共查询到20条相似文献,搜索用时 31 毫秒
1.
Assimilating the LAI Data to the VEGAS Model Using the Local Ensemble Transform Kalman Filter: An Observing System Simulation Experiment 下载免费PDF全文
Information on the spatial and temporal pat- terns of surface carbon flux is crucial to understanding of source/sink mechanisms and projection of future atmospheric CO2 concentrations and climate. This study presents the construction and implementation of a terrestrial carbon cycle data assimilation system based on a dynamic vegetation and terrestrial carbon model Vegetation-Global-Atmosphere-Soil (VEGAS) with an advanced assimilation algorithm, the local ensemble transform Kalman filter (LETKF, hereafter LETKF-VEGAS). An observing system simulation experiment (OSSE) framework was designed to evaluate the reliability of this system, and numerical experiments conducted by the OSSE using leaf area index (LAI) observations suggest that the LETKF -VEGAS can improve the estimations of leaf carbon pool and LAI significantly, with reduced root mean square errors and increased correlation coefficients with true values, as compared to a control run without assimilation. Furthermore, the LETKF-VEGAS has the potential to provide more accurate estimations of the net primary productivity (NPP) and carbon flux to atmosphere (CFta). 相似文献
2.
DRP-4DVar方法同化AIRS反演资料在一次江淮流域暴雨中的应用 总被引:1,自引:1,他引:1
利用经济省时的降维投影四维变分同化方法(DRP-4DVar),在2009年7月22~23日江淮流域的一次大暴雨过程中同化晴空条件下高光谱大气红外探测仪(AIRS)反演温度、湿度廓线,改进此次强降水过程的模拟。试验结果分析显示,同化AIRS反演的温度及湿度场后,基于四维变分同化系统的模式约束,能够改进湿度场、高度场、高低层散度场。从累积降水量偏差图及同化试验增量图可以看到,正降水量偏差对应于正湿度增量、负位势高度增量及低层负散度高层正散度增量,负降水量偏差则与之相反。同化试验较参照试验可更好地模拟出暴雨的天气形势、对暴雨的落区及强度有更好的反映。此外,从单次同化与连续同化的试验对比结果看出,连续同化试验结果较单次同化结果有进一步的改进,说明不断加入新的观测资料可以更好地模拟强降水过程。 相似文献
3.
This study examines the performance of coupling the deterministic four-dimensional
variational assimilation system (4DVAR) with an ensemble Kalman filter (EnKF) to produce a
superior hybrid approach for data assimilation. The coupled assimilation scheme (E4DVAR)
benefits from using the state-dependent uncertainty provided by EnKF while taking advantage
of 4DVAR in preventing filter divergence: the 4DVAR analysis produces posterior maximum
likelihood solutions through minimization of a cost function about which the ensemble
perturbations are transformed, and the resulting ensemble analysis can be propagated forward
both for the next assimilation cycle and as a basis for ensemble forecasting. The feasibility
and effectiveness of this coupled approach are demonstrated in an idealized model with
simulated observations. It is found that the E4DVAR is capable of outperforming both 4DVAR
and the EnKF under both perfect- and imperfect-model scenarios. The performance of the
coupled scheme is also less sensitive to either the ensemble size or the assimilation window
length than those for standard EnKF or 4DVAR implementations. 相似文献
4.
集合卡尔曼滤波数据同化在一维波动方程中的应用 总被引:3,自引:0,他引:3
简要回顾了集合卡尔曼滤波(EnKF:Ensemble Kalman Filter)数据同化方法的发展历史,并介绍了EnKF数据同化方法的基本原理,利用一维非线性波动方程进行了数值试验。EnKF数据同化方法的实现过程简单可行。避免了EKF中协方差演变方程预报过程中出现的计算不准确和关于协方差矩阵的大量数据的存储问题,最主要的是EnKF可以有效控制模式变量估计误差方差的增长,改善预报效果。 相似文献
5.
Assimilation of Hourly Surface Observations with the Canadian High-Resolution Ensemble Kalman Filter
An hourly-cycling ensemble Kalman filter (EnKF) working at 2.5?km horizontal grid spacing is implemented over southern Ontario (Canada) to assimilate Meteorological Terminal Aviation Routine Weather Reports (METARs) in addition to the observations assimilated operationally at the Canadian Meteorological Centre. This high-resolution EnKF (HREnKF) system employs ensemble land analyses and perturbed roughness length to prevent an ensemble spread that is too small near the surface. The HREnKF then performs continuously for a four-day period, from which twelve-hour ensemble forecasts are launched every six hours. The impact on analyses and short-term forecasts of assimilating METAR data is given special attention.It is shown that using ensemble land surface analyses increases near-surface ensemble spreads for temperature and specific humidity. Perturbing roughness length enlarges the spread for surface wind. Given sufficient ensemble spread, the four-day case study shows that the near-surface model state is brought closer to surface observations during the cycling process. The impact of assimilating surface data can also be seen at higher levels by using aircraft reports for verification. The ensemble forecast verification suggests that METAR data assimilation improves ensemble forecasts of air temperature and dewpoint near the surface up to a lead time of six hours or even longer. However, only minor improvement is found in surface wind forecasts. 相似文献
6.
集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的应用 总被引:7,自引:8,他引:7
此文目的是讨论污染源反演问题的统计方法.基于Bayes估计理论,该文将资料同化中的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波应用在污染源反演问题中.在详细给出污染源反演的集合平滑、集合卡尔曼平滑和集合卡尔曼滤波的严格数学表达后,用一个简单的模型演示了集合卡尔曼平滑和集合卡尔曼滤波在污染源反演中的可行性,并且通过对比理想试验结果比较了集合卡尔曼平滑和集合卡尔曼滤波方法在反演污染源排放的效果,讨论了观测误差和污染源先验误差估计对反演结果的影响.试验结果表明在观测间隔小和观测误差小的情况下,集合卡尔曼滤波和集合卡尔曼平滑都可以有效地反演出随时间变化的污染源排放.当观测误差增大时,集合卡尔曼滤波和集合卡尔曼平滑的反演效果都有一定降低,但是反演误差的增加少于观测误差的增加,同时集合卡尔曼平滑(Ensemble Kalman smoother,简称EnKS)对观测误差比集合卡尔曼滤波(Ensemble Kalman filter,简称EnKF)更为敏感.当观测时间间隔较大时,EnKF不能对没有观测时的污染源排放进行估计,仅能对有观测时的污染源排放进行较好的反演.而EnKS可以利用观测对观测时刻前的污染源排放进行反演,因此其效果明显好于EnKF,并且在观测时间间隔较大的情况下依然可以较好地反演出污染源排放.试验结果还显示污染源排放的先验误差估计对反演的结果有较大影响. 相似文献
7.
集合卡尔曼滤波同化多普勒雷达资料的观测系统模拟试验 总被引:3,自引:1,他引:3
本文将集合卡尔曼滤波同化技术应用到对流尺度系统中,实施了基于WRF模式的同化单部多普勒雷达径向风和反射率因子的观测系统模拟试验,验证了其在对流尺度中应用的可行性和有效性,并对同化系统的特性进行了探讨。试验表明:WRF-EnKF雷达资料同化系统能较准确分析模式风暴的流场、热力场、微物理量场的细致特征;几乎所有变量的预报和分析误差经过同化循环后都能显著下降,同化分析基本上能使预报场在各层上都有所改进,对预报场误差较大层次的更正更为显著;约8个同化循环后,EnKF能在雷达反射率、径向风观测与背景场间建立较可靠的相关关系,使模式各变量场能被准确分析更新,背景场误差协方差在水平方向和垂直方向都有着复杂的结构,是高度非均匀、各项异性和流依赖的;集合平均分析场做的确定性预报在短时间内能较好保持真值场风暴的细节结构,但预报误差增长较快。 相似文献
8.
基于集合Kalman滤波数据同化的热带气旋路径集合预报研究 总被引:1,自引:2,他引:1
构建了一个基于集合Kalman滤波数据同化的热带气旋集合预报系统,通过积云参数化方案和边界层参数化方案的9个不同组合,采用MM5模式进行了不同时间的短时预报。对预报结果使用“镜像法”得到18个初始成员,为同化提供初始背景集合。将人造台风作为观测场,同化后的结果作为集合预报的初值,通过不同参数组合的MM5模式进行集合预报。对2003~2004年16个台风个例的分析表明,初始成员产生方法能够对热带气旋的要素场、中心强度和位置进行合理扰动。同化结果使台风强度得到加强,结构更接近实际。基于同化的集合路径预报结果要优于未同化的集合预报。使用“镜像法”增加集合成员提高了预报准确度,路径预报误差在48小时和72小时分别低于200 km和250 km。 相似文献
9.
This study explores the potential for directly assimilating polarimetric radar data (including reflectivity Z and differential reflectivity ZDR) using an ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting
(WRF) model to improve analysis and forecast of Tropical Storm Ewiniar (2018). Ewiniar weakened but brought about heavy rainfall over Guangdong, China after its final landfall. Two experiments are performed, one assimilating only Z
and the other assimilating both Z and ZDR. Assimilation of ZDR together with Z effectively modifies hydrometeor fields, and improves the intensity, shape and position of rainbands. Forecast of 24-hour extraordinary rainfall ≥250 mm is
significantly improved. Improvement can also be seen in the wind fields because of cross-variable covariance. The current study shows the possibility of applying polarimetric radar data to improve forecasting of tropical cyclones, which
deserves more researches in the future. 相似文献
10.
集合卡尔曼滤波同化探空资料的数值试验 总被引:3,自引:1,他引:3
应用集合卡尔曼滤波(Ensemble Kalman Filter;EnKF)方法,同化了2005年7月一次暴雨过程的探空观测资料,并用非静力中尺度模式MM5进行数值模拟试验。结果表明:在理想模式的假设下,即假设真实模拟和所产生的集合用的是同一个模式并有相同的初始误差,EnKF方法同化的分析结果较好。如果不运用EnKF方法同化探空观测资料,则集合预报结果和不加扰动的单个数值预报结果都没有EnKF方法同化过的好。 相似文献
11.
基于集合卡尔曼滤波的土壤水分同化试验 总被引:20,自引:2,他引:20
集合卡尔曼滤波是由大气数据同化发展的新的顺序同化算法,它利用蒙特卡罗方法计算背景场的误差协方差矩阵,克服了卡尔曼滤波需要线性化的模型算子和观测算子的难点。我们发展了一个基于集合卡尔曼滤波和简单生物圈模型(SiB2,Simple Biosphere Model)的单点陆面数据同化方案。利用1998年7月6日至8月9日青藏高原GAME-Tibet实验区MS3608站点的观测数据进行了同化试验。结果表明,利用集合卡尔曼滤波的数据同化方法可以明显地提高表层、根区、深层土壤水分的估算精度。 相似文献
12.
13.
Impact of 4DVAR Assimilation of AIRS Total Column Ozone Observations on the Simulation of Hurricane Earl 总被引:1,自引:0,他引:1 下载免费PDF全文
The Atmospheric Infrared Sounder(AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution.In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational(4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity(PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies.With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment. 相似文献
14.
集合卡尔曼滤波同化多普勒雷达资料的数值试验 总被引:25,自引:10,他引:25
利用集合卡尔曼滤波(EnKF)在云数值模式中同化模拟多普勒雷达资料,并考察了不同条件下EnKF同化方法的性能.结果显示,经过几个同化周期后,EnKF分析结果非常接近真值.单多普勒雷达资料EnKF同化对雷达位置不太敏感,双雷达资料同化结果在同化的初期阶段比单雷达资料同化结果准确.同化由反射率导出的雨水比直接同化反射率资料更有效,联合同化径向速度和雨水有利于提高同化分析效果.协方差对EnKF同化效果起着非常重要的作用,考虑模式全部预报变量与径向速度协方差的同化效果比仅考虑速度场与径向速度协方差的同化效果好.雷达资料缺值降低了同化效果,此时增加地面常规观测资料的同化可以明显提高同化分析效果.EnKF同化技术对雷达观测资料误差不太敏感.初始集合对同化分析有较大影响.EnKF同化受集合大小和观测资料影响半径.同化对模式误差较敏感.利用EnKF同化双多普勒雷达资料,分析了一次梅雨锋暴雨过程的中尺度结构.结果表明,EnKF同化技术能够从双多普勒雷达资料反演暴雨中尺度系统的动力场、热力场和微物理场,反演的风场是较准确的,反演的热力场和微物理场分布也是基本合理的.中低层切变线是此次暴雨的主要动力特征,对流云表现为低层辐合、高层辐散并有垂直上升运动伴随,其热力特征表现为低层是低压区,高层为高压区,中部为暖区而上、下部为冷区,水汽、云水和雨水分别集中在对流云体内、上升气流区和强回波区. 相似文献
15.
本文主要目的是探讨不同模式误差方案在土壤湿度同化中的性能。基于集合Kalman滤波同化方法和AVIM (Atmosphere-Vegetation Interaction Model) 陆面模式, 利用理想试验对膨胀因子方案 (Covariance Inflation, 简称CI)、 直接随机扰动方案 (Direct Random Disturbance, 简称DRD)、 误差源扰动方案 (Source Random Disturbance, 简称SRD) 等3种模式误差方案的同化效果进行了比较, 讨论了各方案在不同观测误差、 观测层数、 观测间隔情况下的同化性能。试验结果表明在观测误差估计完全准确的情况下, 3种方案都能获得较好的同化效果, 并且SRD方案相对于真值的均方根误差最小。当观测误差估计不准确时, SRD方案的同化效果仍能基本得以保持, 而CI和DRD方案则对观测误差估计更为敏感, 同化效果下降明显。当同化多层观测时, CI和DRD方案由于难以保持不同层观测之间的匹配关系, 同化结果反而变差, 而SRD方案能有效协调同化多层观测, 增加观测层后同化结果有了进一步的改善。当观测时间间隔较大时, CI和DRD方案的同化效果显著下降; 而SRD方案由于包含了一定的误差订正功能, 在观测稀疏时仍能保持较好的同化效果。 相似文献
16.
Satellite data obtained over synoptic data-sparse regions such as an ocean contribute toward improving the quality of the initial state of limited-area models. Background error covariances are crucial to the proper distribution of satellite-observed information in variational data assimilation. In the NMC (National Meteorological Center) method, background error covariances are underestimated over data-sparse regions such as an ocean because of small differences between different forecast times. Thus, it is necessary to reconstruct and tune the background error covariances so as to maximize the usefulness of the satellite data for the initial state of limited-area models, especially over an ocean where there is a lack of conventional data. In this study, we attempted to estimate background error covariances so as to provide adequate error statistics for data-sparse regions by using ensemble forecasts of optimal perturbations using bred vectors. The background error covariances estimated by the ensemble method reduced the overestimation of error amplitude obtained by the NMC method. By employing an appropriate horizontal length scale to exclude spurious correlations, the ensemble method produced better results than the NMC method in the assimilation of retrieved satellite data. Because the ensemble method distributes observed information over a limited local area, it would be more useful in the analysis of high-resolution satellite data. Accordingly, the performance of forecast models can be improved over the area where the satellite data are assimilated. 相似文献
17.
以通用陆面模式CLM 3.0(Community Land Model 3.0)为模型算子,基于集合卡尔曼滤波(Ensemble Kalman Filter,En KF)发展了一个土壤温湿度同化系统,主要用于改进模式对土壤温湿度和地表水热通量的模拟精度,并考察集合样本数、同化频率及不同观测量的组合对同化效果的影响。该系统同化了FLUXNET两个站点(阿柔和Bondville)不同土壤深度、不同时间频率的土壤温度和湿度数据。通过对阿柔站不同集合样本数的设计,综合考虑计算成本和计算精度,最终将集合样本数设置为40。通过分析三种同化方案对同化频率的敏感性得出,同化土壤温度最为敏感,同时同化土壤温湿度次之,同化土壤湿度最不敏感。对于阿柔站点,同化系统对不同土壤深度温度和湿度的模拟精度均能提高90%,潜热通量的均方根误差由94.0 W·m~(-2)降为46.3 W·m~(-2),感热通量均方根误差由55.9 W·m~(-2)降为24.6 W·m~(-2)。Bondville站点浅层土壤温度的改进在30%左右,深层土壤温度改进达到60%,对土壤湿度的改进均在70%以上,潜热通量和感热通量的均方根误差分别从57.4 W·m~(-2)和54.4 W·m~(-2)降为51.0 W·m~(-2)和42.5 W·m~(-2)。试验结果表明,同化站点土壤温湿度数据对土壤水热状况及通量的模拟改进非常有效,同时也验证了同化土壤水分遥感产品的可行性和必要性。 相似文献
18.
目前国家气象中心业务GRAPES区域集合预报系统中集合变换卡尔曼滤波(ETKF)方法采用的是模拟观测信息,为进一步完善ETKF方法,拟对ETKF初值扰动通过引入真实探空观测资料,使扰动场能够代表真实观测的不确定信息,改善区域集合预报技巧。真实观测资料的引入会使得每日的观测数目和分布发生变化,这对ETKF方法而言可能会引起扰动振幅的不稳定,因此在引入真实观测资料的基础上设计了新的扰动振幅调节因子,通过格点空间中离散度和均方根误差关系来对初值扰动振幅进行自适应调整。从初值扰动结构、概率预报技巧以及降水预报效果等方面对比分析了基于模拟观测、真实观测以及真实观测结合新型调节因子的ETKF方案的差异,结果表明:真实探空资料能够有效应用于GRAPES区域集合预报系统中,真实观测资料与模拟观测资料相比较为稀疏,可以获得更大量级的初值扰动振幅;真实观测资料有助于提高区域集合的离散度,但对集合预报准确度以及概率预报结果的提高有限,对于降水预报效果提高也有限;新型的扰动振幅调节因子可以有效获得稳定的初值扰动振幅,并保持ETKF扰动结构,真实观测资料与扰动振幅自适应调节因子相结合,可以有效提高区域集合的概率预报结果,并有效提高降水预报效果。 相似文献
19.
Seoleun Shin Jeon-Ho Kang Hyoung-Wook Chun Sihye Lee Kwangjae Sung Kyoungmi Cho Youngsoon Jo Jung-Eun Kim In-Hyuk Kwon Sujeong Lim Ji-Sun Kang 《Asia-Pacific Journal of Atmospheric Sciences》2018,54(1):351-360
An ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter is implemented to a global non-hydrostatic Numerical Weather Prediction model on the cubed-sphere. The ensemble data assimilation system is coupled to the Korea Institute of Atmospheric Prediction Systems Package for Observation Processing, for real observation data from diverse resources, including satellites. For computational efficiency in a parallel computing environment, we employ some advanced software engineering techniques in the handling of a large number of files. The ensemble data assimilation system is tested in a semi-operational mode, and its performance is verified using the Integrated Forecast System analysis from the European Centre for Medium-Range Weather Forecasts. It is found that the system can be stabilized effectively by additive inflation to account for sampling errors, especially when radiance satellite data are additionally used. 相似文献
20.
The advent of modern geostationary satellite infrared radiance observations has noticeably improved numerical weather forecasts and analyses.However,compared to midlatitude weather systems and tropical cyclones,research into using infrared radiance observations for numerically predicting and analyzing tropical mesoscale convective systems remain mostly fallow.Since tropical mesoscale convective systems play a crucial role in regional and global weather,this deficit should be addressed.This study is the first of its kind to examine the potential impacts of assimilating all-sky upper tropospheric infrared radiance observations on the prediction of a tropical squall line.Even though these all-sky infrared radiance observations are not directly affected by lower-tropospheric winds,the high-frequency assimilation of these all-sky infrared radiance observations improved the analyses of the tropical squall line’s outflow position.Aside from that,the assimilation of all-sky infrared radiance observations improved the analyses and prediction of the squall line’s cloud field.Finally,reducing the frequency of assimilating these all-sky infrared radiance observations weakened these improvements to the analyzed outflow position,as well as the analyses and predictions of cloud fields. 相似文献