首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of the anticyclonic eddy's shedding from the Kuroshio bend in Luzon Strait has been studied using a nonlinear 2 1/2 layer model, in a domain including the North Pacific and South China Sea. The model is forced by steady zonal wind in the North Pacific. Energy analysis is adopted to detect the mechanism of the eddy shedding. Twelve experiments with unique changes of wind forcing speed (to obtain different Kuroshio transports at Luzon Strait) were performed to examine the relationship between the Kuroshio transport (KT) and the eddy shedding events. In the reference experiment with KT of 22.7 Sv (forced with zonal wind idealized from the annual mean wind stress from the COADS data set), the interval of eddy shedding is 70 days and the shed eddy centers at (20°N, 117.5°E). When the Kuroshio bend extends westward, the southern cyclonic perturbation grows so rapidly as to form a cyclonic eddy (18.5°N, 120.5°E) because of the frontal instability in the south of the Kuroshio bend. In the evolution of the cyclonic eddy, it cleaves the Kuroshio bend and triggers the separation of the anticyclonic eddy. In statistical terms, anticyclonic eddy shedding occurs only when KT fluctuates within a moderate range, between 21 Sv and 28 Sv. When the KT is larger than 28 Sv, a stronger frontal instability south of the Kuroshio bend tends to generate a cyclonic eddy of size similar to the width of the Luzon Strait. The bigger cyclonic eddy prevents the Kuroshio bend from extending into the SCS and does not lead to eddy shedding. On the other hand, when the KT decreases to less than 21 Sv, the frontal instability south of the Kuroshio bend is so weak that the size of corresponding cyclonic eddy is smaller than half the width of the Luzon Strait. The cyclonic eddy, lacking power, fails to cleave the Kuroshio bend and cause separation of an anticyclonic eddy; as a result, no eddy shedding occurred then, either.  相似文献   

2.
黑潮在流经吕宋海峡时呈现各种时间尺度的流态变化。本文基于高分辨率的区域海洋环流模式(ROMS)输出数据,分析了黑潮主流轴在吕宋海峡附近的变化特征和可能原因。研究结果表明,黑潮流轴在该区域具有明显的年际、季节和季节内变化,其中季节内变化最为强烈;在年际和季节时间尺度上,黑潮流轴在表层主要受局地风驱动的艾克曼漂流的影响,而在次表层则主要由黑潮本身的惯性决定;在季节内时间尺度上,黑潮流轴的变化主要受制于涡旋与黑潮的相互作用。  相似文献   

3.
A method of quantifying the penetration of the Kuroshio into the Luzon Strait is improved with simulated salinity. The new method is applied in an area bounded by 0.6 correlation coefficient contour to the point of 20 N, 118 E which is determined by EOF analysis. The results suggest that the method is suitable for indicating Kuroshio’s intrusion into the South China Sea quantitatively. As an indicator, the Kuroshio penetrating the Luzon index (KLI) reveals obvious annual cycle and weak bimodality. For annual periods, indexes on the surface and subsurface which point the same events have totally opposite signs due to the winter burst of surface westward current. On long-term period, the surface and subsurface indexes have consistent signs. A subsurface index on 150 m avoiding high frequency signals from the surface can be used for indicating long-term Kuroshio intrusion variation. An anti-phase pattern in wavelet coherence map between KLI and Japan large meander index shows that the Luzon Strait is a "smoother" reducing the variability of the Kuroshio transport changes on long-term periods.  相似文献   

4.
吕宋海峡海洋环流的基本特征   总被引:5,自引:2,他引:5  
根据对高分辨率的并行海洋气候模式输出的较长时间序列的海面高度(SSH)场的分析,推断在吕宋海峡附近海区常年存在吕宋海峡黑潮流套,该流套出现于吕宋海峡的中部和北部,表现为一个舌状的SSH的高值中心自海峡东部的太平洋向西扩展到南海北部,大致到达110°E的位置,但其位置、形状、强度等表现季节变化,年际变化和季节内时间尺度变化的特征。在吕宋海峡东侧的大洋上,经常出现位置和范围时有变化的反气旋涡,与之对应,在SSH的月平均经向和纬向剖面上,吕宋海峡东侧的大洋上有永久存在的SSH高值中心。另外在1995年1~7月期间有一次完整的黑潮流环脱离黑潮主体并在南海北部向西南方向移动的过程。  相似文献   

5.
This study examines the evolution of the Kuroshio Tropical Water (KTW) from the Luzon Strait to the I-Lan Ridge northeast of Taiwan. Historical conductivity temperature depth (CTD) profiles are analyzed using a method based on the calculation of the root mean square (rms) difference of the salinity along isopycnals. In combination with analysis of the distribution of the salinity maximum, this method enables water masses in the Kuroshio and the vicinity, to be tracked and distinguished as well as the detection of the areas where water masses are modified. Vertical and horizontal eddy diffusivities are then calculated from hydrographic and current velocity data to elucidate the dynamics underlying the KTW interactions with the surrounding water masses. Changes in KTW properties mainly occur in the southern half of the Luzon Strait, while moderate variations are observed east of Taiwan on the right flank of the Kuroshio. In spite of a front dividing the KTW from the South China Sea Tropical Water (SCSTW) on Kuroshio׳s western side, mixing between these two water masses seemingly occurs in the Luzon Strait. These water masses׳ interaction is not evident east of Taiwan. The estimation of eddy diffusivities yields high horizontal diffusivities (Kh~102 m2 s−1) all along the Kuroshio path, due to the high current shear along the Kuroshio׳s flanks. The vertical diffusivity approaches 10−3 m2 s−1, with the highest values in the southern Luzon Strait. Instabilities generated when the Kuroshio encounters the rough topography of this region may enhance both vertical and horizontal diffusivities there.  相似文献   

6.
本文采用区域高分辨率海洋数值模型,将谱松弛动力降尺度方法应用于吕宋海峡及其邻近区域,对吕宋海峡黑潮流径的流型特征进行模拟与分析。实验结果显示,应用谱松弛法能够较好地改善区域模型的模拟效果:通过约束大尺度误差,不仅能直接约束区域内的大尺度海洋状态,也间接调整了小尺度过程的演变规律,改善了吕宋海峡黑潮流径的模拟效果。  相似文献   

7.
Several characteristics of water exchange in the Luzon Strait   总被引:1,自引:0,他引:1  
1IntroductionTheLuzonChannelissituatedonthewest-ernsideofthenorthernPacificandbetweenTaiwanandLuzonIslands.ItisthemainpassageofthePacificwaterenteringtheSCS.Therearenumerousdifferent-sizedislandsformingmanynarrowwaterpassagesinthischannel,sotheLuzonChannelisthegeneralnameofthesepas-sages(includingBabuyan,BalintangandBashiChannels,etc.).Customarily,theLuzonStraitiscalledtheBashiChannel.Itswidthis386kmandhasameandepthof1400m. Toagreatextent,thehydro-meteorologi-calconditionso…  相似文献   

8.
为了考察潮汐混合效应对吕宋海峡附近海域环流场的影响,本文使用ROMS区域海洋模式,通过无潮实验与有潮实验的对比分析指出,潮汐混合作用可以影响121°E断面上的水交换和120d平均的纬向流速分布;在模拟时段内加入潮汐后,模拟结果中台湾岛西南的反气旋涡强度大幅减弱,贴近黑潮东侧的涡旋强度明显强于无潮实验,证明潮汐作用可以引起吕宋海峡海洋环流场较大的改变,特别对黑潮以"跨隙"路径通过吕宋海峡有贡献。  相似文献   

9.
利用WOCE-OUT的温度资料,结合TOPEX/POSEDIENT-ERS卫星高度计资料、ParallelOceanClimateModel结果,分析了1994年2月9-19日,1994年10月26日-11月6日,1995年2月4日-14日和1997年6月23日-7月4日四个反气旋涡旋脱落时间段内南海北部的海温状况,探讨了海平面高度场中的反气旋涡在温度场中的表现特征。发现海平面高度资料中的反气旋涡对应着温度场中的高(或暖舌)温中心,其中,反气旋涡脱落发生在夏、秋季时,高温中心比海平面高度的高值中心偏西南;发生在冬季时,暖舌与海平面高度的高值中心基本一致。脱落的反气旋涡对海温的影响深度约为130~180m。  相似文献   

10.
吕宋海峡浮标轨迹的拉格朗日拟序结构分析   总被引:2,自引:0,他引:2       下载免费PDF全文
  相似文献   

11.
吕宋海峡水交换季节和年际变化特征的数值模拟研究   总被引:1,自引:0,他引:1  
利用ROMS(Regional Ocean Modeling System)建立了一套覆盖西北太平洋的涡尺度分辨率环流模型,并对吕宋海峡附近的环流进行了模拟研究。结果表明,吕宋海峡120.75°E断面净流量季节变化显著,全年均为西向输运,6月份达到最小,为0.40×106 m3/s,然后逐渐增大,在12月份达到最大,为6.14×106 m3/s,全年平均流量为3.04×106 m3/s。在500 m以浅,秋、冬季都有明显的黑潮流套存在,并伴有黑潮分支入侵南海,而春、夏季黑潮南海分支减弱或消失,黑潮入侵不明显。在500 m以深,冬、春季,吕宋海峡以东有非常明显的南向流存在,流速约10 cm/s,而到了夏、秋季该南向流出现明显的减弱,黑潮与南海的水交换主要通过吕宋海峡以北的吕宋海沟进行。在垂向结构上,120.75°E断面浅层呈多流核结构,并且流核的位置和强弱受黑潮的季节性变化影响显著,深层流的季节变化不大。在年际尺度方面,吕宋海峡年际体积输运量异常与Niño3.4滞后6个月相关系数达到41.6%,吕宋海峡水交换与ENSO现象有较为显著的正相关关系,并存在2~3 a和准8 a周期的年际变化。  相似文献   

12.
热带气旋过境期间黑潮流轴变化的初步分析   总被引:1,自引:0,他引:1  
利用卫星高度计资料分析了热带气旋"艾碧"(Abe,9315)、"贝姬"(Becky,9316)、"莫拉克"(Morakot,0309)和"茉莉"(Melor,0319)对吕宋海峡及其附近海域黑潮流轴的影响。研究表明:1)吕宋海峡附近海域黑潮流轴容易受到热带气旋的影响而发生一定的变化。2)在热带气旋的作用下,黑潮流轴因中尺度涡的变异而变化;当吕宋海峡东侧的暖涡西移时,将使黑潮的流轴向西弯曲,有利于黑潮在该处的入侵。  相似文献   

13.
黑潮通过吕宋海峡入侵南海呈现明显的瞬态特征。以往的研究通常将黑潮在吕宋海峡附近的流态分为几种不同类型。本文基于表层地转流计算得到的有限时间李雅普诺夫指数场(FTLE),展示了拉格朗日视角下的吕宋海峡上层水交换特征。从FTLE场提取的拉格朗日拟序结构(LCSs)很好地识别了吕宋海峡附近的典型流态和旋涡活动。此外,这些LCSs还揭示了吕宋海峡周围复杂的输运路径和流体域,这些特征得到了卫星跟踪浮标轨迹的验证,且从流速场中是无法直接识别的。FTLE场显示,吕宋海峡附近表层水体的输运形态主要可分为四类。其中,黑潮直接向北流动的“跨越”形态和顺时针旋转的“流套”形态的发生频次明显高于直接进入南海的黑潮分支“渗入”形态和南海水流出至太平洋的“外流”形态。本文还进一步分析了黑潮在吕宋海峡处的涡旋脱落事件,突出强调了LCSs在评估涡旋输运方面的重要性。反气旋涡旋的脱落个例表明,这些涡旋主要源自黑潮“流套”,涡旋脱落之前可有效地俘获黑潮水。LCS所指示的输运通道信息有助于预测最终被反气旋涡所挟卷水体在上游的位置。而在气旋涡的形成过程中,LCS的分布特征表明,大部分气旋涡并未与黑潮水的输运路径相连通。因此,气旋涡对从太平洋到南海的上层水交换的贡献较小。  相似文献   

14.
One hundred and ninety-one Argos satellite-tracked drifters deployed at the Luzon Strait in winter during 1991 to 2004 were ana- lyzed to understand the near surface current in northern South China Sea (SCS). Several major track patterns of these drifters have been found. There are: (1)shelf slope landing way (SLW) ; (2)deep basin way (DBW) ;(3) weak loop current pattern; (4) northward movement directly driven by the Kuroshio. These observations show the effects of the basin scale gyre circulation, mesoscale eddies and the Kuroshio on the drifters' ovement.  相似文献   

15.
吕宋海峡及南海北部海域的水团分析   总被引:7,自引:0,他引:7  
根据1992年3月和1994年9月台湾海峡两岸科学家对南海北部两次协同调查的CTD资料以及由此计算的重力势资料,对吕宋海峡及南海北部400m以上海水的温盐性质进行分析。结果发现,调查海区基本可划分为两种水团,即黑潮水和南海水。黑潮水主要从吕宋海峡中部和北部进入南海,侵入的黑潮水向西北方向扩展,受到台湾海峡海底地形的阻挡而大部分集中于台湾西南海域,向西的范围基本不超过119°E。虽然两次观测所处的季节不同(分别为春初和夏末),但黑潮入侵南海的差异并不明显。另外,在二次调查的部分层次上,南海北部陆坡边缘都发现有一团水平尺度约百公里的黑潮性质水。配合重力势的水平分布形式,可以用地转流场的结构解释水团分析的结果。  相似文献   

16.
吕宋海峡黑潮脱落涡旋的特征分析   总被引:2,自引:0,他引:2  
涡旋脱落在西太平洋和南海的海水属性交换中起到重要作用。为研究吕宋海峡附近海域由黑潮脱落并进入南海的涡旋特征,本文采用1993—2014年法国空间局(AVISO)多卫星融合海面高度距平(SLA)和绝对动力地形(ADT)全球网格化延时数据,美国国家海洋数据中心(NODC)的WOA13年平均温盐剖面气候数据,以及1993—2010年SODA2.2.4月平均海洋同化数据集,并分析了黑潮脱落涡旋与大尺度环流的关系。结果表明:(1)暖涡脱落数量远多于冷涡数量,且脱落的冷涡绝大部分在黑潮西侧边缘生成,而脱落的暖涡则大部分在黑潮控制区生成。(2)冷涡、暖涡脱落时的平均半径、平均振幅相近,但是冷涡的平均生命、平均迁移距离约为暖涡的一半。(3)冷涡不是每年都有脱落,主要在冬季脱落;暖涡则每年均有脱落,主要发生在秋季。(4)脱落涡旋数量与脱落时的黑潮路径类型相关。(5)脱落涡旋的平均西行速度为5.8cm/s,与斜压第一模态长Rossby波波速及大尺度环流的西向平流流速之和相近。  相似文献   

17.
吕宋海峡两侧中尺度涡统计   总被引:4,自引:0,他引:4  
利用1993-2000年间的T/P卫星高度计轨道资料的时间序列和MODAS同化产品中的卫星高度计最优插值资料对南海东北部海区中尺度涡旋进行动态追踪。按照给定的标准从2种资料中提取了涡旋信息并对其特征量进行统计分析。结果表明,南海东北部海区中尺度涡旋十分活跃,平均每年6个,其中暖涡4个,尺度一般为200~250 km,平均地转流速为44 cm/s;冷涡每年平均2个,尺度一般为150~200 km,平均地转流速为-37 cm/s。吕宋海峡两侧涡旋的比较分析表明,南海东北部海区仍属于西北太平洋副热带海区的涡旋带,冷、暖涡旋处于不断的形成—西移—消散过程中。南海东北部中尺度冷涡大多是南海内部产生的,而暖涡与吕宋海峡外侧暖涡有一定的联系又具有相对的独立性。分析认为西北太平洋的西行暖涡在到达吕宋海峡时,受到黑潮东翼东向下倾的等密度面的抑制和岛链的阻碍,涡旋停滞于吕宋海峡外侧并逐渐消弱,被阻挡于吕宋海峡东侧涡旋释放的能量,形成一支横穿吕宋海峡(同时横穿过黑潮)的高速急流,把能量传递给吕宋海峡西侧的涡旋,使其得到强化,这是吕宋海峡两侧涡旋联系的一种重要机制。  相似文献   

18.
基于高分辨率海洋环流模式,通过比较吕宋海峡处地形优化后的黑潮入侵形态和强度不同的试验,我们研究了黑潮入侵优化后对南海中尺度涡模拟的影响。我们发现黑潮入侵的减弱导致了涡旋活动的减弱,这使得模式结果与观测结果更为相近。在这种情况下,模式模拟的吕宋海峡西部及北部陆坡区域的涡动动能明显减弱。模式涡动动能的减弱与模式反气旋式涡数量的减少和气旋式涡强度的减弱有关。涡动动能收支的分析进一步表明,黑潮入侵的优化将通过改变水平速度切变和温跃层斜率来改变涡动动能,而这两个参数分别与正压和斜压不稳定性有关。前者在模式涡动动能减弱中起着更为重要的作用,而黑潮入侵导致的涡动动能的水平输送对吕宋海峡西部区域的能量收支同样起着重要的作用。  相似文献   

19.
A numerical study of the summertime flow around the Luzon Strait   总被引:3,自引:0,他引:3  
Luzon Strait, a wide channel between Taiwan and Luzon islands, connects the northern South China Sea and the Philippine Sea. The Kuroshio, South China Sea gyre, monsoon and local topography influence circulation in the Luzon Strait area. In addition, the fact that the South China Sea is a fairly isolated basin accounts for why its water property differs markedly from the Kuroshio water east of Luzon. This work applies a numerical model to examine the influence of the difference in the vertical stratification between the South China Sea and Kuroshio waters on the loop current of Kuroshio in the Luzon Strait during summer. According to model results, the loop current’s strength in the strait reduces as the strongly stratified South China Sea water is driven northward by the southwest winds. Numerical results also indicate that Kuroshio is separated by a nearly meridional ridge east of Luzon Strait. The two velocity core structures of Kuroshio can also be observed in eastern Taiwan. Moreover, the water flowing from the South China Sea contributes primarily to the near shore core of Kuroshio.  相似文献   

20.
On the basis of the latest version of a U.S. Navy generalized digital environment model(GDEM-V3.0) and World Ocean Atlas(WOA13), the hydraulic theory is revisited and applied to the Luzon Strait, providing a fresh look at the deepwater overflow there. The result reveals that:(1) the persistent density difference between two sides of the Luzon Strait sustains an all year round deepwater overflow from the western Pacific to the South China Sea(SCS);(2) the seasonal variability of the deepwater overflow is influenced not only by changes in the density difference between two sides of the Luzon Strait, but also by changes in its upstream layer thickness;(3) the deepwater overflow in the Luzon Strait shows a weak semiannual variability;(4) the seasonal mean circulation pattern in the SCS deep basin does not synchronously respond to the seasonality of the deepwater overflow in the Luzon Strait.Moreover, the deepwater overflow reaches its seasonal maximum in December(based on GDEM-V3.0) or in fall(October–December, based on the WOA13), accompanied by the lowest temperature of the year on the Pacific side of the Luzon Strait. The seasonal variability of the deepwater overflow is consistent with the existing longest(3.5 a) continuous observation along the major deepwater passage of the Luzon Strait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号