首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We tested the hypothesis that the distribution and retention of larval smelt (Osmerus mordax) in the middle estuary of the St. Lawrence River is related to the maintenance of other planktonic organisms in the maximum turbidity zone (MTZ). We documented the horizontal and vertical distribution of larval smelt, macrozooplankton, and suspended particulate matter over four tidal cycles at each of three stations located along the major axis of the turbid upstream portion of the middle estuary. During summer, the turbid, warm, and low salinity waters of the two upstream stations were characterized byNeomysis americana, Gammarus sp. (principallyG. tigrinus), larval smelt,Mysis stenolepsis, andCrangon septemspinosus. The more stratified and less turbid waters of the downstream station were characterized by a coastal marine macrozooplanktonic community and the almost total absence of smelt larvae. Within the MTZ, the distribution ofN. americana coincided with the zone of longest average advective replacement times (null zone). Smelt larvae were distributed further upstream within the MTZ thanN. americana. Overall, larger larvae were distributed further upstream than smaller larvae. The relationship between turbidity and larval density at a specific time was weak (due to resuspension of sediments but not larvae), but the mechanism responsible for producing higher residence times for both sediment and larvae on a longer term basis appears the same. The daily movement and skewed nature of the null zone (due to the general cyclonic circulation of the middle estuary) defines a geographic zone over which the larval smelt population oscillates and remains despite the mean downstream velocities over the water column.  相似文献   

2.
The effects of fortnightly, semidiurnal, and quaterdiurnal lunar tidal cycles on suspended particle concentrations in the tidal freshwater zone of the Seine macrotidal estuary were studied during periods of medium to low freshwater flow. Long-term records of turbidity show semidiurnal and spring-neap erosion-sedimentation cycles. During spring tide, the rise in low tide levels in the upper estuary leads to storage of water in the upper estuary. This increases residence time of water and suspended particulate matter (SPM). During spring tide periods, significant tidal pumping, measured by flux calculations, prevents SPM transit to the middle estuary which is characterized by the turbidity maximum zone. On a long-term basis, this tidal pumping allows marine particles to move upstream for several tens of kilometers into the upper estuary. At the end of the spring tide period, when the concentrations of suspended particulate matter are at their peak values and the low-tide level drops, the transport of suspended particulate matter to the middle estuary reaches its highest point. This period of maximum turbidity is of short duration because a significant amount of the SPM settles during neap tide. The particles, which settle under these conditions, are trapped in the upper estuary and cannot be moved to the zone of maximum turbidity until the next spring tide. From the upper estuary to the zone of maximum turbidity, particulate transport is generated by pulses at the start of the spring-neap tide transition period.  相似文献   

3.
The effects of estuarine circulation and tidal trapping on transport in the Hudson estuary were investigated by a large-scale, high-resolution numerical model simulation of a tracer release. The modeled and measured longitudinal profiles of surface tracer concentrations (plumes) differ from the ideal Gaussian shape in two ways: on a large scale the plume is asymmetric with the downstream end stretching out farther, and small-scale (1–2 km) peaks are present at the upstream and downstream ends of the plume. A number of diagnostic model simulations (e.g., remove freshwater flow) were performed to understand the processes responsible for these features. These simulations show that the large-scale asymmetry is related to salinity. The salt causes an estuarine circulation that decreases vertical mixing (vertical density gradient), increases longitudinal dispersion (increased vertical and lateral gradients in longitudinal velocities), and increases net downstream velocities in the surface layer. Since salinity intrusion is confined to the downstream end of the tracer plume, only that part of the plume is effected by those processes, which leads to the largescale asymmetry. The small-scale peaks are due to tidal trapping. Small embayments along the estuary trap water and tracer as the plume passes by in the main channel. When the plume in the main channel has passed, the tracer is released back to the main channel, causing a secondary peak in the longitudinal profile.  相似文献   

4.
The core of the turbidity maximum zone in the Saint-Lawrence Estuary is located in the North Channel and oscillates in front of the large (3×106 m2) intertidal flats and marshes of Cap Tourmente. It is shown that seasonal fluctuations in the intensity and the position of this core are mainly determined by suspended sediment exchanges between the channel and the marshes. Fine sediments, most of them found 20 km downstream in the channel off Cap Maillard in late winter and early spring, are advected upstream over the flats during the summer months by the tide. The deposition, favored by marsh plant growth, reaches 5×105 metric tons in three months. A period of intense erosion, at a mean rate of 4,500 metric tons per tide, coincides with the destruction of the plant cover by migratory geese. The material removed fills up the Chenal de l’Île d’Orléans upstream and is flushed back into the water column during the next spring freshette. This rotating seasonal sediment circulation, although very localized, exerts a major influence on the distribution and storage time of suspended particles in the upper estuary.  相似文献   

5.
Linkages among density, flow, and bathymetry gradients were explored at the entrance to the Chesapeake Bay with underway measurements of density and flow profiles. Four tidal cycles were sampled along a transect that crossed the bay entrance during cruises in April–May of 1997 and in July of 1997. The April–May cruise coincided with neap tides, while the July cruise occurred during spring tides. The bathymetry of the bay entrance transect featured a broad Chesapeake Channel, 8 km wide and 17 m deep, and a narrow North Channel, 2 km wide and 14 m deep. The two channels were separated by an area with typical depths of 7 m. Linkages among flows, bathymetry, and water density were best established over the North Channel during both cruises. Over this channel, greatest convergence rates alternated from the left (looking into the estuary) slope of the channel during ebb to the right slope during flood as a result of the coupling between bathymetry and tidal flow through bottom friction. These convergences were linked to the strongest transverse shears in the along-estuary tidal flow and to the appearance of salinity fronts, most markedly during ebb periods. In the wide channel, the Chesapeake Channel, frontogenesis mechanisms over the northern slope of the channel were similar to those in the North Channel only in July, when buoyancy was relatively weak and tidal forcing was relatively strong. In April–May, when buoyancy was relatively large and tidal forcing was relatively weak, the recurrence of fronts over the same northern slope of the Chesapeake Channel was independent of the tidal phase. The distinct frontogenesis in the Chesapeake Channel during the increased buoyancy period was attributed to a strong pycnocline that insulated the surface tidal flow from the effects of bottom friction, which tends to decrease the strength of the tidal flow over relatively shallow areas.  相似文献   

6.
Hughes  Harris  & Hubble 《Sedimentology》1998,45(2):397-410
Bed sediment, velocity and turbidity data are presented from a large (145 km long), generally well-mixed, micro-tidal estuary in south-eastern Australia. The percentage of mud in the bed sediments reaches a maximum in a relatively narrow zone centred ≈30–40 km from the estuary mouth. Regular tidal resuspension of these bed sediments produces a turbidity maximum (TM) zone in the same location. The maximum recorded depth-averaged turbidity was 90 FTU and the maximum near-bed turbidity was 228 FTU. These values correspond to suspended particulate matter (SPM) concentrations of roughly 86 and 219 mg l?1, respectively. Neither of the two existing theories that describe the development and location of the TM zone in the extensively studied meso- and macro-tidal estuaries of northern Europe (namely, gravitational circulation and tidal asymmetry) provide a complete explanation for the location of the TM zone in the Hawkesbury River. Two important factors distinguish the Hawkesbury from these other estuaries: (1) the fresh water discharge rate and supply of sediment to the estuary head is very low for most of the time, and (2) suspension concentrations derived from tidal stirring of the bed sediments are comparatively low. The first factor means that sediment delivery to the estuary is largely restricted to short-lived, large-magnitude, fluvial flood events. During these events the estuary becomes partially mixed and it is hypothesized that the resulting gravitational circulation focuses mud deposition at the flood-determined salt intrusion limit (some 35 km seaward of the typical salt intrusion limit). The second factor means that easily entrained high concentration suspensions (or fluid muds), typical of meso- and macro-tidal estuaries, are absent. Maintenance of the TM zone during low-flow periods is due to an erosion-lag process, together with a local divergence in tidal velocity residuals, which prevent the TM zone from becoming diffused along the estuary axis.  相似文献   

7.
潮汐河口泥沙运动复杂多变,科学划分泥沙运动形式并评估其对航道淤积的影响,是厘清航道淤积泥沙来源、制定有效减淤措施的关键。基于长江口深水航道所处南港—北槽河段2015年和2018年洪季、枯季表层沉积物和近底悬沙的现场采样数据,分析提出潮汐条件下推移质、悬移质和时推时悬泥沙3类泥沙运动形式的粒径划分方法,量化3类泥沙对深水航道淤积的贡献比例。结果表明:近底悬沙级配曲线上拐点粒径对泥沙由推移质向悬移质转化具有较好的指示意义;长江口南港—北槽悬沙、底沙交换显著,深水航道淤积物中除仅做推移质或悬移质运动的泥沙外,还包括大量的时推时悬泥沙,其在航道淤积泥沙中的占比最高,约达50%~60%;南港段航道洪季、枯季推移质淤积占比分别为36%和26%,高于悬移质的6%和13%;北槽段航道悬移质落淤泥沙占比为44%~48%,明显较推移质3%~6%的占比高。3类泥沙运动形式粒径划分方法为深化潮汐河口泥沙运动规律认识、判别航道淤积泥沙来源提供了新途径。  相似文献   

8.
Secondary turbidity maximum in a partially mixed microtidal estuary   总被引:2,自引:0,他引:2  
Data from a two-year period of monthly slackwater surveys reveal that in addition to the classical estuary turbidity maximum (ETM), another peak of bottom total suspended sediment (TSS) concentration, or a so-called secondary turbidity maximum (STM), often exists in the middle part of the York River estuary, Virginia. This STM, observed in most (but not all) of the slackwater surveys, moves back and forth in the region of about 20 to 40 km from the York River mouth where the mud percentage of bottom sediment is very high. The distribution of the potential energy anomaly, which was calculated using salinity data, indicates that the STM usually resides in the transition zone between the upstream well mixed and the downstream more stratified water columns. An analysis using the conservation equation of suspended sediment concentration in the water column reveals that four processes may contribute to the formation of the STM: convergence of bottom residual flow, tidal asymmetry, inhibition of turbulent diffusion by stratification, and bottom resuspension. The along-channel variations of the strength of bottom residual flow, the effect of tidal asymmetry, and the stratification patterns are probably due to the geometric features of the York River estuary.  相似文献   

9.
 The Mfolozi Estuary on the KwaZulu-Natal coast of South Africa is the most turbid estuary in Natal due to poor catchment management, leading to large quantities of suspended particulate matter (SPM) entering the estuary from the Mfolozi River. This paper quantities some of the solute and sediment dynamics in the Mfolozi Estuary where the main documented environmental concern is the periodic input of SPM from the Mfolozi Estuary to the St. Lucia system, causing reduction of light penetration and endangering biological productivity in this important nature reserve. Synoptic water level results have allowed reach mean bed shear stresses and velocities to be calculated for an observed neap tidal cycle. Results indicate that ebb velocities dominate the sediment transport processes in the estuary when fluvial input in the Mfolozi River is of the order of 15–20 m3 s–1. Observed and predicted flood tide velocities are too low (<0.35 m s–1) to suspend and transport significant amounts of SPM. Observed results indicate that although the SPM load entering the estuary is dominantly from the Mfolozi River, the Msunduzi River flow plays a major role in the composition of the estuary's salinity and velocity fields. It is calculated that the Mfolozi Estuary would fill with sediment in 1.3 years if it was cut off from the sea. The major fluvial flood events help maintain the estuary by periodically pushing sediment seawards (spit progrades seawards 5 m yr–1) and scouring and maintaining the main flow channel in the estuary. During low fluvial flow conditions, tidal flow velocities will become the dominant control on sediment transport in the estuary. Interchange of SPM between the St. Lucia and Mfolozi estuaries under present conditions is complicated by the strong transverse velocity shear between the two systems at their combined mouth. This is creating a salinity-maintained axial convergence front that suppresses mixing of solutes and SPM between the systems for up to 10 h of the tidal cycle during observed conditions. Received: 22 May 1995 · Accepted: 31 July 1995  相似文献   

10.
长江口12.5 m深水航道回淤特征   总被引:1,自引:0,他引:1       下载免费PDF全文
针对长江口12.5 m深水航道的回淤问题,收集整理了2010—2012年的航道回淤资料和水文测验资料,研究了航道回淤的时空变化特征及其与径流、潮流和含沙量的关系。结果表明:航道回淤呈洪季大、枯季小的年内变化特征,大风骤淤明显;航道回淤沿程主要集中在南港—圆圆沙段和北槽中下段,其回淤量占全航道的80%以上。南港—圆圆沙段回淤的泥沙颗粒以细砂为主,回淤强度与径流的关系不密切,与潮流的关系表现为大潮大、小潮小。北槽航道回淤泥沙颗粒以粉砂为主,回淤部位随径、潮流变化而变化,表现为径流增大,回淤部位下移;潮动力减弱,回淤部位上提。长江口拦门沙水域泥沙的再悬浮,可能是航道淤积最主要的泥沙来源。  相似文献   

11.
Tidal flow and fine-sediment transport at the South Channel–North Passage of the partially-mixed Changjiang River estuary were studied using a two-dimensional horizontal (2DH) numerical model. This 2DH model was achieved by depth-integrating the momentum and convection–diffusion equations. The Alternating Direction Implicit scheme was used to solve the governing equations. The iterative method was adopted for the calculation of convection and diffusion terms of momentum equation. Comparisons between calculated and measured results (tidal elevations and depth-averaged velocities) have shown reasonable agreement. Horizontal distributions of tidal current velocity and suspended sediment concentration were qualitatively consistent with observations. Those modeled results were analyzed to elucidate the mechanisms for the formation of the turbidity maximum and intratidal variations in fine-sediment transport processes.  相似文献   

12.
Reactive dissolved Hg (HgR), non-reactive dissolved Hg (HgNR), particulate Hg (HgP), dissolved organic C (DOC), particulate organic C (POC), salinity and other interpretative parameters were determined in water samples collected in the North Channel and in adjacent areas of the Tagus estuary (Portugal). Higher concentrations of both dissolved and particulate Hg in the North Channel indicate a pollution source and raise the possibility of Hg escaping to adjacent areas by tidal action. This transport was confirmed by the increase of HgR with salinity and HgNR with DOC, along a longitudinal axis paralleling the North Channel. Apparently, Hg leaving this channel is progressively complexed by inorganic and organic ligands. Near the mouth of the estuary, values decreased reflecting dilution with seawater. Moreover the HgP:POC ratio also increased seaward, suggesting mixing with Hg enriched particles that escaped the North Channel, or incorporation of dissolved Hg species in river-derived particles. These results suggest that the pathway of anthropogenic Hg in contaminated waters may be identified by their enrichment in organic matter, both in the dissolved and particulate fraction.  相似文献   

13.
长江口南支河段盐水入侵规律的研究   总被引:20,自引:0,他引:20  
依据实测资料分析和数学模型计算分析了上游径流、外海潮流以及河势变化对长江口南支河段盐水入侵的,同时着重研究了长江口北支以及南支下游的南、北港三个盐水入侵源对南支河段盐水入侵的影响。研究表明:徐六泾水域基本不受盐水入侵的影响;浏河口以上主要为北支倒灌盐水所控制;钱泾、七丫口河段受北支倒灌的影响;宝钢水域受到三个人入侵源的共同影响,其含氯度峰值一般发生在中、小潮期,主要取决于北支倒灌南支的过境盐水。综  相似文献   

14.
The Humber Estuary, UK, divides into the Ouse and Trent estuaries at the so-called Apex within its upper reaches. Remotely sensed Compact Airborne Spectrographic Imager (CASI) images and boat measurements were used to observe a strong turbidity maximum in the upper Humber and Ouse during a spring tide in November 1995. Surface suspended particulate matter (SPM) concentrations during the late ebb, as estimated from the CASI data, increased from approximately 6 to 13 g I−1 moving up-estuary into the Ouse. Greater SPM concentrations (∼10 g I−1) were evident in the deeper channels of the Ouse, compared with shallower areas, possibly due to faster ebb currents there and differential down-estuary advection of the turbidity maximum. Ribbons, or streaks, of lower SPM and slightly cooler waters were observed. It appears that slightly cooler and lower turbidity waters from the confluent Trent estuary remained fairly distinct for distances of approximately 2 km down-stream of its confluence with the upper Humber and Ouse. These waters eventually broke into ribbon-like or streak-like structures within the higher SPM-laden and slightly warmer waters of the Humber. They were discernible for more than 5 km down-estuary of the confluence of the Humber, Ouse, and Trent. Boat measurements showed that the turbidity maximum occurred over a fairly restricted region of the upper Humber, between about 20 to 50 km from the tidal limit at high water. The turbidity maximum’s sediment load was largely suspended in the water column during stronger currents. SPM rapidly settled close to the bed during high water and low water slack periods. At these times, SPM concentrations in a thin, near-bed layer were >60 g I−1 in the turbidity maximum region of the Ouse and >30 g 1−1 in the upper Humber (where channel volumes were much greater). SPM within the turbidity maximum comprised very fine-grained material and its low organic content demonstrated that the SPM was essentially mineral, clastic sediment derived originally from erosion and decay of crustal rocks.  相似文献   

15.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

16.
In October of 2004, a 3-d observational program to measure flow and sediment resuspension within a coastal intertidal salt marsh was conducted in the North Inlet/Winyah Bay National Estuarine Research Reserve located near Georgetown, South Carolina. Current and acoustic backscatter profiles were obtained from a moored acoustic Doppler current profiler (ADCP) deployed in a shallow tidal channel during the spring phase of the tidal cycle under high discharge conditions. The channel serves as a conduit between Winyah Bay, a large brackish estuary, and North Inlet, a saline intertidal coastal salt marsh with little freshwater input. Salinity measurements indicate that the water column is vertically well mixed during flood, but becomes vertically stratified during early ebb. The stratification results from brackish (15 psu) Winyah Bay water entering North Inlet via the tidal channel, suggesting an exchange mechanism that permits North Inlet to receive a fraction of the poor water quality and high discharge flow from upland rivers. Although maximum flood currents exceed maximum ebb currents by 0.2 m s−1, suspended sediment concentrations are highest during the latter ebb phase and persist for a longer fraction of the ebb cycle. Even though the channel is flood-dominated, the higher concentrations occurring over a longer fraction of the ebb phase indicate net particulate transport from Winyah Bay to North Inlet during spring tide accompanied by high discharge. Our evidence suggests that the higher concentrations during ebb result from increased bed friction caused by flow asymmetries and variations in water depth in which the highest stresses occur near the end of ebb near low water despite stronger maximum currents during flood.  相似文献   

17.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   

18.
This study was conducted in the freshwater reach of the Santee River approximately 55?±?4?km from the mouth, a transition zone from a fluvial to an estuarine tidal regime. The dataset comprises bathymetric surveys, current profile and bottom pressure measurements at two locations, and time series of discharge. Our data indicate that the transition zone is characterized by strong tidal dissipation and distinctive channel geometry. Tidal dissipation is evident in the rapid decrease of the M2 amplitude to the mean along-channel velocity ratio from 2.1 to 0.9 over a ??6-km distance. Channel cross-sectional area in the transition zone converges at a higher rate than both upstream and downstream while channel depth reveals threefold variations in the form of adjacent shoals and deeps. We hypothesize that the enhanced tidal dissipation is at the same time a cause and a result of strongly convergent bathymetry in the transition zone.  相似文献   

19.
Understanding rates of nitrogen cycling in estuaries is crucial for understanding their productivity and resilience to eutrophication. Nitrification, the microbial oxidation of ammonia to nitrite and nitrate, links reduced and oxidized forms of inorganic nitrogen and is therefore an important step of the nitrogen cycle. However, rates of nitrification in estuary waters are poorly characterized. In fall and winter of 2011–2012, we measured nitrification rates throughout the water column of all major regions of San Francisco Bay, a large, turbid, nutrient-rich estuary on the west coast of North America. Nitrification rates were highest in regions furthest from the ocean, including many samples with rates higher than those typically measured in the sea. In bottom waters, nitrification rates were commonly at least twice the magnitude of surface rates. Strong positive correlations were found between nitrification and both suspended particulate matter and ammonium concentration. Our results are consistent with previous studies documenting high nitrification rates in brackish, turbid regions of other estuaries, many of which also showed correlations with suspended sediment and ammonium concentrations. Overall, nitrification in estuary waters appears to play a significant role in the estuarine nitrogen cycle, though the maximum rate of nitrification can differ dramatically between estuaries.  相似文献   

20.
A three-dimensional, intratidal sediment transport model is developed for the estuarine turbidity maximum (ETM) in the upper Chesapeake Bay. The model considers three particle size classes, including the fine class mostly in suspension in the water column, the medium class alternately suspended and deposited by tidal currents, and the coarse size suspended only during the times of relatively high energy events. Based on the results of a box model, depth-limited erosion with continuous deposition is employed for the medium and coarse classes by varying the critical shear stress for erosion as a function of eroded mass. For the fine class, mutually exclusive erosion and deposition is employed with a small constant value for the critical shear stresses for erosion and deposition to assure quick erosion of recently deposited fine particles but without allowing further erosion of consolidated bed sediments. The model is run to simulate the annual condition in 1996, and the model generally gives a reasonable reproduction of the observed characteristics of the ETM relative to the salt limit and tidal phase. The model results for 1996 are analyzed to study the characteristics of the ETM along the main channel of the upper bay in intertidal and intratidal time scales. Under a low flow condition, local erosion/deposition and bottom horizontal flux convergence are the main processes responsible for the formation of the ETM, with the settling flux confining the ETM to the bottom water. Under a high flow condition, a distinctive ETM is formed by strong convergence of the downstream flux of sediments eroded from the upstream of the null zone and the upstream flux of sediments settled at the downstream of the null zone. Intratidal variation of the ETM is mainly controlled by erosion and the tidal transport of eroded sediments for a low flow condition. Under the direct influence of a high flow event, the ETM is mainly formed by erosion during ebbing tidal current strengthened by large freshwater discharge and by convergence of ebbing freshwater discharge and flooding tidal current. During the rebounding stage of a high flow event, intratidal variations are mainly controlled by tidal asymmetry caused by the interaction between tidal currents, gravitational circulation, and stratification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号