共查询到20条相似文献,搜索用时 26 毫秒
1.
Sediment cores from two bedrock-dammed lakes in North Fork Big Pine Creek, Sierra Nevada, California, preserve the most detailed and complete record of Holocene glaciation yet recovered in the region. The lakes are fed by outwash from the Palisade Glacier, the largest (~1.3 km2) and presumably longest-lived glacier in the range, and capture essentially all of the rock flour it produces. Distinct late-Holocene (Matthes) and late-Pleistocene (Recess Peak) moraines lie between the modern glacier and the lakes. The lakes have therefore received continuous sedimentation from the basin since the retreat of the Tioga glacier (Last Glacial Maximum) and capture rock flour related to all post-LGM advances. A total of eight long cores (up to 5.5 m sediment depth) and one short surface sediment short core preserve a coherent record of fluctuating rock flour flux to the lakes through the Holocene. Age constraints on rock flour spikes in First and Second lakes based on 31 14C-dated macrofossils indicate Holocene glaciation began ~3200 cal yr B P, followed by a possible glacier maximum at ~2800 cal yr B P and four distinct glacier maxima at ~2200, ~1600, ~700 and ~250-170 cal yr. B.P., the most recent maximum being the largest.Reconstruction of the equilibrium-line altitudes (ELA) associated with each distinct advance recorded in the moraines (Recess Peak, Matthes, and modern) indicates ELA depressions (relative to modern) of ~250 m and 90 m for Recess Peak and Matthes advances, respectively. These differences represent decreases in summer temperatures of 1.7–2.8 °C (Recess Peak) and 0.2–2° (Matthes), and increases in winter precipitation of 22-34 cm snow water equivalent (s.w.e.) (Recess Peak) and 3-26 cm s.w.e. (Matthes) compared to modern conditions. Although small, these changes are significant and similar to those noted in the Cascade Range to the north, and represent a significant departure from historical climate trends in the region. 相似文献
2.
Pleistocene fluvial landforms and riparian ecosystems in central California responded to climate changes in the Sierra Nevada, yet the glacial history of the western Sierra remains largely unknown. Three glacial stages in the northwestern Sierra Nevada are documented by field mapping and cosmogenic radionuclide surface-exposure (CRSE) ages. Two CRSE ages of erratic boulders on an isolated till above Bear Valley provide a limiting minimum age of 76,400±3800 10Be yr. Another boulder age provides a limiting minimum age of 48,800±3200 10Be yr for a broad-crested moraine ridge within Bear Valley. Three CRSE ages producing an average age of 18,600±1180 yr were drawn from two boulders near a sharp-crested bouldery lateral moraine that represents an extensive Tioga glaciation in Bear Valley. Nine CRSE ages from striated bedrock along a steep valley transect average 14,100±1500 yr and suggest rapid late-glacial ice retreat from lower Fordyce Canyon with no subsequent extensive glaciations. These ages are generally consistent with glacial and pluvial records in east-central California and Nevada. 相似文献
3.
Kenneth Cole 《Quaternary Research》1983,19(1):117-129
Seven packrat midden samples make possible a comparison between the modern and late Pleistocene vegetation in Kings Canyon on the western side of the southern Sierra Nevada. One modern sample contains macrofossils and pollen derived from the present-day oak-chaparral vegetation. Macrofossils from the six late Pleistocene samples record a mixed coniferous forest dominated by the xerophytic conifers Juniperus occidentalis, Pinus cf. ponderosa, and P. monophylla. The pollen spectra of these Pleistocene middens are dominated by Pinus sp., Taxodiaceae-Cupressaceae-Taxaceae (TCT), and Artemisia sp. Mesophytic conifers are represented by low macrofossil concentrations. Sequoiadendron giganteum is represented by a few pollen grains in the full glacial. Edaphic control and snow dispersal are the most likely causes of these mixed assemblages.The dominant macrofossils record a more xeric plant community than those that now occur on similar substrates at higher elevations or latitudes in the Sierra Nevada. These assemblages suggest that late Wisconsin climates were cold with mean annual precipitation not necessarily greater than modern values. This conclusion supports a model of low summer ablation allowing for the persistence of the glaciers at higher elevations during the late Wisconsin. The records in these middens also suggest that S. giganteum grew at lower elevations along the western side of the range and that P. monophylla was more widely distributed in cismontane California during the Pleistocene. 相似文献
4.
Owen K. Davis R. Scott Anderson Patricia L. Fall Mary K. O'Rourke Robert S. Thompson 《Quaternary Research》1985,24(3):322-332
Sediments of Balsam Meadow have produced a 11,000-yr pollen record from the southern Sierra Nevada of California. The Balsam Meadow diagram is divided into three zones. (1) The Artemisia zone (11,000–7000 yr B.P.) is characterized by percentages of sagebrush (Artemisia) and other nonarboreal pollen higher than can be found in the modern local vegetation. Vegetation during this interval was probably similar to the modern vegetation on the east slope of the Sierra Nevada and the climate was drier than that of today. (2) Pinus pollen exceeded 80% from 7000 to 3000 yr B.P. in the Pinus zone. The climate was moister than during the Artemisia zone. (3) Fir (Abies, Cupressaceae, and oak (Quercus) percentages increased after 3000 yr B.P. in the Abies zone as the modern vegetation at the site developed and the present cool-moist climatic regime was established. Decreased fire frequency after 1200 yr B.P. is reflected in decreased abundance of macroscopic charcoal and increased concentration of Abies magnifica and Pinus murrayana needles. 相似文献
5.
Basil Tikoff Matthew R. Davis Christian Teyssier Michel de St. Blanquat Guillaume Habert Sven Morgan 《Tectonophysics》2005,400(1-4):209-226
The Cascade Lake shear zone occurs on the eastern margin of the Tuolumne Intrusive Suite, Sierra Nevada Batholith, California. Foliation in the zone is NNW trending and subvertical, and lineation is moderately south plunging. Deformation is syn-tectonic with emplacement of the Cathedral Peak granodiorite. A deformation gradient exists toward the NE margin of this pluton, with higher strains and lower temperatures of deformation found near the contact. We compare fabric data collected very densely in this shear zone using several techniques: field fabrics, 3D orientation of K-feldspar megacrysts, and AMS (anisotropy of magnetic susceptibility) analysis. In general, the results from the three different methods are in agreement. Deformation in this shear zone is part of a larger pattern of deformation within the Cathedral Peak granodiorite, as recorded by AMS analysis, and dextral shearing associated within the last stage of plutonism within the Sierra Nevada magmatic arc. 相似文献
6.
We use 10Be surface exposure dating to construct a high-resolution chronology of glacial fluctuations in the Sierra Nevada, California. Most previous studies focused on individual glaciated valleys, whereas our study compares chronologies developed throughout the range to identify regional patterns in the timing of glacier response to major climate changes. Sites throughout the range indicate Last Glacial Maximum retreat at 18.8 ± 1.9 ka (2σ) that suggests rather consistent changes in atmospheric variables, e.g., temperature and precipitation, throughout the range. The penultimate glacial retreat occurred at ca 145 ka. Our data suggest that the Sierra Nevada landscape is dominated by glacial features deposited during marine isotope stage (MIS) 2 and MIS 6. Deposits of previously recognized glaciations between circa 25 and 140 ka, e.g., MIS 4, Tenaya, early Tahoe, cannot be unequivocally identified. The timing of Sierra Nevada glacial retreat correlates well with other regional paleoclimate proxies in the Sierra Nevada, but differs significantly from paleoclimate proxies in other regions. Our dating results indicate that the onset of LGM retreat occurred several thousand years earlier in the Sierra Nevada than some glacial records in the western US. 相似文献
7.
The distribution of radiogenic heat production as a function of depth in the Sierra Nevada Batholith, California 总被引:4,自引:0,他引:4
Geochemical analyses and geobarometric determinations have been combined to create a depth vs. radiogenic heat production database for the Sierra Nevada batholith, California. This database shows that mean heat production values first increase, then decrease, with increasing depth. Heat production is 2 μW/m3 within the 3-km-thick volcanic pile at the top of the batholith, below which it increases to an average value of 3.5 μW/m3 at 5.5 km depth, then decreases to 0.5–1 μW/m3 at 15 km depth and remains at these values through the entire crust below 15 km. Below the crust, from depths of 40–125 km, the batholith's root and mantle wedge that coevolved beneath the batholith appears to have an average radiogenic heat production rate of 0.14 μW/m3. This is higher than the rates from most published xenolith studies, but reasonable given the presence of crustal components in the arc root assemblages. The pattern of radiogenic heat production interpreted from the depth vs. heat production database is not consistent with the downward-decreasing exponential distribution predicted from modeling of surface heat flow data. The interpreted distribution predicts a reasonable range of geothermal gradients and shows that essentially all of the present day surface heat flow from the Sierra Nevada could be generated within the 35 km thick crust. This requires a very low heat flux from the mantle, which is consistent with a model of cessation of Sierran magmatism during Laramide flat-slab subduction, followed by conductive cooling of the upper mantle for 70 m.y. The heat production variation with depth is principally due to large variations in uranium and thorium concentration; potassium is less variable in concentration within the Sierran crust, and produces relatively little of the heat in high heat production rocks. Because silica content is relatively constant through the upper 30 km of the Sierran batholith, while U, Th, and K concentrations are highly variable, radiogenic heat production does not vary directly with silica content. 相似文献
8.
Exposure of a late cretaceous layered mafic-felsic magma system in the central Sierra Nevada batholith,California 总被引:1,自引:0,他引:1
D. S. Coleman A. F. Glazner J. S. Miller K. J. Bradford T. P. Frost J. L. Joye C. A. Bachl 《Contributions to Mineralogy and Petrology》1995,120(2):129-136
New U-Pb zircon ages for the Lamarck Granodiorite, associated synplutonic gabbro and diorite plutons, and two large mafic intrusive complexes that underlie them in the Sierra Nevada batholith are 92±1 Ma. These ages establish the Late Cretaceous as a period of extensive mafic-felsic magmatism in the central part of the batholith, and confirm the significance of mafic magmatism in the evolution of the voluminous silicic plutions in the Sierran arc. The lack of significant zircon inheritance in any of the units analyzed supports isotopic evidence that the Lamarck and other Late Cretaceous Sierran plutons were derived predominantly from young crust. Recognition of an extensive mafic-felsic magma system in the Sierra Nevada batholith emphasizes the importance of basaltic liquids in the evolution of continental crust in arc settings. 相似文献
9.
Pb and Sr systematics of ultrapotassic and basaltic rocks from the central Sierra Nevada,California 总被引:1,自引:0,他引:1
Gerald K. Van Kooten 《Contributions to Mineralogy and Petrology》1981,76(4):378-385
This study presents Sr and Pb isotopic ratios and Rb, Sr, U, Th, and Pb concentrations of an ultrapotassic basaltic suite and related rocks from the central Sierra Nevada, California. The ultrapotassic suite yields a narrow range of Sr and Pb isotopic compositions (87Sr/86Sr=0.70597–0.70653; 206Pb/ 204Pb=18.862–19.018; 207Pb/204Pb=15.640–15.686; 208Pb/ 204Pb=38.833–38.950). Associated basalts containing ultramafic nodules have less radiogenic Sr (87Sr/86=0.70430–0.70521) and generally higher Rb/Sr ratios than the ultrapotassic suite. Leucitites from Deep Springs Valley, California, contain high 87Sr/86Sr (71141–0.71240) and low 206Pb/204Pb (17.169–17.234) ratios, reflecting contamination by crustal granulite.The isotopic relationships support an origin of the ultrapotassic basaltic suite by partial melting of an enriched upper mantle source. Dehydration of a gently inclined oceanic slab beneath the Sierra Nevada may have provided Ba, K, Rb, Sr, and H2O, which migrated into the overlying upper mantle lithosphere. The end of subduction 10 m.y. ago allowed increased asthenospheric heat flow into the upper mantle lithosphere. The increased heat flow enhanced fluid movement in the upper mantle and contributed towards isotopic homogenization of the upper mantle source areas. Continued heating of the enriched upper mantle caused partial melting and subsequent eruption of the ultrapotassic lavas. 相似文献
10.
Geochemical characteristics of crustal anatexis during the formation of migmatite at the Southern Sierra Nevada,California 总被引:14,自引:0,他引:14
Lingsen?ZengEmail author Jason?B.?Saleeby Mihai?Ducea 《Contributions to Mineralogy and Petrology》2005,150(4):386-402
We provide data on the geochemical and isotopic consequences of nonmodal partial melting of a thick Jurassic pelite unit at mid-crustal levels that produced a migmatite complex in conjunction with the intrusion of part of the southern Sierra Nevada batholith at ca. 100 Ma. Field relations suggest that this pelitic migmatite formed and then abruptly solidified prior to substantial mobilization and escape of its melt products. Hence, this area yields insights into potential mid-crustal level contributions of crustal components into Cordilleran-type batholiths. Major and trace-element analyses in addition to field and petrographic data demonstrate that leucosomes are products of partial melting of the pelitic protolith host. Compared with the metapelites, leucosomes have higher Sr and lower Sm concentrations and lower Rb/Sr ratios. The initial 87Sr/86Sr ratios of leucosomes range from 0.7124 to 0.7247, similar to those of the metapelite protoliths (0.7125–0.7221). However, the leucosomes have a much wider range of initial εNd values, which range from −6.0 to −11.0, as compared to −8.7 to −11.3 for the metapelites. Sr and Nd isotopic compositions of the leucosomes, migmatites, and metapelites suggest disequilibrium partial melting of the metapelite protolith. Based on their Sr, Nd, and other trace-element characteristics, two groups of leucosomes have been identified. Group A leucosomes have relatively high Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (0.15<Rb/Sr<1.0), and initial εNd values. Group B leucosomes have relatively low Rb, Pb, Ba, and K2O contents, Rb/Sr ratios (<0.15), and initial εNd values. The low Rb concentrations and Rb/Sr ratios of the group B leucosomes together suggest that partial melting was dominated by water-saturated or H2O-fluxed melting of quartz + feldspar assemblage with minor involvement of muscovite. Breakdown of quartz and plagioclase with minor contributions from muscovite resulted in low Rb/Sr ratios characterizing both group A and group B leucosomes. In contrast, group A leucosomes have greater contributions from K-feldspar, which is suggested by: (1) their relatively high K concentrations, (2) positive or slightly negative Eu anomalies, and (3) correlation of their Pb and Ba concentrations with K2O contents. It is also shown that accessory minerals have played a critical role in regulating the partitioning of key trace elements such as Sm, Nd, Nb, and V between melt products and residues during migmatization. The various degrees of parent/daughter fractionations in the Rb–Sr and Sm–Nd isotopic systems as a consequence of nonmodal crustal anatexis would render melt products with distinct isotopic signatures, which could profoundly influence the products of subsequent mixing events. This is not only important for geochemical patterns of intracrustal differentiation, but also a potentially important process in generating crustal-scale as well as individual pluton-scale isotopic heterogeneities. 相似文献
11.
Cin-T.y Aeolus Lee 《Geochimica et cosmochimica acta》2002,66(22):3987-4005
The nature of PGE-Re (PGE = Pt, Pd, Os, Ir, Ru) behavior in subcontinental lithospheric mantle was investigated using new, high precision PGE-Re abundance measurements and previously published Re-Os isotopic analyses of peridotite xenoliths from the Sierra Nevada and Mojave Province, California. Ru/Ir ratios and Ir concentrations are constant over a wide range in S content and major-element fertility indices (e.g., Mg/(Mg+Fe)), indicating that Ru and Ir are not only compatible during partial melting, but also that their partitioning behaviors may not be controlled entirely by sulfide. Pt/Ir, Pd/Ir, Os/Ir, and Re/Ir ratios range from slightly superchondritic to distinctly subchondritic for all xenoliths except for one anomalous sample (1026V), which is characterized by radiogenic 187Os/188Os, low Re/Os ratio, and large enrichments in Cu, Os, Pt, Pd, and S relative to Ir (COPPS metasomatism). Assuming chondritic initial relative abundances, the magnitudes of some of the depletions in Pt, Pd, Os, and Re relative to Ir and Ru require incompatible behavior or substantial secondary loss. In detail, some samples, which are otherwise characterized by fertile major-element indices, exhibit low S contents and subchondritic Os/Ir and Pd/Ir ratios, indicating that depletions in Pd and Os relative to Ir are not simple functions of the degree of melting as inferred from major elements. Possible mechanisms for depleting Pt, Pd, Os, and Re relative to Ir and Ru include partitioning into chromian spinels and alloys, partitioning between sulfide and sulfide liquids, mobilization by aqueous fluids, or secondary loss associated with late-stage sulfide breakdown. However, it is not possible to explain all of the depletions in Pt, Pd, Os, and Re by any single mechanism.The preferential enrichment in Os over Re and Ir in sample 1026V is somewhat paradoxical because this sample’s radiogenic 187Os/188Os requires a metasomatic agent, originating from a source with a high time-integrated Re/Os ratio. The abundant garnet websterite xenoliths may be a suitable source because they have high Re/Os ratios, radiogenic Os, and abundant garnet, which may sequester Re over Os during partial melting. However, their extremely low Os contents require the processing of large amounts of garnet websterite to concentrate enough Os into the metasomatic sulfides needed to enrich sample 1026V in Os. The homogeneity in 187Os/188Os ratio in the remaining xenoliths suggest that their Os isotopic compositions were not significantly affected by PGE metasomatism. The singular nature of 1026V’s composition emphasizes the rarity of COPPS metasomatism. 相似文献
12.
Abstract The main porphyroblastic minerals in schists and phyllites of the Foothills terrane, Western Metamorphic Belt, central Sierra Nevada, California, are cordierite and andalusite (mostly chiastolite). Less commonly, biotite, muscovite, chlorite, garnet or staurolite are also present as porphyroblasts. The variety of porphyroblast and matrix microstructures in these rocks makes them suitable for testing three modern hypotheses on growth and deformation of porphyroblasts: (1) porphyroblast growth is always syndeformational; (2) porphyroblasts nucleate only in low-strain, largely coaxially deformed, quartz-rich (Q) domains of a crenulation foliation and are dissolved in active high-strain, non-coaxially deformed, mica-rich (M) domains, the spacing between which limits the size of the porphyroblasts; and (3) porphyroblasts generally do not rotate, with respect to geographical coordinates, during deformation, provided they do not deform internally, so that they may be used as reliable indicators of the orientation of former regional structural surfaces, even on the scale of orogenic belts. Some porphyroblast–matrix relationships in the Foothills terrane are inconsistent with hypotheses 1 and 2, and others are equivocal. For example, in many rocks it cannot be determined whether the porphyroblasts grew where the strain had already been partitioned into M and Q domains, whether the porphyroblasts caused this partitioning, or both. Although most porphyroblasts appear to be syndeformational, as predicted by hypothesis 1, observations that do not support the general application of hypotheses 1 and 2 to rocks of the Foothills terrane include: (a) lack of residual crenulations in many strain-shadows and alternative explanations where they are present; (b) absence of porphyroblasts smaller than the distance between nearest mica-rich domains; (c) nucleation of crenulations on existing porphyroblasts, rather than nucleation of porphyroblasts between existing crenulations; (d) presence of micaceous ‘arcs’in an undifferentiated matrix against some porphyroblasts, suggesting static growth; (e) absence of crenulations in porphyroblastic rocks showing sedimentary bedding; and (f) porphyroblasts with very small, random inclusions, which are probably pre-deformational. Similarly, porphyroblasts that have overgrown sets of crenulations and porphyroblasts with micaceous ‘arcs’are probably post-deformational, at least on the scale of a large thin section and probably over much larger areas, judging from mesoscopic structural evidence. Some porphyroblasts in rocks of the Foothills terrane do not appear to have rotated, with respect to geographical coordinates, during matrix deformation, in accordance with hypothesis 3, at least on the scale of a large thin section. However, other porphyroblasts evidently have rotated. In some instances, this appears to be due to mutual interference, but many apparently rotational porphyroblasts are too far apart to have interfered with each other, which indicates that the rotation was associated with deformation of the matrix. The occurrence of planar bedding surfaces adjacent to porphyroblasts about which bedding and/or foliation surfaces are folded suggests rotation of the porphyroblasts during non-coaxial flow parallel to bedding, rather than crenulation of the matrix foliation around static porphyroblasts. It appears that porphyroblasts may rotate during deformation if the matrix is relatively homogeneous, so that the strain is effectively non-coaxial. This may occur after homogenization of a matrix in response to the strongest degree of crenulation folding, whereas the same porphyroblasts may have been inhibited from rotating previously, when strain accumulation was partitioned in the matrix. 相似文献
13.
Development of an accurate chronology for glacial deposits in the Sierra Nevada has long been problematic given the lack of suitable organic material for radiocarbon dating. Lichenometry initially appeared promising as ages showed an increase from cirque headwalls to down-canyon moraines. However, while Recess Peak lichen age estimates range from 2 to 3 ka, recent work shows these deposits to be at least 10 ka older. Here, we present evidence for a late Holocene reset of Recess Peak lichen ages by significant post-depositional climate change. Following late-Pleistocene deposition of Recess Peak moraines, warming through the mid-Holocene allowed forests to advance into shallow basins eliminating local inverted tree lines. This produced a partial canopy where shading killed the original post-Pleistocene crustose lichen colonies. Late-Holocene cooling resulted in forest retreat from these basins as alpine tree line fell. Lichens then recolonized the re-exposed Recess Peak deposits. We conclude that while Recess Peak lichen ages are accurate to within the dating uncertainty of the technique, existing lichen ages actually date the timing of post-mid-Holocene cooling and recolonization, and not the original emplacement of these deposits. Thus, applications of Lichenometry should consider post-depositional environmental change when interpreting the meaning of these dates. 相似文献
14.
A framework for understanding the hydroecology of impacted wet meadows in the Sierra Nevada and Cascade Ranges, California, USA 总被引:1,自引:0,他引:1
Steven P. Loheide II Richard S. Deitchman David J. Cooper Evan C. Wolf Christopher T. Hammersmark Jessica D. Lundquist 《Hydrogeology Journal》2009,17(1):229-246
Meadows of the Sierra Nevada and Cascade mountains of California, USA, support diverse and highly productive wet-meadow vegetation dominated by sedges, rushes, grasses, and other herbaceous species. These groundwater–dependent ecosystems rely on the persistence of a shallow water table throughout the dry summer. Case studies of Bear Creek, Last Chance, and Tuolumne meadow ecosystems are used to create a conceptual framework describing groundwater–ecosystem connections in this environment. The water requirements for wet-meadow vegetation at each site are represented as a water-table-depth hydrograph; however, these hydrographs were found to vary among sites. Causes of this variation include (1) differences in soil texture, which govern capillary effects and availability of vadose water and (2) elevation-controlled differences in climate that affect the phenology of the vegetation. The field observations show that spatial variation of water-table depth exerts strong control on vegetation composition and spatial patterning. Groundwater-flow modeling demonstrates that lower hydraulic-conductivity meadow sediments, higher groundwater-inflow rates, and a higher ratio of lateral to basal-groundwater inflow all encourage the persistence of a high water table and wet-meadow vegetation, particularly at the margin of the meadow, even in cases with moderate stream incision. 相似文献
15.
The Tuolumne batholith, Sierra Nevada, California, consists of several nested granitoid units and is an example of upper-crustal
normally zoned intrusions. The two outermost units of the batholith are separated by a wide gradational contact in what is
interpreted to represent a large magma chamber. In the Potter Point area near the eastern margin of the batholith, the gradational
contact is cross-cut by a network of interconnected mafic–felsic sheets, which grade into zones of magmatic erosion by stoping
where the host granodiorite between the sheets was entirely removed and replaced by younger enclave-rich quartz diorite. We
interpret these features to record disruption of a steep solidification front, which migrated inwards from the eastern batholith
margin and separated the mushy to solidified margin from the remaining active magma chamber. When intersecting the gradational
contact, the solidification front started to break up via a network of tectonically driven fractures accompanied by simultaneous
injection of localized magma pulses. The solidification front break-up is interpreted here as an initial stage of a “recycling”
process, whereby older magma mush is disrupted and incorporated into younger magma batches, a process we propose to have been
widespread along internal contacts in the Tuolumne magma chamber. 相似文献
16.
Hornblende gabbro sill complex at Onion Valley,California, and a mixing origin for the Sierra Nevada batholith 总被引:9,自引:0,他引:9
T. W. Sisson T. L. Grove D. S. Coleman 《Contributions to Mineralogy and Petrology》1996,126(1-2):81-108
The steep crest of the Sierra Nevada, California, near Onion Valley, exposes natural cross sections through a mafic intrusive
complex that formed as part of the Mesozoic Sierra Nevada batholith. Sheeted sills of hornblende gabbro to hornblende diorite,
individually as thick as 1.5 m, form the upper 200 to 300 m of the complex. Thicker, multiply-injected sills, as well as mafic
stocks, lie underneath at elevations below 3600 m. Lens-shaped cumulate bodies, as thick as 200 m and more than 700 m broad,
lie near the base of the sheeted sill suite. Cumulates are flat-lying, modally layered hornblende gabbro with subsidiary ultramafic
olivine hornblendite, plagioclase hornblendite, and late-mobile hornblende-plagioclase pegmatite. Fine grain size, scarce
phenocrysts and xenocrysts, and quench mineral textures are evidence that hornblende gabbro sills injected in a largely liquid
state and preserve basaltic melt compositions. Most sills reached volatile saturation, as shown by tiny miarolitic cavities
that are also widespread in cumulates. Although some sills chilled directly against others, most chilled against septa, millimeters
to a few centimeters thick, of medium-grained diorite to granodiorite. Mutually crosscutting relations, as well as chilling,
show that the septa were partly molten at the time the sills injected and likely formed the lower portions of an overlying
more silicic magma chamber that has since been removed by erosion. Sill compositions range from evolved high-alumina basalt
to aluminous andesite with major and trace element abundances similar to those of modern arc magmas. Experimental phase equilibria
indicate dissolved water contents near 6 wt% (Sisson and Grove 1993a). The sills show unequivocally that hydrous arc basaltic
magmas reached shallow levels in the crust during formation of the largely granodioritic Sierra Nevada batholith. The basaltic
magmas appear to have been produced from an enriched mantle source with 87Sr/86Sr ∼0.7065, ɛNd ∼−4.3, 206Pb/204Pb ∼18.6, 207Pb/204Pb ∼15.6, 208Pb/204Pb ∼38.6. Although crystal fractionation contributed to forming the sill suite and the associated cumulates, nearly constant
concentrations of Na2O, P2O5, Nb, Zr, and light rare earth elements in the sills indicate that mixing between sill basaltic and more evolved septa magmas
was important for producing sills with andesitic compositions. Average Sierran granodiorite major and trace element concentrations
are readily reproduced by a simple mixture of average basaltic sill from Onion Valley and average Sierran low-silica granite.
This result supports the inference that Sierran granitoids formed chiefly by mixing between crustal and mantle-derived magmas,
although in some cases these crustal melts may have been derived by refusion of earlier mafic intrusions near the base of
the crust. The common mafic inclusions (enclaves) in Sierran granodiorites bear a superficial resemblance to Onion Valley
mafic sills; however, high concentrations of lithophile elements in the inclusions point to extensive chemical exchange between
inclusions and their host magmas. The prevalence of hornblende-rich mafic intrusive rocks at Onion Valley, elsewhere in the
Sierra Nevada, and in other shallow subduction batholiths stems from two effects of high melt water concentrations (∼4–6 wt%
H2O). The hydrous parent basaltic and basaltic andesite magmas had low liquidus temperatures, compared to nearly dry basaltic
melts, and thus were chilled less during ascent through the crust and were more capable of ascent as liquids. More importantly,
their high water concentrations led to low melt densities, higher than granitoid liquids, but comparable to or less dense
than partly solidified granitoid magmas. Thus, the hydrous basaltic and basaltic andesite magmas were neutrally or positively
buoyant and were capable of penetrating and rising through partly crystallized granitoids and their partly molten source regions
to reach upper crustal emplacement levels. Drier basaltic magmas were probably abundant at depth and contributed heat and
mass to granite generation, but were insufficiently buoyant to ascend to shallow levels.
Received: 2 August 1995 / Accepted: 26 June 1996 相似文献
17.
Robert J Varga 《Journal of Structural Geology》1985,7(6):667-682
Analysis of the mesoscopic structure of the early Paleozoic Shoo Fly complex, northern Sierra Nevada, California, reveals three phases of deformation and folding. The first phase of folding is pre-Late Devonian and the second two are constrained by regional relations as due to the Late Jurassic Nevadan orogeny. Main phase Nevadan deformation produced penetrative slaty cleavage which is steep, NNW-trending and parallel to tectonostratigraphic terranes of the region. Cleavage is axial-planar to ubiquitous isoclinal similar folds. Fold axes define a NNW-trending girdle with a distinct, near-vertical maximum. Main phase Nevadan folds have nearly ideal class 2 orthogonal thickness geometry although some class 1C forms exist in more competent units. The overall geometry of main phase folds suggests formation by progressive deformation in a flattening regime with cleavage as the flattening plane and a steep extension axis defined by the fold axis maximum. A steep extension axis direction for main phase Nevadan deformation is supported by analysis of interference relations where folds of this generation deform pre-Late Devonian folds. Late Nevadan folds range from kink flexures to ideal class 2 similar folds with incipient axial-planar cleavage. The kinematic significance of late Nevadan folds cannot be evaluated because of their varying style and orientation throughout the northern Sierra Nevada.Penetrative ductile deformation and near-vertical extension during the Nevadan orogeny was synchronous with accretion of oceanic and/or island arc rocks against the western margin of the northern Sierra Nevada. The kinematic framework of deformation defined for Nevadan deformation is consistent with essentially orthogonal convergence of these exotic terranes with the Sierran margin and argues against a transform/transpressive regime. 相似文献
18.
Abstract In the Twin Lakes area, central Sierra Nevada, California, most contact metamorphosed marbles contain calcite + dolomite + forsterite ± diopside ± phlogopite ± tremolite, and most calc-silicate hornfelses contain calcite + diopside + wollastonite + quartz ± anorthite ± K-feldspar ± grossular ± titanite. Mineral-fluid equilibria involving calcite + dolomite + tremolite + diopside + forsterite in two marble samples and wollastonite + anorthite + quartz + grossular in three hornfels samples record P± 3 kbar and T± 630° C. Various isobaric univariant assemblages record CO2-H2O fluid compositions of χCO2= 0.61–0.74 in the marbles and χCO2= 0.11 in the hornfelses. Assuming a siliceous dolomitic limestone protolith consisting of dolomite + quartz ° Calcite ± K-feldspar ± muscovite ± rutile, all plausible prograde reaction pathways were deduced for marble and hornfels on isobaric T-XCO2 diagrams in the model system K2O-CaO-MgO-Al2O3-SiO2-H2O-CO2. Progress of the prograde reactions was estimated from measured modes and mass-balance calculations. Time-integrated fluxes of reactive fluid which infiltrated samples were computed for a temperature gradient of 150 °C/km along the fluid flow path, calculated fluid compositions, and estimated reaction progress using the mass-continuity equation. Marbles and hornfelses record values in the range 0.1–3.6 × 104 cm3/cm2 and 4.8–12.9 × 104 cm3/cm2, respectively. For an estimated duration of metamorphism of 105 years, average in situ metamorphic rock permeabilities, calculated from Darcy's Law, are 0.1–8 × 10?6 D in the marbles and 10–27 × 10?6 D in the hornfelses. Reactive metamorphic fluids flowed up-temperature, and were preferentially channellized in hornfelses relative to the marbles. These results appear to give a general characterization of hydrothermal activity during contact metamorphism of small pendants and screens (dimensions ± 1 km or less) associated with emplacement of the Sierra Nevada batholith. 相似文献
19.
Here, we present two high-resolution records of macroscopic charcoal from high-elevation lake sites in the Sierra Nevada, California, and evaluate the synchroneity of fire response for east- and west-side subalpine forests during the past 9200 yr. Charcoal influx was low between 11,200 and 8000 cal yr BP when vegetation consisted of sparse Pinus-dominated forest and montane chaparral shrubs. High charcoal influx after ∼ 8000 cal yr BP marks the arrival of Tsuga mertensiana and Abies magnifica, and a higher-than-present treeline that persisted into the mid-Holocene. Coeval decreases in fire episode frequency coincide with neoglacial advances and lower treeline in the Sierra Nevada after 3800 cal yr BP. Independent fire response occurs between 9200 and 5000 cal yr BP, and significant synchrony at 100- to 1000-yr timescales emerges between 5000 cal yr BP and the present, especially during the last 2500 yr. Indistinguishable fire-return interval distributions and synchronous fires show that climatic control of fire became increasingly important during the late Holocene. Fires after 1200 cal yr BP are often synchronous and corroborate with inferred droughts. Holocene fire activity in the high Sierra Nevada is driven by changes in climate linked to insolation and appears to be sensitive to the dynamics of the El Niño-Southern Oscillation. 相似文献
20.
HANSON R. BROOKS; SORENSEN SORENA S.; BARTON MARK D.; FISKE RICHARD S. 《Journal of Petrology》1993,34(1):23-62
A record of > 100 million years of fluid flow, alteration,and metamorphism in the evolving Sierra Nevada magmatic areis preserved in metavolcanic rocks of the Ritter Range pendantand surrounding granitoids. The metavolcanic rocks consist of:(1) a lower section of mostly marine volcaniclastic rocks, lavas,and intercalated carbonate rocks that is Triassic to Jurassicin age, and (2) an upper section comprising a subaerial caldera-fillcomplex of mid-Cretaceous age. Late Cretaceous high-temperaturecontact metamorphism (2 kbar, >450–500C) occurredafter renewed normal faulting along the caldera-bounding faultsystem juxtaposed the two sections. The style and degree of alteration and 18O values differ amongthe rocks of the upper and lower sections and the granitoids.Rocks of the lower section show pervasive lithologically controlledalkali alteration, local Mn and Mg enrichment, and oxidation.Some ash flow tuffs now contain up to 10% K2O by weight. Therocks of the upper section show lesser extents of alkali alteration.Granitoids that cut both sections are generally unaltered. Mostmetavolcanic rocks of the lower section have high 18O values(+ 11 to + 16%; whole rock and quartz phenocrysts); however,lower-section rocks within the caldera-bounding fault systemhave low 18O values of + 4 to +7. The metavolcanic rocks ofthe upper section also have low 18O values of + 2 to + 7. Granitoidshave 18O values of + 7 to + 10, typical of unaltered Sierrangranitoids. The lower section contains discontinuous veins ofhigh-temperature (450–500C) calc-silicate minerals. Theseveins are typically <5 m long, do not cross intrusive contacts,and postdate the pervasive alkali alteration. Late veins aretypically > 10 m long, formed at temperatures of less than450–500C, and cross intrusive contacts. Veins have similar18O values to those of the local host rocks. The nature of the alteration and the high oxygen isotopic valuesof the rocks of the lower section indicate that these rocksinteracted extensively with seawater at temperatures <300C,probably in superposed marine hydrothermal systems associatedwith coeval volcanic centers. Metavolcanic rocks of the uppersection evidently interacted with meteorie waters, probablyin a hydrothermal system associated with the Cretaceous caldera;rocks of the lower section that were adjacent to the calderawere also affected by this alteration. The preservation of thesignatures of these earlier events, the nature of the earlyveins, and results from numerical models of hydrothermal flowthat include fluid production indicate that during progradecontact metamorphism, the rocks of the pendant primarily interactedwith locally derived fluids. Fluid flow was predominantly upwardand away from intrusive contacts and down-temperature. Permeabilitiesare estimated to have been between 0•1 and 1µD, whichis that necessary for maintenance of lithostatic fluid pressures.In hydrothermal models with such permeabilities, large-scalecirculation of meteoric fluids develops after prograde metamorphismceases. The nature of the late veins in the Ritter Range pendantsuggests that such a flow pattern evolved only after the pendantand granitoids had cooled below 450–500C. The long-termhistory of alteration documented in the Ritter Range pendantis probably typical of wall rocks in most batholiths
*Present address: Department of Geosciences, University of Arizona, Tucson, Arizona 85721 相似文献