS against microbial decay. Stabilization of adsorbed or coprecipitated EPS increased with increasing molar Al:C ratio and biodegradation was correlated with EPS desorption, implying that detachment of EPS from surface sites is a prerequisite for microbial utilization. Results indicate that the mechanisms transferring EPS into Al-organic associations may significantly affect the composition and stability of biomolecular C, N and P in soils. The observed efficient stabilization of EPS might explain the strong microbial character of organic matter in subsoils.  相似文献   

10.
岩溶区典型土壤对Cd2+的吸附特性   总被引:2,自引:2,他引:0  
文章采用有序批试验,就岩溶区两种典型石灰土(棕色、黑色石灰土)对Cd2+的吸附行为进行研究。试验结果表明:石灰土对重金属Cd2+具有较强的吸附能力(平均吸附率范围89.84~98.84),黑色石灰土的吸附能力高于棕色石灰土,吸附量随平衡浓度的增加而增大;Langmuir和Freundlich方程均能很好地描述两种石灰土对Cd2+的等温吸附过程,Freundlich方程拟合最优;两种石灰土吸附镉的动力学特征相似,吸附过程可分为快速反应、慢速反应和吸附平衡3个阶段,棕色石灰土对Cd2+吸附动力学的最优模型为Elovich方程和双常数方程(R>0.9),黑色石灰土仅在Cd2+初始浓度为100 mg/L条件下,Elovich方程、双常数方程和W-M方程的模拟达到较显著水平(R>0.8);有机质、碳酸钙含量及CEC值是影响石灰土对Cd2+吸附能力的主控因素,铁、铝、硅氧化物含量对Cd2+吸附影响不大;综合热力学、动力学及影响因素分析认为石灰土对Cd2+吸附机理包括土壤颗粒表面官能团的专性吸附及不均匀粒内扩散、静电作用等非专性吸附过程。   相似文献   

11.
We studied the effects of humic substances (HS) on the sorption of Fe(II) onto Al-oxide and clay sorbents at pH 7.5 with a combination of batch kinetic experiments and synchrotron Fe K-edge EXAFS analyses. Fe(II) sorption was monitored over the course of 4 months in anoxic clay and Al-oxide suspensions amended with variable HS types (humic acid, HA; or fulvic acid, FA) and levels (0, 1, and 4 wt%), and with differing Fe(II) and HS addition sequences (co-sorption and pre-coated experiments, where Fe(II) sorbate was added alongside and after HS addition, respectively). In the Al-oxide suspensions, the presence of HS slowed down the kinetics of Fe(II) sorption, but had limited, if any, effect on the equilibrium aqueous Fe(II) concentrations. EXAFS analyses revealed precipitation of Fe(II)–Al(III)-layered double hydroxide (LDH) phases as the main mode of Fe(II) sorption in both the HA-containing and HA-free systems. These results demonstrate that HS slow down Fe(II) precipitation in the Al-oxide suspensions, but do not affect the composition or stability of the secondary Fe(II)–Al(III)-LDH phases formed. Interference of HS with the precipitation of Fe(II)–Al(III)-LDH was attributed to the formation organo-Al complexes HS limiting the availability of Al for incorporation into secondary layered Fe(II)-hydroxides. In the clay systems, the presence of HA caused a change in the main Fe(II) sorption product from Fe(II)–Al(III)-LDH to a Fe(II)-phyllosilicate containing little structural Al. This was attributed to complexation of Al by HA, in combination with the presence of dissolved Si in the clay suspension enabling phyllosilicate precipitation. The change in Fe(II) precipitation mechanism did not affect the rate of Fe(II) sorption at the lower HA level, suggesting that the inhibition of Fe(II)–Al(III)-LDH formation in this system was countered by enhanced Fe(II)-phyllosilicate precipitation. Reduced rates of Fe(II) sorption at the higher HA level were attributed to surface masking or poisoning by HA of secondary Fe(II) mineral growth at or near the clay surface. Our results suggest that HS play an important role in controlling the kinetics and products of Fe(II) precipitation in reducing soils, with effects modulated by soil mineralogy, HS content, and HS properties. Further work is needed to assess the importance of layered Fe(II) hydroxides in natural reducing environments.  相似文献   

12.
Choosing soil series scale for assessing phosphorus (P) retention and release characteristics may help relate routinely collected series-specific soil survey data with P retention and aid in designing series-specific P management strategies. Phosphorus retention and release characteristics of pedons collected from two benchmark upland soil series (Berks and Monongahela) and two floodplain (Huntington and Lindside) soil series of West Virginia (USA) were assessed by evaluating P sorption capacity (PSC, Langmuir method) and its major determinants, and effect of different levels of degree of P saturation (DPS) and soil test P (STP, Mehlich-1 P) on the desorbable P (0.01 M CaCl2-extractable) concentrations. The PSC of the two floodplain soils, Huntington and Lindside, was similar but lower than PSC of upland Berks and Monongahela soils. However, thicker A horizons of Huntington and Lindside soils may compensate for their lower PSC. The B horizons exhibited higher PSC than A horizons. However, slow permeability and thinness of such horizons may discount the higher PSC effect. Relationship of PSC with ammonium oxalate extractable Al (AOX-Al) and Fe (AOX-Fe), dithionite–citrate–bicarbonate extractable Al (DCB-Al) and Fe (DCB-Fe), total C, clay content, and pH [soil:water ratio 1:1 (pH-water) and soil:0.01 M CaCl2 solution ratio 1:2 (pH-CaCl2)] showed that in general all except Fe and total C influenced PSC significantly. Aluminum associated with crystalline clay minerals particularly affected PSC, especially of upland soils. Most of the soils did not release considerable P even beyond the conventional critical limit of 25 % DPS for well-drained soils. DPS-desorbable P relationships, though, reflected poor reliability of DPS as an environmental index. At a given DPS and STP, surface horizons released more P than their subsurface counterparts and thus reflected the net sink character of subsurface horizons. Most of the soils did not show considerable release of P even beyond agronomically high STP levels (>23 mg kg?1). The study provides an economical alternative to time and money-intensive lysimetric studies for assessing subsurface P loss. It reveals the workability of integrating environmental P studies with soil survey data and superiority of integrated assessment of environmental indices of P over the use of any single index.  相似文献   

13.
Sorptive stabilization of organic matter in soils by hydrous iron oxides   总被引:5,自引:0,他引:5  
Strong correlations between iron oxides (FeOx) and organic matter (OM) in soils have implied the importance of the former in stabilizing the latter. One mechanism thought to be important in this stabilization is sorption. We tested this possibility by reductively dissolving FeOx in a wide variety of soils and measuring the organic carbon (OC) that was solubilized. The OC dissolved from non-FeOx phases via anion exchange was corrected for by parallel control extractions. The resultant pool, reductively soluble OC, made up a minor amount of total soil OC in all but one of these soils, indicating that simple sorption reactions do not stabilize the bulk of soil OC in most mineral soils. OC:Fe ratios in the extracts from 2/3 of these soils were less than 0.22 (wt/wt), consistent with a sorbed state for this OC and showing that OC sorption by FeOx in these soils is limited by the amount of FeOx. The remaining soils had low pH and high OM concentrations; their higher OC:Fe ratios indicate inclusion of precipitated organo-Fe complexes in the extracts, which are likely only partially extracted by our method. The high volumetric ratios of OM to FeOx found in correlations between them from the literature are inconsistent with a dominant sorption control and point instead to stabilization to other mechanisms such as organo-Fe complexes or ternary associations among FeOx, OM and other minerals.  相似文献   

14.
To understand Phosphorus (P) sources and transport processes in the subsurface in Bwaise III Parish, Kampala, P attenuation and adsorption capacities of soils were studied in situ and from laboratory measurements. Relationships between sorption parameters and soil matrix properties, rates and mechanism of the adsorption process and soil P fractions were also investigated. P was generally higher in the wet than the dry season, but for both seasons, the maximum was 5 mgP/l. P transport mechanisms appeared to be a combination of adsorption, precipitation, leaching from the soil media and by colloids with the latter two playing an important role in the wet season. The sorption process comprised two phases with the first stage rate constants being about fourfold those of the second stage. The Langmuir isotherm described the sorption data well (R 2 ≥ 0.95) with the second soil layer exhibiting the highest sorption maximum (C max) (average value 0.6 ± 0.17 mgP/gDW). The best prediction of C max had organic carbon, Ca, available P and soil pH. Residual P consisting mostly of organics was the main fraction in all the layers followed by inorganic HCl-P and NaOH-P in the top and middle layers, respectively. Loosely bound P (NH4Cl-P) was the least fraction (<0.4% of total P) in all layers indicating the high binding capacity of P by the soils. The study results suggest that P dynamics is related to Ca, Fe and organic carbon content of the soils.  相似文献   

15.
Siderophores are biogenic chelating agents produced in terrestrial and marine environments that increase the bioavailability of ferric iron. Recent work has suggested that both aqueous and solid-phase Mn(III) may affect siderophore-mediated iron transport, but scant information appears to be available about the potential roles of layer type manganese oxides, which are relatively abundant in soils and the oligotrophic marine water column. To probe the effects of layer type manganese oxides on the stability of aqueous Fe-siderophore complexes, we studied the sorption of ferrioxamine B [Fe(III)HDFOB+, an Fe(III) chelate of the trihydroxamate siderophore desferrioxamine B (DFOB)] to two synthetic birnessites [layer type Mn(III,IV) oxides] and a biogenic birnessite produced by Pseudomonas putida GB-1. We found that all of these predominantly Mn(IV) oxides greatly reduced the aqueous concentration of Fe(III)HDFOB+ at pH 8. Analysis of Fe K-edge EXAFS spectra indicated that a dominant fraction of Fe(III) associated with the Mn(IV) oxides is not complexed by DFOB as in solution, but instead Fe(III) is specifically adsorbed to the mineral structure at multiple sites, thus indicating that the Mn(IV) oxides displaced Fe(III) from the siderophore complex. These results indicate that layer type manganese oxides, including biogenic minerals, may sequester iron from soluble ferric complexes. We conclude that the sorption of iron-siderophore complexes may play a significant role in the bioavailability and biogeochemical cycling of iron in marine and terrestrial environments.  相似文献   

16.
Reduction of As(V) and reductive dissolution and transformation of Fe (hydr)oxides are two dominant processes controlling As retention in soils and sediments. When developed within soils and sediments, Fe (hydr)oxides typically contain various impurities—Al being one of the most prominent—but little is known about how structural Al within Fe (hydr)oxides alters its biotransformation and subsequent As retention. Using a combination of batch and advective flow column studies with Fe(II) and Shewanella sp. ANA-3, we examined (1) the extent to which structural Al influences reductive dissolution and transformations of ferrihydrite, a highly reactive Fe hydroxide, and (2) the impact of adsorbed As on dissolution and transformation of (Al-substituted) ferrihydrite and subsequent As retention. Structural Al diminishes the extent of ferrihydrite reductive transformation; nearly three-orders of magnitude greater concentration of Fe(II) is required to induce Al-ferrihydrite transformation compared to pure two-line ferrihydrite. Structural Al decreases Fe(II) retention/incorporation on/into ferrihydrite and impedes Fe(II)-catalyzed transformation of ferrihydrite. Moreover, owing to cessation of Fe(II)-induced transformation to secondary products, Al-ferrihydrite dissolves (incongruently) to a greater extent compared to pure ferrihydrite during reaction with Shewanella sp. ANA-3. Additionally, adsorption of As(V) to Al-ferrihydrite completely arrests Fe(II)-catalyzed transformation of ferrihydrite, and it diminishes the difference in the rate and extent of ferrihydrite and Al-ferrihydrite reduction by Shewanella sp. ANA-3. Our study further shows that reductive dissolution of Al-ferrihydrite results in enrichment of Al sites, and As(V) reduction accelerates As release due to the low affinity of As(III) on these non-ferric sites.  相似文献   

17.
The sorption capacity of five clay soils from South Wales in the United Kingdom was investigated using two main tests; physico-chemical and batch equilibrium (BET). The physico-chemical property results show that soil weathered mudrocks (MR1), glacial till (GT1), and estuarine alluviums (NEA4, PEA3 and CEA3) are capable of being used as landfill liners and are chosen for further sorption tests. The batch tests (i.e. sorption tests) on soil suspension produce adsorption-pH curves, showing increasing adsorption at higher pH levels. The sorption data are also presented using adsorption isotherm curves and are best fitted using the Langmuir adsorption equation that yields the maximum adsorption capacity of the soils. The sorption capacity of soils are ranked as estuarine alluvium soils>glacial till>weathered mudrocks. Estuarine alluvium soils show a good buffering capacity and high sorption capability compared to glacial till and weathered mudrocks. The study also discovers that the maximum sorption capacities are highly influenced by the chemical properties of the soils.  相似文献   

18.
Ferrihydrite (Fh) coprecipitated with exopolymers of plants and microbes may differ in its geochemical reactivity from its abiotic counterpart. We synthesized Fh in the presence and absence of acid polysaccharides (polygalacturonic acid (PGA), alginate, xanthan) and characterized the physical and structural properties of the precipitates formed [Mikutta C., Mikutta R., Bonneville S., Wagner F., Voegelin A., Christl I. and Kretzschmar R. (2008) Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. Geochim. Cosmochim. Acta]. In this paper, we focus on the reactivity of PGA and alginate coprecipitates and pure Fh, and studied their interaction with the microbial siderophore desferrioxamine B (DFOB) in the presence and absence of low molecular weight organic (LMWO) acid anions (malate, citrate). Batch adsorption and dissolution experiments were performed in the dark at pH 7 in 10 mM NaClO4 background electrolyte. In the dissolution experiments, different modes of ligand addition were applied (single, simultaneous, stepwise). With an estimated Langmuir sorption maximum of 15 mmol/mol Fe, a PGA coprecipitate with 11% Corg sorbed about four times as much DFOB as pure Fh, and the amount of DFOB sorbed was ∼4-fold larger than estimated from the sum of DFOB sorption to pure Fh and PGA alone. The apparent initial dissolution rates, Rapp-initial, and pseudo-first order rate coefficients, k, of the coprecipitates exceeded those of pure Fh by up to two orders of magnitude. Citrate and malate exerted a strong synergistic effect on the DFOB-promoted dissolution of pure Fh, whereas synergistic effects of both anions were absent or negligible for the coprecipitates. Rapp-initial of the citrate and DFOB-promoted dissolution of PGA coprecipitates increased with increasing molar C/Fe ratio of the coprecipitates, independent of the charge of the LMWO ligand. Our results indicate that polyuronates stabilize Fh particles sterically and /or electrostatically, thus increasing the mineral surface area accessible to LMWO ligands. In contrast, pure Fh was coagulated at pH 7 (pHiep of Fh = 7.1), and hence only a small fraction of the Fh surface underwent dissolution. The increase in ligand-accessible surface area of Fh upon coprecipitation with acid polysaccharides seems to primarily control the kinetics of the ligand-promoted dissolution at neutral pH. In pH environments where the solubility of Fe(III) is very low, dissolution rates of Fe(III) (hydr)oxides in such coprecipitates may therefore exceed those of pure minerals by several orders of magnitude, despite a similar crystallinity of the minerals.  相似文献   

19.
In order to evaluate the effect of different land use on lithogenic Tl geochemistry, two forest and grassland soils developed on an identical Tl-rich substrate were examined. For this purpose a complex soil-plant investigation supplemented by mineralogical methods was performed. The modified BCR sequential extraction combined with X-ray diffraction analysis (XRD) and voltammetry of microparticles (VMP) were performed for a detailed insight on lithogenic Tl speciation and availability in both contrasting soils. It was revealed that soil forming processes like bioturbation and probably dust deposition may influence the increased input of lithogenic Tl into the forest floor. Thallium was predominantly bound within the residual fraction (up to 95%) corresponding to primary silicates (mainly orthoclase and muscovite) and probably secondary illite, which were detected by XRD in all studied horizons. Thus, stable silicates can be thought as the phases controlling the solubility of lithogenic Tl in both the forest and grassland soils. The highest portion (~ 5%) of “labile” Tl was found in the organic horizons of the forest soil indicating a distinct role of forest soil organic matter (SOM) on Tl mobilization and availability. Thallium adsorption was dominated by an identified non-crystalline Mn(III,IV) oxide detected by VMP proving thus its strong affinity for Mn oxides in mineral soils. On the contrary, Tl adsorption by more abundant Fe(III) oxides (goethite and ferrihydrite) was evaluated to be negligible. Organically bound Tl in the forest floor was found to be associated with primary SOM corresponding to the raw and partially decomposed litter of Norway spruce (Picea abies L.). Moreover, a relatively high Tl uptake was recorded by this species. In contrast, lithogenic Tl uptake by common grasses like red clover (Trifolium pratense L.) or timothy grass (Phleum pratense L.) seems to be very low.  相似文献   

20.
黎塘岩溶区土壤铁锰结核的地球化学特征研究   总被引:8,自引:2,他引:6  
对黎塘岩溶区土壤铁锰结核的地球化学特征研究表明:与土壤相比,铁锰结核的化学组成中仍以SiO2、Al2O3和Fe2O3为主,但Fe2O3的含量明显增加,成为铁锰结核中含量最多的氧化物,MnO含量也有一定程度增加,它们富集系数分别为5.19和3.40;铁锰结核对重金属具有明显的富集效应,其富集顺序为Cr(M)〉Pb〉Co〉Zn〉Ni〉Ba〉Li,它在土壤中的含量受成土母质及浅层地下水活动的影响。元素的相关分析及因子分析表明,铁锰结核在形成过程中还具有成核富集效应、专性吸附效应和成核易淋溶效应。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号